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Abstract

Machine learning models often excel in the accuracy of their predictions but are opaque

due to their non-linear and non-parametric structure. This makes statistical inference

challenging and disqualifies them from many applications where model interpretability is

crucial. This paper proposes the Shapley regression framework as an approach for sta-

tistical inference on non-linear or non-parametric models. Inference is performed based

on the Shapley value decomposition of a model, a pay-off concept from cooperative game

theory. I show that universal approximators from machine learning are estimation consis-

tent and introduce hypothesis tests for individual variable contributions, model bias and

parametric functional forms. The inference properties of state-of-the-art machine learning

models - like artificial neural networks, support vector machines and random forests - are

investigated using numerical simulations and real-world data. The proposed framework

is unique in the sense that it is identical to the conventional case of statistical inference

on a linear model if the model is linear in parameters. This makes it a well-motivated

extension to more general models and strengthens the case for the use of machine learning

to inform decisions.
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1 Introduction

Model families from machine learning, like support vector machines, tree ensembles and artifi-

cial neural networks, often excel in the accuracy of their predictions (Fernandez-Delgado (2014))

but are opaque due to their complex structure. More generally, many models make a trade-off

between simplicity and accuracy.1 Accuracy provides confidence that a model’s predictions are

close to actual outcomes, while simplicity facilitates understanding and communication. On a

technical level, this usually boils down to a statistical inference analysis, e.g. the estimation of

a coefficient associated with a variable in the model and its confidence levels with respect to a

hypothesis (mostly the null). This approach is largely limited to linear parametric models or

generalised linear models (Greene (2017)).

On the other hand, machine learning models are mostly non-parametric, built around pro-

ducing accurate predictions (Friedman et al. (2009)). For example, artificial neural networks,

which are driving current advances in artificial intelligence in the form of deep learning (Good-

fellow et al. (2016)), have long been known to have universal approximator properties (Portnoy

(1988)).2 They can approximate almost any unknown function given enough training data.

However, this directly leads to the black-box critique of machine learning models, because it

is not straightforward to understand a model’s input-output relations or perform a statistical

inference analysis on them. This causes not only practical obstacles for their application, but

also ethical and safety concerns more generally which are increasingly reflected in legal and

regulatory frameworks (European Union (2016)).

Despite these important concerns, machine learning models could provide substantial benefits

in the context of prediction policy problems (Kleinberg et al. (2015)). These are situations

where the precise prediction of outcomes is important to inform decisions.3 Examples include

the forecasting of economic developments (Garcia et al. (2017)), modelling the soundness of

financial institutions (Chakraborty and Joseph (2017)), consumer credit scoring (Fuster et al.

(2017)), policy targeting based on uncertain outcomes (Andini et al. (2017)), the prediction of

extreme weather events in the face of climate change (Racah et al. (2016)), medical image anal-

ysis and diagnosis (Litjens et al. (2017)) or aiding expert judgement (Kleinberg et al. (2018)).

Institutional transparency is an additional aspect from a public policy point of view, such as

the decision processes of central banks, regulators and governments (Bernanke (2010)). On the

one hand, decision makers need to understand the driving factors of the quantitative models

1There is also an active area of research into simple but accurate models, e.g. via the use of decision heuristics

or fast-and-frugal trees (see for example Aikman et al. (2014); Şimşek and Buckmann (2015))
2This property also applies to other non-parametric models often used in machine learning, see e.g. Scornet

et al. (2014); Christmann and Steinwart (2008).
3As soon as we need to consider the change in outcome due to any action taken as a response to a prediction,

we enter the area of a causal inference or mixed policy problem.
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they rely on, and, on the other hand, also be able to communicate them clearly. Again, the

opaqueness of machine learning models hinders their application with regard to both points.

Finally, the need for machine learning models is likely to be aggravated by the current prolif-

eration of large and granular data sources. For instance, data from social media, smart phone

usage, ubiquitous sensors or the ‘internet of things’ may allow for the modelling of human

behaviour or the dynamics of autonomous machines in complex environments on an unprece-

dented level. Such capabilities may provide large benefits for technological advancement or

societal development more generally. Again, a detailed understanding of the deployed models

will be needed to fully utilise this potential.

Two approaches to address the interpretability issue of machine learning models4 are variable

attributions via the decomposition of individual predictions (local attribution) and importance

scores for the model as a whole (global attribution). A well-motivated local decomposition

is provided by model Shapley values (Strumbelj and Kononenko (2010); Lundberg and Lee

(2017)), a pay-off concept from cooperative game theory (Shapley (1953); Young (1985)). It

maps the marginal contribution coming from a variable within a set of variables to individual

model predictions. However, model decomposition is only one part of model interpretability.

An equally important part is statistical inference in the form of hypothesis testing to assess the

confidence we can have in specific model outputs.

This paper proposes a general statistical inference framework for non-parametric models based

on the Shapley decomposition of a model, namely Shapley regressions. This framework trans-

fers the model inference problem into a locally linear space. This simultaneously opens the

toolbox of econometrics, or parametric statistics more generally, to machine learning and vice

versa. Model inference consists of three steps. First, model calibration and fitting (training).

Second, model testing and Shapley value decomposition on a hold-out dataset. Finally, infer-

ence based on a surrogate regression analysis using the Shapley decomposition as its inputs. For

the known case of a linear model, this approach reduces to the standard least-squares case.5 In

this sense, Shapley regressions can be seen as a natural extension of regression-based inference

to the general non-linear model. The main distinction is that inference is often only valid on

a local level, i.e. within a region of the input space due to the potential non-linearity of the

model plane. A consequence of this is that the concept of a regression coefficient as a standard

way of measuring and communicating effects is not directly applicable. I propose a generalised

coefficient concept suited for the non-linear case which is close to its linear parent. It allows

for similar assessment and communication of modelling results. On a deeper level, the current

4I only discuss supervised learning in this paper. However, the proposed methodology can be applied more

generally in situations where a model delivers a score which needs to be evaluated based on its inputs.
5Shapley values have been used in linear regression analysis before to address collinearity issues (Lipovetsky

and Conklin (2001)). I do not see scope for confusion with the current application.
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work builds on seminal work in non-parametric statistics (Stone (1977)) and connects it with

recent developments in the machine learning literature.

The remainder of this paper is structured as follows. Section 2 discusses model interpretability

more widely and the nascent literature on statistical inference using machine learning models

in econometrics. Section 3 introduces the concept of Shapley values and Shapley regressions

for model inference. A slightly modified null hypothesis is introduced to test the statistical

significance of variables in a model. Shapley share coefficients are defined as a summarising

concept to assess individual variable contributions akin to linear regression coefficients. In Sec-

tion 4, the theoretical estimator properties of machine learning model are investigated. General

estimation consistency is shown for the large class of piecewise analytic functions. I present a

test to assess model bias for more general model decompositions which are based on Shapley

values and introduce robust component estimates. The validity conditions for inference within

the Shapley regression framework are stated. Particularly, valid asymptotic inference depends

on sample splitting for model training and testing which is a common procedure when building

a machine learning system. Section 5 considers applications. First, empirical estimation prop-

erties of commonly used machine learning models - like artificial neural networks (NN), support

vector machines (SVM) and random forests (RF) - are investigated using numerical simulations.

Second, the Shapley regression framework is applied to modelling long-run macroeconomic time

series for the UK and US. Machine learning models are mostly more accurate than either regu-

larised (biased) and unbiased linear benchmark models. Inference from the Shapley regression

framework is robust against model choice and richer than that of benchmark models pointing

to the importance of non-linearities in modelling these data generating processes. Differences

in results are in line with analytical model properties and can be used for model selection.

The main drawback of using the Shapley regressions framework is the computational cost of

calculating Shapley value decompositions. Depending on the application, this can be addressed

via appropriate approximations or sampling procedures. Section 6 concludes.

An inference recipe for machine learning models is summarised in Box 1 in the Appendix to-

gether with figures, tables and proofs of theoretical results. The code and data for the numerical

and empirical analyses alongside supplementary results are available on Github.com/Bank-of-

England/Shapley regressions.

2 Literature

Approaches to interpretable machine learning come from different directions: General issues

around model interpretability, technical approaches from within machine learning research and

approaches from econometrics and statistics. I will primarily focus on the latter two.
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The highest level of discussion relates to reasons why models should be interpretable and well-

communicated, despite good comparative numerical performance. Especially in the context

of informing decisions, these are intertwined ethical, safety, privacy and increasingly legal con-

cerns about the application of opaque models (Crawford (2013); European Union (2016); Fuster

et al. (2017)). Lipton (2016) discusses desirables properties of interpretable research in general

(trust, causality, transferability, informativeness) and models we use (transparency, e.g. via

local decomposability) and interpretability (e.g. via visualisations and relatedness). He argues

that a complex machine learning model does not need to be less interpretable than a simpler

linear model if the latter operates on a more complex space. This is in line with Miller (2017),

who provides a comprehensive discussion of explainable artificial intelligence (often referred to

as XAI) from a social science perspective. One take-away message is that humans prefer simple

explanations, i.e. those citing fewer causes and explaining more general events, are generally

preferred, though they may be biased. Shallow tree models from machine learning, or derived

fast-and-frugal-trees, may thus offer accurate models while also providing satisfactory trans-

parency (Aikman et al. (2014); Şimşek and Buckmann (2015)).

Approaches in computer science have focused on model decomposition by means of variables

attribution techniques. That is, scores of importance are given to each input variable for single

observations or the full model. Gini importance for tree-based classifiers is an example of a

model score. It is a measure for how much a variable contributes to the optimisation of the

objective function (Kazemitabar et al. (2017); Friedman et al. (2009)). Local attributions de-

compose individual predictions assigning scores to each input variable. Here, one approach is

to construct approximate surrogate models which allow for model decomposition. Examples

are LIME6 (Ribeiro et al. (2016)), DeepLIFT7 (Shrikumar et al. (2017)) and Shapley values

(Strumbelj and Kononenko (2010)). Lundberg and Lee (2017) demonstrate that Shapley values

offer a unified framework of previous attribution schemes with appealing properties. These are

also the reason for their use in the current paper.

