Pragmatic Information for Cognitive Agents

05.11.2008

Workshop on Coordination of Agents

King’s College London

Peter beim Graben
Dept. of Clinical Language Sciences
University of Reading
p.r.beimgraben@reading.ac.uk
Information Theory

“Relative to the broad subject of communication, there seem to be problems at three levels. Thus it seems reasonable to ask, serially:

Level A. How accurately can the symbols of communication be transmitted? (The technical problem.)

Level B. How precisely do the transmitted symbols convey the desired meaning? (The semantic problem.)

Level C. How effectively does the received meaning affect conduct in the desired way? (The effectiveness problem.)”

W. Weaver in Shannon & Weaver (1949)
von Weizsäcker’s Proposals

1. Pragmatic information measures effect upon the receiver
2. Pragmatic information is minimal for totally novel and for completely confirmed messages
3. Pragmatic information requires a non-classical (quantum like) description

E. v. Weizsäcker & C. v. Weizsäcker (1972)
Effectiveness

“Information [...] should act. By definition they act upon their receivers and change them informationally. In particular, after the arrival of a message the receiver's expectation probability of a related message will usually not be the same as before.”

“If information acts successfully, it changes the basis of its own quantification.”

E. v. Weizsäcker & C. v. Weizsäcker (1972)
Novelty and Confirmation

novelty:
Minä vien alituiseen vaimoani joka paikkaan, mutta aina hän löytää tiensä sieltä takaisin.

confirmation:
when I was young, I wanted to grow up to be somebody. Now that I am older – I wish I had been more specific.

E. v. Weizsäcker & C. v. Weizsäcker (1972)
Non-Classicality

quantum theory:
complementary observables are Fourier pairs

E. v. Weizsäcker & C. v. Weizsäcker (1972)
Effectiveness

“Dynamic semantics is called ‘dynamic’ because it assumes that the meaning of a sentence is not its truth condition but rather its impact on the hearer.”

Gärdenfors’ formalism of belief models for cognitive agents

Kracht (2002)
Dynamic Semantics

- cognitive agent
- epistemic states (belief states) \(x, y, z \in X \)
- state transitions (semantic operators)
 \[A, B, C : \begin{cases}
 x & \rightarrow & y \\
 X & \rightarrow & X
 \end{cases} \]
- composition
 \[(AB)(x) = (A \circ B)(x) = A(B(x)) \]
- identity
 \[\top(x) = x \]

Gärdenfors (1988)
Propositions I

- conjunction
 \[A \land B = AB = BA \]
- idempotence
 \[A^2 = AA = A \]

\[A, B, C \in \mathcal{P} \subset \text{Mor}(X) \]

Gärdenfors (1988)
Propositions II

- acceptance

A proposition \(A \in \mathcal{P} \) is accepted in state \(x \in X \) if

\[
A(x) = x
\]

- logical consequence

Let \(A, B \in \mathcal{P} \). \(B \) is called logical consequence of \(A \), if \(A \land B = B \land A = A \).

interpretation: If state \(y \) accepts proposition \(A \), then \(y \) accepts \(B \), too.
Belief Models

(X, \mathcal{P}) with those properties is a belief model with state space X and the set of propositions \mathcal{P}. By further axioms, all logical connectives can be introduced, such that (X, \mathcal{P}) is interpretable as classical propositional logic. The meaning of a proposition $A \in \mathcal{P}$ is its impact upon an agent’s epistemic state space X.

Hence: meaning is context-dependent: 1. w.r.t the cognitive agent, 2. w.r.t. her current epistemic state (beliefs, knowledge, …)

Gärdenfors (1988)
Bayesian Belief Models

statistical (Bayesian states):
probability distributions over propositions
\(p : \mathcal{P} \rightarrow [0, 1] \subset \mathbb{R} \); \(p(A) \) probability for accepting \(A \).

limiting cases:
\(p(A) = 0 \): \(A \) not accepted in state \(p \).
\(p(A) = 1 \): \(A \) certainly accepted in state \(p \).
Conditionalization

Let \(p : \mathcal{P} \rightarrow [0, 1] \subset \mathbb{R} \) be a statistical state and \(A \in \mathcal{P} \) a proposition. \(A \) acts as a semantic operator on \(p \) by means of the map

\[
A : p \mapsto p_A
\]

\[
p_A(P) = \frac{p(PA)}{p(A)} = p(P|A)
\]

for all \(P \in \mathcal{P} \), if \(p(A) > 0 \).

henceforth, \(A \) is accepted: \(p_A(A) = 1 \).
Pragmatic Information

A measure for pragmatic information is given by the mean information gain supplied by the transition from the prior state \(p \) to the conditionalized state \(p_A \), after accepting the proposition \(A \).

\[
K(p_A, p) = \sum_{P \in \mathcal{P}} p_A(P) \log \frac{p_A(P)}{p(P)}
\]

\[
S_p(A) = \begin{cases}
K(p_A, p) & : \ p(A) > 0 \\
0 & : \ p(A) = 0
\end{cases}
\]
Novelty and Confirmation

Call a proposition $A \in \mathcal{P}$ (totally) novel, if no state p can be conditionalized by A.

