Show/hide main menu

News

News Highlights

Biological tooth replacement - a step closer

Posted on 11/03/2013
Dental

New research published in the Journal of Dental Research describes an advance in efforts to develop a method to replace missing teeth with new bioengineered teeth generated from a person’s own gum cells. The research is led by Professor Paul Sharpe, an expert in craniofacial development and stem cell biology at King’s College London’s Dental Institute, and was funded by the National Institute for Health Research (NIHR) Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, UK.
 
Current implant-based methods of whole tooth replacement fail to reproduce a natural root structure and as a consequence of the friction from eating and other jaw movement, loss of jaw bone can occur around the implant.
 
Research towards achieving the aim of producing bioengineered teeth (bioteeth) has largely focused on the generation of immature teeth (teeth primordia) that mimic those in the embryo that can be transplanted as small cell 'pellets' into the adult jaw to develop into functional teeth. Remarkably, despite the very different environments, embryonic teeth primordia can develop normally in the adult mouth and thus if suitable cells can be identified that can be combined in such a way to produce an immature tooth, there is a realistic prospect bioteeth can become a clinical reality. Subsequent studies have largely focussed on the use of embryonic cells and although it is clear that embryonic tooth primordia cells can readily form immature teeth following dissociation into single cell populations and subsequent recombination, such cell sources are impractical to use in a general therapy.

Professor Sharpe said: 'What is required is the identification of adult sources of human epithelial and mesenchymal cells that can be obtained in sufficient numbers to make biotooth formation a viable alternative to dental implants.'
 
In this new work, the researchers isolated adult human gum (gingival) tissue from patients at the Dental Institute at King’s College London, grew more of it in the lab, and then combined it with the cells of mice that form teeth (mesenchyme cells). By transplanting this combination of cells into mice the researchers were able to grow hybrid human/mouse teeth containing dentine and enamel, as well as viable roots.
 
Professor Sharpe concluded: 'Epithelial cells derived from adult human gum tissue are capable of responding to tooth inducing signals from embryonic tooth mesenchyme in an appropriate way to contribute to tooth crown and root formation and give rise to relevant differentiated cell types, following in vitro culture. These easily accessible epithelial cells are thus a realistic source for consideration in human biotooth formation. The next major challenge is to identify a way to culture adult human mesenchymal cells to be tooth-inducing, as at the moment we can only make embryonic mesenchymal cells do this.'

Notes to editors

For further information about King's visit our 'King's in Brief' page.

Rss Feed Atom Feed

News Highlights:

News Highlights...Rss FeedAtom Feed

Report calls for strengthening of academic psychiatry

Report calls for strengthening of academic psychiatry

Description
Professors Shitij Kapur and Sir Simon Wessely, King's College London Institute of Psychiatry, are contributors to a major new report by the Academy of Medical Sciences - Strengthening academic psychiatry in the UK. The report calls for a breakdown of unhelpful boundaries between psychiatry and neuroscience and makes recommendations for strengthening academic psychiatry to improve the prevention, diagnosis and treatment of mental ill health.
Faster 'biological' ageing linked to age-related diseases

Faster 'biological' ageing linked to age-related diseases

Description
An international team of scientists including researchers from the Department of Twin Research & Genetic Epidemiology at King's College London has found new evidence that links faster 'biological' ageing to the risk of developing several age-related diseases – including heart disease, multiple sclerosis and various cancers.
Lion's Den 2013 winners

Lion's Den 2013 winners

Description
Winners of the annual King's College London Lion's Den programme were announced last week, with eight finalists pitching their ideas to the judging panel, competing for a total prize fund of £19,000.

Share this story:

add

Follow Us

@kingscollegelon

Live Twitter feed...

@kingscollegelon
Join the conversation
Sitemap Site help Terms and conditions Accessibility Recruitment News Centre Contact us

© 2014 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454