The literature of inference using machine learning models from an econometrics point of view is

just at its beginning and also the main area this paper talks to. I distinguish three approaches.

First, one can construct a correspondence between an econometric and a machine learning

model where possible. Mullainathan and Spiess (2017) present the simple but intriguing idea

to treat a not-too-deep tree model as a regression model with multiple interaction terms, one

per leaf node. Similar to the tree model, overfitting is an emerging issue. This can be addressed

via regularisation, and the estimation of unbiased coefficient on the regularised model corre-

sponding to a pruned tree when shrinking coefficients to zero.

6Local Interpretable Model-agnostic Explanations.
7Deep Learning Important FeaTures for NN.
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The second approach is double or debiased machine learning (Chernozhukov et al. (2018)). It

deals with the issue of parameter regularisation bias using machine learning, e.g. when es-

timating a partially linear model in the presence of a high-dimensional nuisance parameter.

This bias is avoided via the construction of orthogonal score functions for the estimation of

a low-dimensional target parameter. The procedure is model independent and allows for the

well-defined inference on causal parameters. The main difference to the current paper is that I

do not allow parameters of interest to be part of the model optimisation stage but rather recover

those from an a posteriori decomposition which may involve a particular parametric form or not.

A third approach has been to use a priori modified models which have well-defined statistical

properties, e.g. for the estimation of treatment effects. Wager and Athey (2018) introduce

a type of RF for the estimation of heterogeneous treatment effects. The idea is based on the

notion that small enough leaf nodes provide uncorrelated sub-samples as though they had come

from a randomised experiment. Intuitively, trees in a forest act as a form of matching algorithm

which is more flexible than conventional techniques due to the adaptive nature of tree models.

For the construction of these causal forests, they introduce the concept of honest trees as a

modification of the original algorithm. These now have an asymptotically Gaussian and centred

sampling distribution. The idea of using specific characteristics of machine learning models to

improve on existing techniques is again intriguing. The present paper is complimentary to this

approach. RF from honest trees are still open to the black-box critique, which can be addressed

by the Shapley regression framework.8

3 The Shapley regression framework

3.1 Notation and definitions

This paper considers the common case where f(x; β) : D ⊂ Rm 7→ Rp is the data generating

process (DGP) of interest with domain D. We only consider the case p = 1 (the extension to

p > 1 is straightforward). The data x ∈ Rn×m with m being the number of features or inde-

pendent variables and n the number of observations. Features are assumed to be independent

from each other, while observations need not be (column-wise independence). Consequences of

this restriction and ways to address it, if too stringent, will be discussed.

The vector β ∈ Rm+1 describes the parameterisation of the DGP, such as the set of coefficients

of a linear model with β0 being the intercept. The parameters β represent the effects we are

interested in studying. The DGP f is assumed to be piecewise continuous and differentiable

8The same applies with respect to Chernozhukov et al. (2018), meaning the current paper is not a substitute

but a complement to preceding work.
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on finite sub-domains of D and to have finite moments, i.e. ED
[
fd
]
<∞, with d ≥ 1. Regions

within D are labelled Ω ⊂ D.

The non-parametric model is f̂(x; θ) : D ⊂ Rm 7→ Rq with θ ∈ Rq where q → ∞ as m → ∞
is allowed. It represents our machine learning models of interest, such as NN, SVM or RF.

In these cases, θ represents the network weights, support vector coefficients and split points,

respectively. The model parameters θ are slightly different to their usage in semi-parametric

statistics, where θ often describes a high-dimensional nuisance parameter, which may be present

or not. The model f̂ is assumed to have finite moments but no other regularity conditions are

imposed. The linear model is parameterised by β̂.

The used index convention is that i, j ∈ {1, . . . , n} refer to individual observations and k, l ∈
{1, . . . ,m} to feature dimensions. No index refers to the whole dataset x ∈ Rn×m. An index

c ∈ {1, . . . , C} refers to components of linear decompositions of either a DGP or a model, e.g.

f =
∑C

c=1 ψc ≡ Ψ. ΦS refers to the Shapley decomposition of a model (see below). Super-

scripts S refer to “Shapley-related” quantities which will be clear from the context. Estimated

quantities are hatted, except Φ/φ for simplicity.

3.2 The linear model as a guiding principle

Statistical inference can be local or global. The linear model f̂(xi) = xiβ̂ =
∑m

k=0 xikβ̂k is special

in the sense that it provides local and global inference at the same time. The coefficients β̂

describe local effects via the sum of the product of variable components and coefficients. At

the same time, the coefficient vector β̂ determines the orientation of the global model plane

with constant slope in each direction of the input space. As long as the number of co-variates

in a model is modest, the linear model is widely accepted to provide good inference properties

and is the workhorse of econometric analysis.

The linear model belongs to the class of additive variable attributions. For an observation

xi ∈ Rm we define the model decomposition Φ as

Φ
(
f̂(xi)

)
≡ φ0 +

m∑
k=1

φk(xi)
lin.model

= β̂0 +
m∑
k=1

xikβ̂k , (1)

where φ0 = β̂0 is the intercept. The standard approach to test for the importance of a certain

variable is to test against the null hypothesis Hk
0 : {βk = 0}. The goal of this paper is to arrive

at a similar hypothesis test valid for more general models f̂ .

3.3 Shapley values

A more general class of additive attribution is given by model Shapley values ΦS, a pay-off

concept from cooperative game theory (Shapley (1953)). Making the analogy between players
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of a multi-player game cooperating to generate a pay-off and variables xk within a model to

generate predictions f̂(x), the marginal contribution from variable k is defined in the form of

its Shapley value (Strumbelj and Kononenko (2010))

φSk (f̂ , x) =
∑

x′⊆C(x)\{k}

|x′|!(n− |x′| − 1)!

n!

[
f̂(x′ ∪ {k})− f̂(x′)

]
, (2)

where C(x) \ {k} is the set of all possible coalitions of m − 1 model variables when excluding

the kth variable. |x′| denotes the number of included variables. Eq. 2 is the weighted sum

of marginal contributions of variable k accounting for the number of possible coalitions for a

certain x′.9

Intuitively, the above definition of a Shapley value is similar to the regression anatomy of a

coefficient β̂k, i.e. the bivariate slope coefficient after partialling out all other regressors in a

multi-variate model (Angrist and Pischke (2008)). This will be formalised below.

Shapley values are the unique class of additive value attribution with the following properties

(Shapley (1953); Young (1985); Strumbelj and Kononenko (2010)).

Property 1: Efficiency. The attribution model ΦS matches the original model f̂ at xi,

ΦS(xi) ≡ φS0 +
m∑
k=1

φSk (xi) = f̂(xi) . (3)

In a modelling context, this property is called local accuracy. A model’s Shapley decomposition

always sums to the predicted value. The intercept φ0 is the expected or average model value.

Property 2: Missingness (null player). If a variable is missing from a model, no attribution

is given to it, i.e. φSk = 0 (dummy player).

Property 3: Symmetry. If k and k′ are two variables which are equivalent, such that

f̂(x′ ∪ {j}) = f̂(x′ ∪ {k}) (4)

for all possible x′ not containing j or k, then φSj = φSk .

Property 4: Strong monotonicity. Variable attributions do not decrease if an input’s

contribution to a model increases or stays the same regardless of other variables in the model.

That is, for any two models f̂ and f̂ ′, if

f̂(x′)− f̂(x′ \ k) ≥ f̂ ′(x′)− f̂ ′(x′ \ k) (5)

for all possible x′, then φSk (f, x) ≥ φSk (f ′, x). x′ \ k indicates the set of variables excluding k.

In the context of variable attribution, this property is also called attribution consistency. It is

9For example, assuming we have three players (variables) {A,B,C}, the Shapley value of player C would be

φSC(f̂) = 1/3[f̂({A,B,C})− f̂({A,B})] + 1/6[f̂({A,C})− f̂({A})] + 1/6[f̂({B,C})− f̂({B})] + 1/3[f̂({C})−
f̂({∅})].
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an innovation to previous approaches, such Gini importance of decision trees (Lundberg et al.

(2018)).

Property 5: Linearity. For any two independent models f̂ and f̂ ′, i.e. where the outcome of

the one does not depend on the inputs or outcome of the other, the joint Shapley decomposition

for a variable k can be written as

φSk
(
a(f̂ + f̂ ′)

)
= aφSk (f̂) + aφSk (f̂ ′) (6)

for any real number a. A consequence of these properties is the following proposition.10

Proposition 3.1. The Shapley decomposition ΦS of a model f̂ linear in parameters β̂, f̂(x) =

xβ̂, is the model itself. The proof is given in the Appendix.

Hence, the Shapley value decomposition of the linear model is well known.

Regarding the computation of model Shapley values (2), most models cannot handle missing

variables to evaluate “variable coalitions”. If missing from a coalition, the contribution of a

variable is integrated out via conditional expectations relative to a representative background

sample. Particularly, we evaluate Ex\{C}
[
f̂(x)|xC

]
, where C is the set of non-missing variables

in a coalition. For this to be exact, one has to assume feature independence to avoid model

evaluations at unreasonable inputs. This can be a strong assumption for many applications. I

will demonstrate a way to quantify errors made based on this assumption in Section 5.2.4.

