Show/hide main menu

News

News Highlights

Same genes drive maths and reading ability

Posted on 08/07/2014
Maths

Around half of the genes that influence how well a child can read also play a role in their mathematics ability, according to new research from King’s College London, UCL and the University of Oxford.

While mathematics and reading ability are known to run in families, the complex system of genes affecting these traits is largely unknown. The finding deepens scientists’ understanding of how nature and nurture interact, highlighting the important role that a child’s learning environment may have on the development of reading and mathematics skills, and the complex, shared genetic basis of these cognitive traits. 

The collaborative study, published today in Nature Communications as part of the Wellcome Trust Case-Control Consortium, used data from the Twins Early Development Study (TEDS) to analyse the influence of genetics on the reading and mathematics performance of 12-year-old children from nearly 2,800 British families. 

Twins and unrelated children were tested for reading comprehension and fluency, and answered mathematics questions based on the UK national curriculum. The information collected from these tests was combined with DNA data, showing a substantial overlap in the genetic variants that influence mathematics and reading.  

Professor Robert Plomin, one of the senior authors from the MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre at the Institute of Psychiatry, King’s College London, who leads the TEDS study, said: “This is the first time we estimate genetic influence on learning ability using DNA alone. The study does not point to specific genes linked to literacy or numeracy, but rather suggests that genetic influence on complex traits, like learning abilities, and common disorders, like learning disabilities, is caused by many genes of very small effect size.  

"The study also confirms findings from previous twin studies that genetic differences among children account for most of the differences between children in how easily they learn to read and to do maths. Children differ genetically in how easy or difficult they find learning, and we need to recognise, and respect, these individual differences.  Finding such strong genetic influence does not mean that there is nothing we can do if a child finds learning difficult — heritability does not imply that anything is set in stone – it just means it may take more effort from parents, schools and teachers to bring the child up to speed.”

Dr Oliver Davis, first author, UCL Genetics, said: “We looked at this question in two ways, by comparing the similarity of thousands of twins, and by measuring millions of tiny differences in their DNA. Both analyses show that similar collections of subtle DNA differences are important for reading and maths. However, it’s also clear just how important our life experience is in making us better at one or the other. It’s this complex interplay of nature and nurture as we grow up that shapes who we are.”

Dr Chris Spencer, Oxford University, lead author said: “We’re moving into a world where analysing millions of DNA changes, in thousands of individuals, is a routine tool in helping scientists to understand aspects of human biology. This study used the technique to help investigate the overlap in the genetic component of reading and maths ability in children. Interestingly, the same method can be applied to pretty much any human trait, for example to identify new links between diseases and disorders, or the way in which people respond to treatments.”

Paper reference: Davis, O. et al. 'The correlation between reading and mathematics ability at age twelve has a substantial genetic component' published in Nature Communications doi:10.1038/ncomms5204

For further information, please contact Seil Collins, Press Officer, Institute of Psychiatry, King’s College London seil.collins@kcl.ac.uk / (+44) 0207 848 5377

Rss Feed Atom Feed

News Highlights:

News Highlights...RSS FeedAtom Feed

Largest genetic study of schizophrenia points to new disease mechanisms

Largest genetic study of schizophrenia points to new disease mechanisms

Description
As part of a multinational, collaborative effort, researchers from the Institute of Psychiatry at King's College London have helped identify over 100 locations in the human genome associated with the risk of developing schizophrenia.
MPs donate DNA to help crack the genetic code of eating disorders

MPs donate DNA to help crack the genetic code of eating disorders

Description
MPs have donated their DNA to the Charlotte's Helix project, through the National Institute for Health Research (NIHR) BioResource for Mental and Neurological Health at King's College London and South London and Maudsley NHS Foundation Trust.
Director appointed for NIHR Maudsley BRC

Director appointed for NIHR Maudsley BRC

Description
Professor Matthew Hotopf has been appointed Director of the NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and the Institute of Psychiatry, King's College London.

Share this story:

 

Follow Us

@kingscollegelon

Live Twitter feed...

@kingscollegelon
Join the conversation
Sitemap Site help Terms and conditions Privacy policy Accessibility Modern slavery statement Contact us

© 2017 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454