$p_A = p$

$S_p(A) = 0$

Call a proposition $A \in \mathcal{P}$ (completely) confirmed, if A is logical consequence of an already accepted proposition B.

$S_{p_B}(A) = 0$
Texts

Example: Let $A, B \in \mathcal{P}$ be propositions. Call $T = ABBA = A \land B \land B \land A \in \mathcal{P}$ a text.

propositions commute

$T = ABBA = AABBB = BBAA$

relative novelty not definable

propositions are idempotent

$T = A^2B^2 = AB = B^2A^2 = BA$

relative confirmation not definable
Non-Classicality

Consider semantic operators \(U, V \in \text{Mor}(X) \setminus \mathcal{P} \).

Generally

\[UV \neq VU \quad \text{“complementarity”} \]

\[U^2 \neq U \quad \text{no idempotence} \]

generalized conditionalization

\[p_U(V) = \frac{p(VU)}{p(U)} = p(V | U) \]
Statistics

- variance of a semantic operator U in state p:
 \[\text{vax}_p(U) = p(U^2) - p(U)^2 \]
- covariance of a semantic operator V in state p given U:
 \[\text{cox}_p(V|U) = p(VU) - p(V)p(U) \]

properties:

- for propositions $A \in \mathcal{P}$ holds $\text{vax}_p(A) = 0$
- if $\text{vax}_p(U) > 0$, then $p_U(U) > p(U)$ (conviction)
- if $\text{vax}_p(U) < 0$, then $p_U(U) < p(U)$ (propaganda)
Novelty and Confirmation

Call an operator $V \in \text{Mor}(X)$ (relatively) novel in state p w.r.t. an operator $U \in \text{Mor}(X)$, if
\[
\text{cox}_p(V|U) = 0
\]

Call an operator $V \in \text{Mor}(X)$ (relatively) confirmed by the operator $U \in \text{Mor}(X)$ in state p, if
\[
\text{cox}_p(V|U) > 0
\]

(For $\text{cox}_p(V|U) < 0$ we have relative disconfirmation)
Pragmatic Information

The generalized measure of pragmatic information is the averaged information gain attributed to the transition from state p to state p_U, after accepting operator U.

\[
K(p_U, p) = \sum_{V \in A \subseteq \text{Mor}(X)} p_U(V) \log \frac{p_U(V)}{p(V)}
\]

\[
S_p(U) = \begin{cases}
K(p_U, p) & : \quad p(U) > 0 \\
0 & : \quad p(U) = 0
\end{cases}
\]
Decomposing Pragmatic Information

Decomposing the sum into three parts:

\[S_p(U) = \sum_{V: \text{cox}(U|V) < 0} + \sum_{V: \text{cox}(U|V) = 0} + \sum_{V: \text{cox}(U|V) > 0} \]

- disconfirmation
- novelty
- confirmation

= 0

Compare: Kornwachs and von Lucadou (1982): \[S = E \times B \]
Summary

1. Pragmatic information measures the impact of semantic operators upon epistemic states of a cognitive agent.

2. In the limiting cases of total novelty / complete confirmation, pragmatic information vanishes. It consists of confirmation and disconfirmation.

3. Relative novelty / confirmation require non-classical operators such as in quantum theory.

E. v. Weizsäcker & C. v. Weizsäcker (1972)
Applications

1. semantic information
2. relevance
3. neural correlates
Semantic Information

Boolean algebra \(\mathcal{P} = \{\top, \bot\} \)

apriori distribution \(p(\top) = \beta; \quad p(\bot) = 1 - \beta \)

aposteriori distribution \(p_{\top}(\top) = 1; \quad p_{\top}(\bot) = 0 \)

pragmatic information
\[
S_p(\top) = -\log \beta = \inf(\top)
\]

Bar-Hillel & Carnap (1953, 1964)
Relevance

Average pragmatic information of all operators

\[S_p = \sum_U p(U) S_p(U) : \]

\[S_p = \sum_{U,V} p(UV) \frac{p(UV)}{p(U)p(V)} \]

= mutual information = relevance = utility function in evolutionary game theory of interacting agents

Polani et al. (2001)
Weinberger (2002)
von Rooij (2004)
Neural Correlates

P300 amplitude correlates with
- subjective a posteriori probability
- task-relevance
- equivocation
- mutual information

Ruchkin & Sutton (1978)
Sutton (1979)
Johnston (1979)
Donchin (1981)
Sutton & Ruchkin (1984)
Thank you for your attention!