The computation of Shapley decompositions is challenging due to the exponential complexity

of (2). Two approaches have been proposed in the machine learning literature which preserve

the properties of Shapley values, Shapley sampling values (Strumbelj and Kononenko (2010))

and Shapley additive explanations (SHAP, Lundberg and Lee (2017)). The latter provides an

improvement on the former and will be the basis for the calculation of Shapley decompositions

in this paper. The background dataset is taken to be the training set of a model which contains

the information the model parameters θ̂ are based on from the optimisation process. The cal-

culation of model Shapley values is probably the biggest drawback in their usage. Appropriate

approximations or sampling procedures may be used and tested depending on the situation.11

3.4 Shapley regressions

Having a well-defined measure for variable attributions, we next turn to hypothesis testing, e.g.

to assess the significance of individual variable contributions. For this, one can reformulate an

inference problem in terms of a model’s Shapley decomposition. That is, one estimates the

10This corresponds to linear Shap in Lundberg and Lee (2017).
11For high-dimensional data, such as images or text, it is often more practical and intuitive to work with

lower dimensional representations, such as super-pixels/objects or topics, respectively.

9

https://github.com/slundberg/shap


Shapley regression

yi = ΦS
i β̂

S + ε̂i ≡
m∑
k=0

φSk (f̂ , xi)β̂
S
k + ε̂i , (7)

where k = 0 corresponds to the intercept and ε̂i ∼ N (0, σ2
ε ). The surrogate coefficients β̂Sk are

tested against the null hypothesis

Hk
0(Ω) : {βSk ≤ 0

∣∣Ω} . (8)

The key difference to the linear case is the regional dependence on Ω, i.e. only local statements

about the significance of variable contributions can be made. This is related to the potential

non-linearity of a model whose hyperplane in the input-target space may be curved compared

to that of the linear model (1).

The following proposition provides further justification for the use of Shapley regressions for

inference on machine learning models.

Proposition 3.2. The Shapley regression problem of Eq. 7 for a model f̂ linear in parameters

β̂ is identical to the least-square problem related to f̂(x) = xβ̂, i.e. β̂S = 1. The proof is given

in the Appendix.

Proposition 3.2 provides practical guidelines and intuition regarding the the coefficients β̂Sk .

Geometrically, they describe the alignment of the model hyperplane spanned by the Shapley

decomposition and the target variable, in the same way as the coefficients of a linear model in

the original input space. Notionally this is not different from a variables transformation. One

expects coefficient values of unity, i.e. β̂S = 1 if the machine learning model generalises well.12

Deviations from unity are caused by the best-fit hyperplane being tilted in certain directions

and provide insight about the generalisation properties of the model. Values greater than unity

indicate that f̂ underestimates the effect of a variable. Values smaller than one indicate the

opposite. Particularly, statistical significance will drop as β̂Sk approaches zero as there is no clear

alignment between Shapley components φSk and the target y. We reject negative coefficients,

as they are opposed to the alignments of attributed effects φSk . These can occur when f̂ is not

a good fit itself.

Having derived a test against the null hypothesis, it is not yet clear how to communicate

inference results. The coefficients β̂S are only partially informative, as they to not quantify

the components of ΦS but rather their alignment with the target independent of their actual

magnitude. I propose the following generalised coefficient.

12A formal derivation of this statement is given in the next section.
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3.4.1 Shapley share coefficients

The Shapley share coefficients (SSC) of variable xk in the Shapley regression framework is

defined as

ΓSk (f̂ ,Ω) ≡

[
sign

(
β̂link
) 〈 |φSk (f̂)|∑n

l=1 |φSl (f̂)|

〉
Ωk

](∗)

∈ [−1, 1] , (9)

f̂(x)=xβ̂
= β̂

(∗)
k

〈
|(xk − 〈xk〉)|∑n
l=1 |β̂k(xl − 〈xl〉)|

〉
Ωk

, (10)

where 〈·〉Ωk stands for the average over xk in Ωk ∈ R. The SSC ΓSk (f̂ ,Ω) is a summary statistic

for the contribution of xk to the model over a region Ω ⊂ Rm.

It consist of three parts. The first is the sign, which is the sign of the corresponding linear model.

The motivation for this is to indicate alignment of a variable with the target. The second part

is coefficient size. It is defined as the fraction of absolute variable attribution allotted to xk

across the range of x considered. The sum of absolute value of SSC is one by construction.13

It measures how much of the model output is explained by xk. The last component (∗) is used

to indicate the significance level of Shapley attributions from xk against the null hypothesis (8)

and, thus, the confidence one can have in information derived from that variable.

Eq. 10 provides the explicit form for the linear model. The main difference to the conventional

case is a normalising factor accounting for localised properties of non-linear models. Given the

definition over a range xk, it is important to also interpret them in this context. For example,

contributions may vary over the input space such that β̂Sk takes on difference values at different

points or times.

More generally, a coefficient is a constant factor multiplying some quantity of interest. This is

a concept from linear models which does not directly translate to the non-linear case. Eq. 9 is

constructed in such a way to provide comparable information and structure. A key property and

further difference to the linear case of this generalisation is that (9) does not make assumptions

about the functional form of the DGP, hence it may be called a “non-parametric coefficient”.

3.4.2 SSC standard errors

Given the conditions we required from f̂ , the classical central limit theorem applies to the

sampling distribution of Shapley values φSk (f̂), tending to a multivariate normal distribution.

This can be used to construct standard errors and confidence intervals for EΩ[φSk ]. However, the

information derived from this may be hard to interpret given the lack of a scale in components

φSk . Not so for the SSC (9), which are normalised.

13The normalisation is not needed in binary classification problems where the model output is a probability.

Here, the a Shapley contribution relative to a base rate can be interpreted as the expected change in probability

due to that variable.
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Let µk = |ΓSk (f̂ ,Ω)| ∈ [0, 1] be the absolute value of the k-th SSC. The upper bounds on the

variance of µk and its sampling standard error of the mean are given by14

var(µk) ≤ µk(1− µk) ≤
1

2
⇒ σφk ≡ se(µk) ≤

1√
2|Ω|

. (11)

The sampling distribution of µk will also approach a Gaussian with increasing sample size

|Ω|. Thus, σΦ provides a well-defined measure of the variability of ΓS within Ω. We have

now assembled tools for statistical inference on machine learning models regarding the direc-

tion, size, significance and variability of variable contributions. Next, I provide the theoretical

underpinning of the proposed framework.

4 Machine learning estimator properties

Focusing on regression problems15 it is common to minimise the mean squared error (MSE)

between a target y from a DGP f(β) and a model f̂(θ) over a dataset x. The expected MSE

can be decomposed as

Ex
[(
y − f̂(θ)

)2
]

=

(
f(β)− Ex

[
f̂(θ)

])2

︸ ︷︷ ︸
bias2

+

(
f̂(θ)− Ex

[
f̂(θ)

])2

︸ ︷︷ ︸
variance

+ σ2 , (12)

where σ2 is the irreducible error component of the DGP corresponding to the variance of y.

Eq. (12) distinguishes between external model parameters θ and internal parameters β of the

DGP. This separation is important, because machine learning models are often subject to reg-

ularisation as part of cross-validation procedures (model calibration) and the training process.

This directly affects the model parameters θ (if present) when minimising (12). Thus, if β̂

would explicitly be part of the training process, its values would be biased as was investigated

in Chernozhukov et al. (2018). It is at the heart of machine learning to generalise to β from

(y, x) by the means of θ. This generalisation can made explicit, i.e. by recovering β, using

Shapley values and regressions.

4.1 Estimator consistency

Statistical inference on machine learning models requires two steps. First, the control of bias

and variance according to (12) and, second, the extraction of and inference on β̂. Regarding the

14One will generally be interested in the expected explanatory fraction µk of a variable, while the sign of the

SSC is fixed. Accounting for the sign, the bound on the RHS of (11) needs to be multiplied by four.
15A regression model in machine learning refers to fitting a continuous target or dependent variable. Problems

which describe categorical variables, e.g. a binary target, are called classification problems. All results presented

here can be applied in the classification case.
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former, most non-parametric estimators for regression problems are consistent in the sense that

the squared error tends towards σ2 as the training data size tends to infinity. This property

can be called error consistency, that is

p lim
n→∞

∣∣y − f̂(θ|x)
∣∣ = 0 , (13)

i.e. that expected divergence of f̂ from the true value y converges towards zero in probability as

the sample size increases (assuming σ = 0). Eq. 13 defines the universal approximator property

of machine learning models. It is ultimately based on the consistency of non-parametric regres-

sions according to Stone (1977).16 That is, universally consistent machine learning models can

be interpreted as generating a local weight distributions which mimic the DGP.

This does not necessarily imply estimator consistency,17 i.e. if

p lim
n→∞

βk − β̂k(θ|x) = 0 . (14)

That is, if universal approximators learn the correct parameterisation of a DGP.

In many applications of interest, f can be locally approximated by a polynomial regression.

For a polynomial DGP the following result holds.

Theorem 4.1. (polynomial consistency of machine learning estimator): Let f be a DGP of

the form f(β, x) =
∑m

k=0 βkp
d
k(x) ≡ Pk(x), where pd(x) is a polynomial of order d of the input

features on a subspace x ∈ Ω and Ω ⊆ D ⊆ Rm. If for each x′ ⊆ Ω, a model f̂(θ) is error

consistent, then the estimator β̂(θ) is also estimator consistent in the sense of (14) as long as

f̂ does not explicitly depend on β. The proof is given in the Appendix.

Theorem 4.1 can be used to make a more general statement about non-linear parameter de-

pendencies.

Corollary 1 (universal consistency): Let f(β) be a DGP on Ω ⊆ D ⊆ Rm and f̂(θ) a model

not involving β. If f can be approximated by a polynomial f̂p(θ
′) arbitrarily close and f̂ is error

consistent, then f̂ is estimator consistent for any f(β). Particularly, the effect β is locally

approximated by f̂p(θ
′) arbitrarily precise. The proof is given in the Appendix.

Corollary 1 tells us that an error consistent model will learn most functional forms of interest

and their true parameters provided sufficient data.18 This property can be called implicit

estimation consistency where we do not allow parameters of interest to enter the estimation

16Particularly Proposition 5 on page 609.
17The term consistency carries three different meanings in this paper. Namely, consistency of model vari-

able attributions (e.g. Shapley values), error consistency for universal approximator in machine learning and

estimator consistency with respect to β (see also Zhao and Yu (2006); Munro (2018))
18An intuitive illustration of how a SVM with radial kernel can approximate almost any function is given in

Appendix.
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stage. The Shapley decomposition can now be used make the functional form explicit and to

test parameterisations of the DGP.

4.2 Estimator bias

When has a model sufficiently converged for well informed inference, e.g. judged by its Shapley

share coefficients from Eq. 9? Before addressing this question, let us connect model Shapley

values to parametric functional forms which have a finite decomposition.

Lemma 1 (model decomposition): There exists a decomposition Ψ̂
(
ΦS(x)

)
≡
∑C

c=1 ψ̂c(x) =

f̂(x) if the equation Ψ̂(x) = ΦS is solvable for each xk, with k ∈ {1, . . . ,m}. The proof is

simple as x(ΦS) can be used to construct Ψ̂.

A decomposition Ψ̂ can be called an additive functional form representation of f̂ with the

Shapley decomposition ΦS being the trivial representation. That is, Ψ̂ is a parameterisation of

f for which the following results holds.

Theorem 4.2. (composition bias): Let f be a DGP and Ψ∗(x) ≡
∑C

c=1 ψ
∗
c (x) = f(x) the

true local decomposition of f . Let f̂ be an error consistent model according to Theorem 4.1

with a local decomposition Ψ̂(x) ≡
∑C

c=1 ψ̂c(x) = f̂(x), e.g. its Shapley decompositions (2).

Applying the Shapley regression (7), Ψ̂ is unbiased with respect to Ψ∗ if and only if β̂Sc = 1,

∀c ∈ {1, . . . , C}. Particularly, there exists a minimal mu for which β̂c = 1, ∀c ∈ {1, . . . , C} at

a chosen confidence level. The proof is given in the Appendix.

Theorem 4.2 implies that β̂S → 1, as m → ∞ for either ΦS or Ψ̂. Having ΦS, the mapping

ΦS 7→ Ψ̂ can be used to test the functional form of f . Corollary 1 extends this to local

approximations of any form, i.e. for those to which Lemma 1 does not apply but a local

decomposition can be formulated. For example, universal approximators will learn (regression)

discontinuities (Imbens and Lemieux (2008)) as a results of treatment when given enough

data. The Shapley regression framework can then be used to construct approximate parametric

functional forms around a discontinuity and test the limits of their validity.

For a linear model, β̂c = 1 is nothing else as the unbiasedness of coefficients if the model is

well specified. This can be seen from Proposition 3.2 and shows again that Shapley regressions

reduce to the standard case in this situation.

For a general non-linear model, unbiasedness can only be assessed if β̂c = 1, ∀c ∈ {1, . . . , C} due

to the accuracy condition (3) required from each decomposition Ψ̂. The Shapley regression (7)

tests linear alignment of Ψ̂ with the dependent variable, while the level of individual components

ψ̂c may shift until β̂Sc = 1, ∀c ∈ {1, . . . , C} for sample sizes smaller than nu. Consistency implies

that such a shift happens towards the true level ψ∗c .
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Robust component estimates

This leads to the definition of a robust component estimate: ψ̂c is said to provide a robust

estimation of ψ∗c within Ω ⊆ D ⊆ Rm, if Hc
0(Ω) : {βSc = 0|Ω} is rejected and

Hc
1(Ω) : {βSc = 1|Ω} is not rejected (15)

at a chosen confidence level. That is if the chosen confidence bounds for β̂Sc exclude zero but

include one. Regarding the test for Hc
1, one may set the confidence level to α1 = 1 − α0 for

α0 being the desired confidence level to test against Hc
0.19 Alternatively, one may define an

acceptable range for β̂Sc provided Hc
0 can be rejected, e.g. β̂Sc ∈ [0.9, 1.1] admitting a small

amount of bias.

Both conditions are necessary to guarantee meaningful information content in ψ̂c. This can be

seen by considering a linear model with a pure noise variable. The best least-squares fit will

return β̂Sc = 1 by construction, but Hc
0 is almost certain not to be rejected. The practicality of

robust component estimates is that they can provide useful information despite a failing test

for a model being unbiased, i.e. biases in component levels.

For instance, changes between different points in a region Ω are independent from the actual

level of ψ̂c if the model and target are well aligned. For example, the change of ψ∗c between two

points x1, x2 ∈ Ω can be approximated by ψ̂c = ψ∗c + bc with bc the component bias, if β̂Sc ≈ 1,

∆ψ∗c (x1, x2) ≡ ψ∗c (x2)− ψ∗c (x1) = β̂Sc
(
ψ̂c(x2) + bc

)
− β̂Sc

(
ψ̂c(x1) + bc

)
(16)

≈ ψ̂c(x2)− ψ̂c(x1) = ∆ψ̂c(x1, x2) .

4.3 Validity conditions for the Shapley regression framework

Eq. 7 is an auxiliary model in a linearised space of generated regressors (Pagan (1984)), min-

imising the log-likelihood

l
(
βS, θ̂; y, x

)
∼ − 1

2σ2
ε

[(
y − ΦS(θ̂)βS

)T (
y − ΦS(θ̂)βS

)]
. (17)

Inference with regard to βS is valid under two conditions. First, the cross terms of the Fisher

information must vanish, i.e. I(βS, θ̂) = 0.20 This is achieved by the two-step approach and

sample splitting, such that the optimisation processes for θ and βS are independent from each

other. Particularly, φSk (θ̂) are independent random variables when estimating β̂S. Sample

19Practically, one can impose restrictions of the form β̂Sc = 1 and use a Wald test and not reject Hc1 with

high probability α1 imposing tight confidence bounds on β̂Sc which need to include one. The fully restricted test

with
∑C
c=1 β̂

S
c = C may be too lenient as loosely determined coefficients allow for greater flexibility for fulfilling

that constraint, especially if Shapley regression coefficients are located on both sides of one. Instead one should

require β̂Sc = 1, ∀c ∈ {1, . . . , C} individually.

20I(η, η) = −E
[

∂2l
∂η∂η′

]
, with η ∈ {θ, β}.
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splitting between a training dataset on which the model is fitted and a hold-out set for testing

is common in machine learning, so this does not impose a constraint.

Second, the non-parametric part, ΦS in our case, is required to be
√
n-consistent. The accuracy

property of Shapley values (3) relates this to the error consistency of a model and its convergence

rate re ∼ n−ξ, which may depend on the sample size. However, non-parametric techniques,

including machine learning models, often converge slower, i.e. ξ < 1
2
. In this case, the relative

rates of convergence can be accounted for via appropriate sample splitting between the training

and the test set. Specifically, the condition for the maximal size of the test is

ntest ≤ n
2 mink∈{1,...,m} ξk
train

lin. conv.
= n2ξ

train , (18)

re ∼
∑m

k=1 |ΓSk (n)| n−ξktrain
lin. conv.

= n−ξtrain. (19)

The convergence rate of individual Shapley components φSk are labelled ξk. If the ξk are different,

the smallest ξk will dominate re at some point, leading to a non-constant rate re(ntrain) and

the most conservative condition for nmaxtest . In the case of equal and constant ξk, re is constant,

setting the maximally permissible test set for asymptotic inference. Rates of convergence usually

depend on the data, model and algorithm used and are an active area of research.21 In practice,

the rate of convergence re and individual ξk can be determined empirically by fitting model

learning curves, i.e. the error and its component dependence on the sample size.

Condition (18) affects the asymptotic behaviour of β̂S,
√
n(β̂S − βS) →p N (0, I−1(β̂S, β̂S)),

as n → ∞ with ξ = mink ξk. If ξ < 1
2
, this quantity diverges resulting in an asymptotically

biased estimator. Practically this means that confidence intervals from I−1 will not overlap

(or will fail to do so at some point) with one if βS = 1. Thus, tests for the robustness of a

component using H1(Ω) and model bias will fail despite the model being consistent. However,

we do know p limm→∞ β̂
S = 1, meaning we can quantify the bias in β̂S at any point, e.g. for

deciding if a component estimate is sufficiently robust for practical purposes. Importantly, this

does not impose restrictions on ntest for tests against H0(Ω). Asymptotic inference on H0(Ω)

is still valid without sample splitting because I(βS, θ̂) = 0 if βS = 0 (Pagan (1984)), but not

for other hypotheses.

We see from the above discussion that the only possible true values for βS are βS ∈ {0, 1}m.

Provided estimator consistency holds according to Theorem 4.1 this can be understood as

follows. If there is a relationship between the target y and xk (or ψ̂k more generally), then

βSk = 1 otherwise βSk = 0. Intuitively this means that either there is a signal or not.

21See for example Andoni et al. (2014); Sutskever et al. (2013); Biau (2012); Scornet et al. (2014); Steinwart

and Scovel (2007); Christmann and Steinwart (2008) and references therein.
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5 Applications

5.1 Numerical simulations

Let us first showcase the Shapley regression framework in a controlled experiment. I investigate

the statistical inference properties of NN, SVM and RF for learning low-order polynomials,

considering the following DGP

Ψ∗1,γ ≡ f1,γ(x; β) = β0 + β1x
γ
1 + β2x2 + β3x3 + σε, γ ∈ {2, 3} (20)

Ψ∗2 ≡ f2(x; β) = β0 + β1x
2
1 + β2x1x2 + β3x1 + β4x2 + β5x3 + σε , (21)

Each xk, k ∈ {1, 2, 3} is i.i.d.-sampled from the standard normal distributions N (0, 1). The

last term in both processes is an independent noise term, where σ is the noise level and ε is also

sampled form N (0, 1). The intercept and coefficients β are set to the vectors βf1 = (0, 2, 4, 0.5)

and βf2 = (2, 2, 2, 1, 1, 0.5) for f1,γ and f2, respectively. Process f1,γ can be seen as the simple

case with a single non-linearity featuring strong (x2) and weak (x3) controls. Process f2 is

more complex with multiple non-linearities (polynomial and interaction), controls of different

strength and an intercept. The noise level σ is set to zero (no noise) and 10% of the standard

deviation of each DGP, i.e. 0.1σstd(y).

Sample sizes are equally spaced on a logarithmic scale between one hundred and ten thousand,

i.e. nq = 10q for q ∈ {2, 2.5, 3, 3.5, 4}. Using only the raw feature values xk, k ∈ {1, 2, 3}, NN,

SVM and RF are calibrated,22 trained and tested on three independently generated datasets

xcv, xtrain and xtest, respectively, for each sample size.23 That is, the models are not given the

functional forms (20) and (21). Rather they have to infer them from (x, y)train. After fitting

each model using xtrain, the Shapley value decomposition (3) on xtest is used together with

the knowledge of the DGP (Ψ∗) to estimate β̂ learned by each model. The mappings Ψ̂
(
ΦS
)

are given in the Appendix. Each configuration of DGP, model, noise level and sample size is

simulated 50 times for numerical robustness.24

Fig. 1 shows the averaged error learning curves for all cases. The NN and SVM achieve almost

perfect fits from a sample size of n = 102.5 ≈ 300 on in the noiseless case, and stagnate close

to the the minimally achievable error in the noisy case. Process Ψ∗1,3 is a slight exception as

the cubic non-linearity needs more data to learn. The RF has higher test errors overall. There

are two reasons for this. One is its hierarchical structure. Even though individual trees are

randomised, they still prefer certain features at higher split points (if more than one feature

22Hyper-parameter tuning via cross-validation.
23Cross-validation is limited to ncv ≤ 1000 for the SVM due to the computational costs related to the

underlying non-sparse quadratic programming problem.
24All simulations have been done on the cloud using about 104 computing hours on standard 2.4GHz CPU

nodes.
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is allowed at each split), learning different aspects of the target function sequentially as more

training data become available. Second, RF do axes-aligned splits of the input space in hyper-

rectangles. This makes the learning of smooth functions, such as polynomials, more difficult as

more hyper-rectangles are needed compared to fitting step-like functions.

These differences in learning can now be investigated in the Shapley regression framework.

Fig. 2 shows the convergence towards the true β for DGP 2 (21) with noise. Convergence is

measured against the blue dotted unit line for normalised coefficients (β̂u = β̂/β). The black

lines are average β̂u with 90% confidence intervals given by the blue shaded areas.

The differences in the error learning curves of Fig. 1 are reflected in the coefficient learning

curves of Fig. 2. Across most of the sample size range, the NN and the SVM can be said to have

learned unbiased representations of DGP 2 judged by the criterion β̂u ∈ [0.9, 1.1] (green lines).

All individual components have been estimated robustly according to this definition. To the

contrary, the RF adapted to some parts of f2 quickly (e.g. β2), while taking substantially more

data for others, particularly β5. These differences make explicit the property of regression and

classification trees by which they differentiate between variables according to their contribution

to the loss function. The interaction with strong coupling β2 features stronger in f2 and is

learned before the weak control β5.

A rigorous way to test for robustness is to test for H1 (15). We have to take the convergence

rates re of individual components of Ψ̂ into account for this. I consider estimates of linear

convergence rates of n−ξ as a first-order approximation. These are shown in Tab. 1. Good

linear approximations are indicated by a high R2. This is mostly the case. Where it is not,

convergence slows with increasing sample size.

We have ξ ≥ 1
2

in the majority of cases, needing no further adjustment with regard to H1. For

the current case of DGP 2 with noise, I set ξ = 1
4

(about the rate of the NN) for all models

for demonstration.25 Tests for H1 setting α1 = 1−α0 = 90% are shown by the 10% confidence

intervals (red shaded areas) in Fig 2 after adjusting for degrees of freedom according to (18).

This test for component robustness is more stringent than the one based on the condition

β̂u ∈ [0.9, 1.1]. The estimates of all models and parameters converge despite noise, but not all

components can be said to be estimated robustly even for large samples sizes.

This simulation study has showcased the main aspects of statistical inference in the Shapley

regression framework. Let us turn to a real-world example.

5.2 Macroeconomic time series modelling

I present a comparative analysis using NN, SVM and RF within the Shapley regression frame-

work to model quarterly UK and US macroeconomic time series between 1955-2017 and 1965-

25Flat or negative ξ may suggest even lower values. However, low rates and poor linear fits are more associated

with problems in learning in the presence of noise (a general problem). Furthermore, using too high a rate leads

to more conservative estimates when testing for robustness.
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2017, respectively. I particularly look at year-on-year percentage changes in output, unem-

ployment and inflation on a one-year horizon using a simple lead-lag setting. Features lag the

respective target variable by one year,

yt(q) = f̂(xt(q)−4, yt(q)−4; θ) + ε̂t(q) , (22)

where also one yearly lag of the dependent variable is included. This exercise can provide a

starting point for narratives around driving factors behind changes in the target variables taking

non-linearities from machine learning models into account, complimentary to more structural

approaches. A summary of both datasets is given in Tab. 2. All series are standardised to a

mean of zero and unit variance (z-scores). This makes results comparable for different target

variables, across models and time. However, the current approach is not suitable for forecasting

because of the built-in look-ahead bias through the variable standardisation and the model

training process resulting in information leakage.

5.2.1 Cross-validation and training

Nested cross-validation is used for training and testing. This also addresses the relative small-

ness of both datasets. An outer loop randomly splits the data into ten (90%,10%) folds for

training and testing, respectively. A model is evaluated based on its out-of-sample predic-

tion performance on all outer test sets. Within each such training set, an inner loop of ten

(90%,10%) splits for the calibration (cross-validation) of model hyper-parameters and training

is used. This procedure is repeated over 50 bootstrap iterations for numerical stability. The

baseline for comparison is a non-penalised linear regression model fitted and tested on the same

folds as the machine learning models. The time dimension of our data is addressed by including

a lag of each dependent variable and by accounting for potentially remaining autocorrelation

in the error terms at the regression stage using heteroskedasticity and autocorrelation robust

standard errors.26

5.2.2 Test performance

The key motivation for using machine learning models in the first place is that they are expected

to deliver more accurate predictions, i.e. a smaller test error. I test this by comparing the out-

26Two additional benchmark models have been evaluated. A linear model with elastic net regularisation

and a vector autoregressive model (VAR) with one lag. The VAR has been fitted on a quarterly frequency

and evaluated on its in-sample forecast performance on a one-year horizon. One lag provides approximately

the same information content as either machine learning models or the other linear benchmarks receive. The

inclusion of more lags would provide it with additional information of the time series structure of the data

which the other models did not have access to, while also increasing the risk of overfitting. Out-of-sample and

in-sample test performance for the elastic net and VAR have only been marginally better on average than the

baseline regression, while introducing substantial bias in the parameter estimates and potentially overfitting the

data, respectively.
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of-sample root-mean-square errors (RMSE) of all models. Comprehensive error statistics are

given in Tab. 3. Machine learning models outperform the benchmark (Reg) in the majority of

cases, often by a wide margin. The two exceptions are the SVM for modelling UK inflation

and unemployment where both perform similarly.

Comparing the UK and US, all models perform better for the US in absolute terms. This

suggests that we are missing some important factors for the UK. Two aspects not very well

represented in our data are the ‘smallness and openness’ of the UK economy relative to the

US and its much larger financial sector compared to its real economy. Thus, taking more

external and financial factors into account may improve overall model performance for the

UK. Moreover, machine learning models provide larger performance gains for the US than the

UK relative to the linear baseline. This suggests a greater importance of non-linearities when

investigating the US economy.

The data cover two major episodes of macroeconomic stress, the stagflation period of the 1970s

and the global financial crisis (GFC) 2008 and its aftermath. These are associated with sharp

turning points in economic indicators, likely associated with non-linear dynamics. Machine

learning models generally cope better with these situations, partly explaining their better test

performance.

5.2.3 Model inference

I focus on modelling unemployment. The graphical decomposition of out-of-sample test predic-

tions for all models and both countries is shown in Figures 3 - 6. The contributions attributed

to the each variable according to (2) sum up to the model prediction at each observation (ac-

curacy property of Shapley values). Only the six largest components by absolute values of the

SSC (9) are shown explicitly. These mostly constitute the great majority of model output. The

remaining four variables are grouped in the light gray contributions.

All models consistently attribute importance to the same variables, mostly changes in GDP

and prices, but also the policy rate, the money supply and private debt. The current account

balance also features in all models for the US, though with a relatively small share.27 Consid-

ering the NN (Fig. 3) and the SVM (Fig. 4), the largest deviations from the target lines are at

turning points. Particularly, during the 2008 GFC where the spike in unemployment in either

countries is largely missed by both models. With the exception of the NN in the US, which

did, however, not capture its full magnitude.28 This is much so for the UK, where changes in

unemployment have a more volatile profile overall.

27Variables are ordered column-wise from left to right from the largest to the smallest absolute SSC. ‘Others’

always comes last.
28It is not surprising that neither model is able to capture the crisis dynamics well. There was no comparable

event in the data from which they could have been able to generalise, i.e. have learned. Assuming that future

crises are similar in their dynamics, they may provide better guidance.
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Assuming that turning points are somewhat non-linear phenomena and that they are better

captured for the US, one expects both models to exhibit some non-linear variable dependencies

and that these are stronger for the US than for the UK. This is qualitatively confirmed in Fig. 7.

It plots the features dependence learned by all models for the UK (LHS) and the US (RHS) for

changes in GDP, private debt and broad money in terms of their Shapley contributions for each

observation. Approximate functional forms are traced out by best-fit degree-three polynomials

(dashed lines). It is reassuring that all models learned comparable functional dependencies,

which are considerably non-linear.29 The exception to this is the SVM for the UK, which has

an almost flat structure. The SVM is actually very similar to the linear benchmark in this

case (as for modelling UK inflation) which explains their comparable performances. Another

difference between models is the relative magnitude of model output allocated to GDP for the

US, especially for negative feature values. We would expect these to be comparable for an

unbiased model. However, for practical purposes it may be enough for these components to be

estimated robustly. Both aspects will be discussed below.

Considering the NN (upper part of Fig. 7), the learned functional dependencies are comparable

for both countries. As expected, relations tend to be more non-linear in the US case indicated

by the higher curvature of the best fit lines. This is particularly so for broad money. Here, the

RHS endpoints correspond to the end of the Bretton Woods system, the “oil shocks” of the

1970s and the stagflation period. The latter is highlighted by vertical dashed lines in Fig.3-6.

For the UK, this endpoint corresponds to the first oil shock (1973) and the onset of the stagfla-

tion period. This means that the NN learned a functional form connecting different economic

regimes, suggesting it internalised structural changes in the underlying DGP to some degree.30

The discussion has been qualitative so far. The Shapley regression framework allows for rigor-

ous statistical inference analysis on each model. The results of this exercise for unemployment,

inflation and GDP are summarised in Tab. 4-6, respectively. The SSC ΓS from (9) are shown

for the UK (LHS) and the US (RHS) for all three target variables, respectively. Estimated

standard errors,31 p-values regarding tests against H0(Ω) (8) and values of the Shapley regres-

sion coefficients β̂S from (7) are shown in parentheses. Square brackets indicate robustness of

variable components based on β̂S ∈ [0.9, 1.1], excluding the benchmark (Reg) where compo-

nents are robust by definition.

29The turning points of the polynomial fits at the limits of input spaces are artefacts of the polynomial

approximation. Nevertheless, these extrema indicate saturation beyond a certain threshold which also is a

non-linear phenomenon interesting in itself.
30One has to be careful with structural interpretations however. Machine learning models fit observed patterns

in the data, i.e. they can be interpreted as a form of reduced form estimation.
31The variance estimator from Okui (2014) has been used to account for time series autocorrelations with a

maximal lag of
√
|Ω|.
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The discussion focuses again on unemployment (Tab. 4). Taking GDP for the NN as an ex-

ample, its SSC ΓSGDP is interpreted as follows. About 21% of model predictions for the UK

are significantly, robustly and negatively attributed to changes in output with estimated 95%

confidence bounds of ±1.7% around that level. GDP is also the dominant variable in this

model measured by |ΓSGDP | relative to the other features. Importantly, the coefficients of all

models are broadly in line with each others. For example, all models estimate a robust SSC

for GDP for the UK. We observed different relative magnitudes for the importance of GDP in

the US case in Fig. 7. This is reflected in the different magnitudes of SSC for all three models.

Also, neither model estimates this contribution robustly, such that we should be careful with

interpreting these results.

Between models, the SSC structure of the RF is often qualitatively different to that of the other

two models. It tends to attribute dominant shares to a few features while attributions are more

balanced for the NN and the SVM. This is again understood by the hierarchical structure of

trees as seen in Section 5.1. Again, this characteristic may be desired in situations where

variable selection is important. The RF may be seen as the “machine learning equivalent” of

the LASSO32 in this sense.

Apart from the better test performance, machine learning models extract more significant vari-

able contributions from the data compared to Reg. This is due to their more flexible model

structure but also highlights the importance of non-linearities in the DGP. However, few SSC

are robust. Thus, none of the models can be said to have learned an unbiased representation.

This is likely due to the relative smallness of our datasets and shows some of the limitations of

using machine learning in this context.

Overall, the Shapley regression analysis summarised in Tab. 4-6 allows statistical inference and

the communication of modelling results similar to that of the linear model, while leveraging on

the benefits of machine learning.

5.2.4 Feature dependence

Eq. 2 requires us to compute conditional expectations of the form E[f̂C ] ≡ Ex\{C}
[
f̂(x)|xC

]
.

Here, S is the set of non-missing features in a coalition. For this to be exact, one has to

assume feature independence, which can be a strong assumption for many applications. At the

lowest order, variable dependencies can be linear, i.e. correlations, but they may take more

complex forms. Corollary 4.1 says that error consistent models will learn such dependencies

given enough training data. It is not clear, however, how to extract this information from a

model without the use of Shapley values or more knowledge about the DGP. We would need a

method to calculate E[f̂C ] which respect feature dependencies. A fast algorithm for tree-based

models to do just that is given in Lundberg et al. (2018). The idea is to evaluate imputed

32Least Absolute Shrinkage and Selection Operator.

22



inputs to E[f̂C ] by following tree paths. The training set observations of the leaf node that

input falls into serves as its background dataset hereby respecting observed dependencies within

the data. This is conceptually similar to Wager and Athey (2018), where leaf nodes serve to

match the treated and the untreated controlling for potentially complex relationship between

other variables.

The comparison of Shapley values for using this exact method with values obtained using the

whole training dataset as the background, i.e. assuming feature independence, allows one to

quantify the error made by the independence assumption. Universal approximators learn the

same feature dependencies given enough data (see Fig. 2 & 7). It can therefore be assumed that

differences in Shapley values observed for tree models will be comparable to models where no

exact solution exists, such as NN and SVM. Thus, this comparison provides an indication for

which variable contributions can be judged reliable under the independence assumption using

these models.

The comparison for the RF between the exact and the approximate solution for computing E[f̂C ]

is given in Fig.8 for modelling unemployment.33 It shows differences ∆ΓS of SSC (9) between

both cases relative to the root-mean-square of estimated standard errors of the absolute value

of each variable component µk = |ΓSk | for both cases. None of the differences for either country

would test as statistically significant. This means that the assumption of feature independence

is justified in the current case. The overall low cross-correlation between variables for both

countries indicates this, while the above comparison accounts for more general relations.

6 Conclusion

This paper proposed Shapley regressions as a general framework for statistical inference on non-

linear models, particularly those from machine learning. The underlying idea is to formulate a

regression problem within the space of transformed inputs defined by the Shapley decomposi-

tion of a model. Besides the interpretability of individual model predictions, this opens machine

learning problems to parametric statistics, including many techniques from econometrics, and

vice versa.

There are two appealing properties of the Shapley regression framework, which provide justi-

fication for this approach. First, Shapley values have a clear interpretation derived from their

game theoretic origin and desirable properties. Second, Shapley regression is identical to a con-

ventional regression analysis for a model linear in parameters. Thus, Shapley regressions can

be interpreted as an extension of parametric statistical inference into the space of non-linear

and non-parametric models.

I showed that commonly used model classes in machine learning are estimation consistent for

the important class of piecewise analytic functions, which covers most cases of interest. Numer-

33All results presented for the RF in this case study are based on exact calculations.
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ical simulations were used to investigate the asymptotic inference properties of state-of-the-art

machine learning models, such as artificial neural network, support vector machines and ran-

dom forests.

Finally, I applied the Shapley regression framework to model UK and US macroeconomic time

series. Machine learning models outperformed the linear benchmark most of the time. Im-

portantly, leading feature attributions of most machine learning models are comparable. This

provides further trust in the use of machine learning models as one can concentrate on techni-

cal aspect of a model amenable to a particular problem. For example, random forests tend to

produce hierarchical feature attributions, making them suitable to high-dimensional problems

of variable selection.

The summarising concept of Shapley share coefficient (SSC) was introduced which are close

in their interpretation to the coefficients of a linear model. The main difference to statistical

inference on a linear model is that results are only locally valid within the considered region.

This puts more burden on careful testing of results, especially in the presence of strong non-

linearities.

Despite good test performance, not all estimated and significant variable contributions turned

out to be robust. This warrants caution for the application of machine learning models and

suggest comprehensive model evaluation before putting such a model into practice, e.g. to

inform decisions.

In summary, the Shapley regression framework provides a rigorous approach for addressing

the black-box critique of machine learning models, including those voiced against modern de-

velopment in artificial intelligence. In their essay “We built them, but we don’t understand

them” (Kleinberg and Mullainathan (2015)) Jon Kleinberg and Sendhil Mullainathan set out

the challenges and risks around designing and using algorithms to inform decisions if these algo-

rithms are poorly understood. Shapley regressions offer a tool to partly address such concerns

through well-grounded statistical inference. Thus, they may extend the scope of applicability

for machine learning models, particularly for informing decisions in the presence of ever more

granular data sources.
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Appendix

Box 1: Statistical inference recipe

for machine learning models

1. Cross-validation, training and testing of a model f̂

2. Model decomposition

(a) Shapley value decomposition ΦS(f̂) [Eq. 2] on test set

(b) (if any) Test of assumptions and approximations made to calculate ΦS

(c) (optional) Mapping of ΦS to parametric functional form Ψ̂
(
ΦS
)

[see Section 4.2]

3. Model inference

(a) Shapley regression [Eq. 7] with appropriate standard errors

yi = ΦS
i β̂

S + ε̂i =
m∑
k=0

φSk (f̂ , xi)β̂
S
k + ε̂i

[replace ΦS with Ψ̂ in case of 2(b)]

(b) Assessment of model bias and component robustness based on β̂S

over a region Ω of the input space:

Robustness (components): Hk
0 : {βSk = 0|Ω} rejected and Hk

1 : {βSk = 1|Ω}
not rejected for single k ∈ {1, . . . ,m}

Unbiasedness (model): H1
k : {βSk = 1|Ω} not rejected ∀ k ∈ {1, . . . ,m}

(c) Calculate Shapley share coefficients (SSC) ΓS(f̂ ,Ω) [Eq. 9] and their

standard errors
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Figure 1: Error learning curves for DGP (20) and (21), root-mean-square error as fraction of DGP standard

deviation. Source: Author’s calculation.
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Figure 2: Parameter learning curves (black) for NN (left column), SVM (middle column) and RF (right

column) for DGP f2 (21) with noise. Blue dashed line references true coefficient values (normalised to one).

Blue and red shaded areas indicate 90% and 10% confidence intervals (CI) for fast and slow convergence rates
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Figure 3: Neural network (NN) out-of-sample Shapley test decomposition for modelling unemployment for

the UK (upper) and the US (lower). Source: ONS, OECD and author’s calculation.
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Figure 4: Support vector machine (SVM) out-of-sample Shapley test decomposition for modelling unemploy-

ment for the UK (upper) and the US (lower). Source: ONS, OECD and author’s calculation.
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Figure 5: Random forest (RF) out-of-sample Shapley test decomposition for modelling unemployment for the

UK (upper) and the US (lower). Source: ONS, OECD and author’s calculation.
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the UK (upper) and the US (lower). Source: ONS, OECD and author’s calculation.
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Figure 7: Feature dependence based on Shapley decomposition of NN (upper), SVM (middle) and RF (lower)

for selected variables for modelling unemployment in the UK (LHS) and the US (RHS). Dashed lines are best-fit

degree-3 polynomials. Source: BOE, ONS, BIS, OECD and author’s calculation.
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Tables

DGP f1,2 f1,3 f2

noise No Yes No Yes No Yes

NN 1.35 0.17 1.58 1.27 0.80 0.26

R2 0.42 0.08 0.90 0.92 0.64 0.22

SVM 0.84 -0.17 1.75 0.89 1.10 -0.16

R2 0.06 0.22 0.67 0.76 0.10 0.10

RF 1.29 1.03 1.69 1.37 1.23 0.97

R2 0.94 0.92 0.98 0.94 0.94 0.91

Table 1: Estimated exponents of convergence rates re ∼ n−ξ of machine learning models for simulated

DGP (20) & (21) and coefficients of determination (R2). Source: Author’s calculation.
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name GDP Labour prod. Broad money Private debt Unemploy. GDHI Inflation Policy rate CA ERI

unit % % % % 1d % % (CPI) 1d 1d %

UK

count 248 248 248 248 248 248 248 248 248 248

mean 2.46 1.95 9.19 11.21 0.05 7.45 4.85 -0.07 -0.06 -1.46

std 2.29 2.04 5.14 7.53 0.84 5.35 4.55 2.07 1.38 7.99

min -6.08 -4.84 -0.96 -8.03 -2.00 -0.92 -0.79 -7.25 -4.10 -40.95

25% 1.61 0.79 4.84 5.87 -0.43 3.90 1.95 -1.00 -1.00 -4.34

50% 2.50 1.80 8.47 10.65 0.00 6.03 3.34 0.00 0.00 -0.16

75% 3.65 3.09 12.94 16.83 0.50 9.86 5.82 1.00 0.80 2.26

max 9.75 8.32 22.93 34.90 3.30 27.76 25.04 6.50 4.40 16.91

US

count 208 208 208 208 208 208 208 208 208 208

mean 2.87 1.58 6.84 7.73 0.00 1.99 4.06 -0.06 -0.06 -0.16

std 2.22 1.89 2.91 4.00 1.07 1.86 2.88 2.12 0.70 5.98

min -4.06 -3.77 0.41 -3.25 -2.70 -3.53 -1.62 -6.57 -1.85 -15.93

25% 1.69 0.51 5.24 5.82 -0.61 0.90 2.20 -0.99 -0.50 -4.01

50% 2.94 1.44 6.52 8.28 -0.27 2.13 3.31 -0.02 -0.18 0.00

75% 4.32 2.55 8.47 10.06 0.34 3.17 4.88 1.19 0.29 2.90

max 8.55 6.55 13.53 14.99 3.97 6.76 14.51 7.74 2.34 17.75

Table 2: Summary statistics of year-on-year changes of UK (top, 1956-2017) and US (bottom, 1966-2017)

macroeconomic time series. Abbreviations: Gross domestic product (GDP), gross disposable household in-

come (GDHI), current account (CA, balance relative to GDP), effective exchange rate (ERI), consumer price

index (CPI). Sources: BOE (ID: IUQLBEDR, XUQLBK82, IUQLBEDR, LPQAUYN), ONS (ID: D7BT,

UKEA, PGDP, PRDY, MGSX), BIS (US private sector debt: Q:US:P:A:M:XDC:A, UK: ERI, GBP/USD (1955

only)), OECD (US CPI, US M3, US GDP, US Unemployment, US CA), FRED (ID: RNUSBIS, FEDFUNDS,

PRS85006163, A229RX0), Tomas, Ryland (2017) (UK private sector debt, M4, labour productivity)
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country UK US

model NN SVM RF Reg NN SVM RF Reg

test RMSE

Unemployment 0.653 0.740 0.592 0.738 0.524 0.647 0.659 0.824

Inflation 0.418 0.517 0.407 0.512 0.329 0.388 0.369 0.535

GDP 0.820 0.905 0.807 0.941 0.625 0.762 0.671 0.826

generalisation error

Unemployment 0.266 0.058 0.629 0.045 0.716 0.256 0.633 0.061

Inflation 0.566 0.123 0.631 0.086 0.425 0.134 0.630 0.064

GDP 0.277 0.041 0.627 0.054 0.490 0.159 0.632 0.055

bias2

Unemployment 0.244 0.291 0.183 0.298 0.113 0.166 0.183 0.316

Inflation 0.074 0.100 0.074 0.127 0.060 0.081 0.068 0.168

GDP 0.328 0.388 0.292 0.439 0.201 0.318 0.240 0.385

variance

Unemployment 0.277 0.013 0.012 0.002 0.359 0.010 0.013 0.004

Inflation 0.179 0.015 0.007 0.002 0.106 0.005 0.007 0.002

GDP 0.362 0.004 0.017 0.005 0.356 0.048 0.014 0.004

Table 3: UK and US model test statistics: Root mean squared error (RMSE), generalisation error (difference

between test and training error as a fraction of the test error), squared model bias and variance (as fractions

of the mean squared error) for different bootstrap realisations from nested cross-validation. Best/worst RMSE

for each target variable is highlighted in green/red. Source: Author’s calculation.
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37

target UNEMPLOYMENT

country UK US

model NN SVM RF Reg NN SVM RF Reg

GDP -[0.207]∗∗∗ -[0.190]∗∗ -[0.183]∗∗∗ -0.198∗∗ -0.208∗∗∗ -0.119∗∗ -0.132 -0.222

(.017; .00; 0.98) (.016; .05; 0.92) (.013; .00; 0.91) (.016; .01; -0.55) (.015; .00; 1.17) (.008; .04; 1.36) (.006; .38; 0.19) (.014; .11; -0.46)

Labour prod 0.076 0.099 0.021 0.083 0.049∗ [0.062] 0.087∗∗∗ 0.032

(.010; .12; 0.79) (.009; .32; 0.44) (.002; .25; 1.12) (.008; .24; 0.19) (.005; .06; 0.73) (.007; .18; 0.98) (.010; .00; 1.15) (.003; .75; 0.06)

Broad money -0.092∗∗∗ -[0.120]∗∗ -0.112∗∗∗ -0.134∗∗ -0.086∗∗∗ -0.081∗∗∗ -0.055∗∗∗ -0.107∗∗

(.010; .00; 1.58) (.011; .04; 1.07) (.012; .00; 1.33) (.012; .03; -0.26) (.010; .00; 1.48) (.012; .00; 2.00) (.009; .00; 2.59) (.015; .01; -0.17)

Private debt 0.084∗∗∗ 0.098∗∗ 0.094∗∗∗ 0.119∗∗ 0.117∗∗∗ [0.129]∗∗∗ 0.072 0.175∗∗∗

(.018; .00; 1.73) (.014; .01; 1.72) (.016; .00; 2.11) (.016; .05; 0.25) (.022; .00; 1.27) (.024; .01; 0.97) (.014; .16; 0.82) (.029; .01; 0.33)

GDHI 0.052 0.050 0.038∗∗∗ 0.045 [0.053]∗∗∗ [0.043] 0.016 0.056

(.005; .28; 0.52) (.008; .07; -1.97) (.006; .00; 1.68) (.007; .53; 0.09) (.005; .01; 1.04) (.003; .20; 0.91) (.001; .24; -1.78) (.004; .22; 0.10)

Inflation 0.161∗∗∗ 0.108∗∗∗ 0.301∗∗∗ 0.094∗ [0.169]∗∗∗ 0.167∗∗∗ [0.150]∗∗ 0.085

(.024; .00; 1.41) (.019; .00; 2.01) (.012; .00; 1.18) (.017; .10; 0.21) (.018; .00; 0.93) (.016; .00; 1.31) (.011; .02; 0.94) (.011; .20; 0.17)

Policy rate 0.138∗∗∗ 0.125∗∗∗ 0.050∗∗ 0.130∗∗∗ 0.064∗∗ 0.083∗∗ 0.170∗∗∗ 0.137∗

(.017; .00; 1.12) (.016; .00; 1.32) (.006; .03; 1.39) (.017; .00; 0.32) (.009; .02; 1.49) (.013; .02; 1.53) (.009; .00; 1.52) (.020; .06; 0.28)

CA [0.057]∗ 0.055∗∗ 0.012 0.054∗ 0.084∗∗∗ 0.107∗ [0.073]∗ 0.095∗

(.003; .07; 0.91) (.003; .04; 1.24) (.001; .16; -3.68) (.003; .07; 0.11) (.011; .01; 0.82) (.014; .05; 0.84) (.009; .09; 1.00) (.012; .06; 0.17)

ERI 0.022∗∗ [0.031] 0.051∗∗∗ 0.041 0.057 0.071 0.043 0.048

(.005; .04; 1.16) (.003; .17; 1.09) (.007; .00; 1.71) (.005; .24; 0.10) (.009; .30; 0.30) (.011; .31; 0.37) (.005; .29; 0.61) (.007; .36; 0.08)

Unemployment 4l [0.110]∗∗∗ 0.124∗∗∗ 0.139∗∗∗ 0.104∗∗ 0.113∗∗∗ 0.141∗∗∗ 0.202∗∗∗ 0.042

(.015; .00; 1.09) (.016; .01; 1.22) (.017; .00; 0.84) (.013; .04; 0.25) (.004; .00; 1.34) (.010; .00; 1.77) (.014; .00; 1.95) (.002; .66; 0.09)

Table 4: Shapley share coefficients ΓSk (9) for modelling UK (LHS) and US (RHS) unemployment on a one-year horizon for different models. Significance levels: ∗ (10%), ∗∗

(5%), ∗∗∗ (1%). Green/red refers to positive/negative coefficients significant at the 10% level. Estimated standard errors for ΓSk , p-values regarding H0(Ω) and values of the Shapley

regression coefficients β̂S are shown in parentheses. The actual regression coefficients β̂ are shown for Reg. Square brackets indicate robustness of ΓSk for β̂S ∈ [0.9, 1.1], not shown

for Reg. Source: Author’s calculation.
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target INFLATION

country UK US

model NN SVM RF Reg NN SVM RF Reg

GDP -0.049 -0.034 -0.017∗∗ -0.075 0.143∗∗∗ 0.145∗∗∗ 0.025 0.170∗

(.009; .47; 0.04) (.005; .08; -4.61) (.004; .01; 5.15) (.010; .61; -0.10) (.011; .00; 1.42) (.009; .00; 1.22) (.003; .11; 1.45) (.010; .07; 0.36)

Labour prod [0.025] 0.027∗ 0.023 0.041 -0.078∗∗∗ -0.065∗∗∗ -0.008 -0.055

(.004; .22; 0.91) (.004; .06; 5.33) (.003; .28; 0.56) (.006; .68; 0.05) (.011; .00; 1.57) (.008; .00; 1.57) (.001; .08; -3.14) (.005; .39; -0.11)

Broad money 0.050∗∗ 0.131 0.059∗∗∗ 0.027 [0.108]∗∗∗ 0.078∗∗∗ 0.092∗∗∗ 0.105∗∗∗

(.003; .04; 2.26) (.017; .19; 0.63) (.005; .00; 3.09) (.004; .79; 0.03) (.012; .00; 0.94) (.008; .00; 1.15) (.007; .00; 1.64) (.015; .00; 0.17)

Private debt 0.041∗∗ 0.020 0.035∗∗∗ 0.052 0.086∗∗ 0.135∗∗∗ [0.230]∗∗∗ 0.041

(.006; .03; 1.56) (.004; .19; -3.04) (.004; .00; 1.92) (.009; .56; 0.05) (.020; .03; 0.81) (.022; .01; 0.83) (.023; .00; 1.04) (.007; .43; 0.07)

Unemployment -0.036∗∗∗ -0.048 -0.015∗ -0.016 0.036∗∗∗ 0.069∗∗ 0.032∗∗∗ 0.100∗

(.008; .00; 2.96) (.008; .40; 0.30) (.003; .09; 3.19) (.003; .87; -0.02) (.006; .00; 2.15) (.004; .01; 1.12) (.004; .01; 2.95) (.007; .09; 0.22)

GDHI 0.316∗∗∗ 0.242∗∗∗ [0.595]∗∗∗ 0.258∗∗∗ -0.022 -0.024 -[0.015] -0.014

(.021; .00; 0.87) (.022; .00; 1.34) (.034; .00; 0.98) (.023; .00; 0.35) (.003; .18; 0.70) (.003; .30; 0.36) (.003; .13; 1.02) (.001; .63; -0.03)

Policy rate 0.053 0.117∗∗∗ 0.024∗∗∗ 0.135∗∗∗ 0.076∗∗ [0.089]∗∗ [0.097]∗∗∗ 0.123∗∗∗

(.011; .27; 0.50) (.020; .00; 1.32) (.005; .01; 3.57) (.022; .00; 0.17) (.012; .02; 0.89) (.013; .01; 1.03) (.009; .00; 1.04) (.018; .01; 0.26)

CA -0.037∗ -0.027 -0.026 -0.057 [0.100]∗∗∗ 0.072∗∗∗ 0.054∗∗∗ 0.081∗∗

(.005; .07; 1.73) (.003; .37; 0.47) (.003; .22; 1.11) (.006; .39; -0.06) (.014; .00; 0.96) (.010; .00; 1.23) (.008; .00; 2.24) (.011; .02; 0.15)

ERI -0.036 -0.052 -0.028 -0.021 -0.067∗∗∗ -[0.079]∗∗∗ -0.051∗∗∗ -0.069∗

(.007; .46; -0.09) (.007; .43; 0.18) (.004; .39; 0.34) (.003; .63; -0.03) (.010; .00; 1.42) (.012; .00; 1.07) (.008; .00; 1.72) (.011; .07; -0.12)

Inflation 4l [0.356]∗∗∗ [0.303]∗∗∗ [0.178]∗∗∗ 0.318∗∗∗ [0.284]∗∗∗ [0.245]∗∗∗ [0.397]∗∗∗ 0.242∗∗∗

(.023; .00; 1.08) (.029; .00; 0.91) (.021; .00; 1.10) (.032; .00; 0.47) (.027; .00; 0.97) (.024; .00; 1.02) (.029; .00; 1.02) (.028; .00; 0.54)

Table 5: Shapley share coefficients ΓSk (9) for modelling UK (LHS) and US (RHS) inflation on a one-year horizon for different models. Significance levels: ∗ (10%), ∗∗ (5%), ∗∗∗

(1%). Green/red refers to positive/negative coefficients significant at the 10% level. Estimated standard errors for ΓSk , p-values regarding H0(Ω) and values of the Shapley regression

coefficients β̂S are shown in parentheses. The actual regression coefficients β̂ are shown for Reg. Square brackets indicate robustness of ΓSk for β̂S ∈ [0.9, 1.1], not shown for Reg.

Source: Author’s calculation.
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target GDP

country UK US

model NN SVM RF Reg NN SVM RF Reg

Labour prod -0.026 -0.090 -0.069 -0.090 -0.092∗∗∗ -0.089∗∗∗ -0.032∗ -0.136∗

(.003; .47; 0.15) (.007; .18; -1.87) (.005; .47; -0.09) (.009; .54; -0.12) (.007; .00; 1.54) (.007; .00; 2.06) (.003; .08; 2.51) (.011; .06; -0.35)

Broad money 0.096∗ 0.182 0.083∗∗ 0.123 0.091∗∗∗ 0.076∗∗∗ 0.208∗∗∗ 0.065

(.014; .10; 1.15) (.021; .10; 1.71) (.014; .04; 1.21) (.015; .46; 0.14) (.007; .00; 1.61) (.004; .00; 2.48) (.022; .00; 1.14) (.009; .12; 0.14)

Private debt -0.109∗∗∗ -0.043 -0.126∗∗∗ -0.007 -0.043∗∗∗ -0.024∗∗ -0.047∗∗∗ -0.044

(.011; .01; 1.51) (.009; .40; -1.24) (.013; .00; 1.71) (.001; .96; -0.01) (.006; .00; 3.00) (.003; .02; 5.09) (.011; .00; 3.95) (.009; .41; -0.10)

Unemployment 0.125∗∗∗ 0.065∗∗∗ 0.094∗∗∗ 0.131 0.107∗∗∗ 0.044∗∗∗ 0.063∗∗∗ 0.132∗

(.010; .00; 1.65) (.006; .00; 4.93) (.006; .00; 3.05) (.017; .17; 0.19) (.005; .00; 1.83) (.003; .00; 3.95) (.006; .00; 3.31) (.012; .07; 0.39)

GDHI -0.043 -0.075 -0.054 -0.070 -0.027 -0.041 -0.067 -0.015

(.004; .41; 0.43) (.010; .50; 0.02) (.007; .38; 0.32) (.011; .64; -0.09) (.002; .25; 0.76) (.005; .36; 0.45) (.005; .34; 0.41) (.001; .61; -0.04)

Inflation -0.192∗∗∗ -0.100∗ -0.062∗∗∗ -0.094 -0.134∗∗∗ -0.104∗∗∗ -0.134∗∗∗ -0.077∗

(.028; .00; 1.27) (.016; .08; 2.82) (.010; .00; 2.45) (.016; .43; -0.13) (.016; .00; 1.53) (.015; .00; 1.90) (.010; .00; 1.97) (.011; .09; -0.21)

Policy rate -0.198∗∗∗ -0.236∗∗∗ -[0.242]∗∗∗ -0.222∗∗∗ -0.131∗∗ -0.216∗ -0.206∗∗∗ -0.137∗∗∗

(.021; .00; 1.12) (.031; .00; 1.62) (.015; .00; 1.02) (.028; .00; -0.35) (.018; .03; 0.70) (.030; .08; 0.51) (.015; .00; 0.79) (.019; .01; -0.39)

CA 0.030 0.044 0.020 0.010 -0.133∗∗∗ -0.165∗∗∗ -0.094∗∗ -0.117∗∗∗

(.002; .39; 0.40) (.003; .16; -2.10) (.001; .04; -4.96) (.001; .87; 0.01) (.013; .00; 1.11) (.015; .00; 1.13) (.008; .01; 1.66) (.015; .01; -0.28)

ERI -0.085∗∗ -0.045 -0.115∗∗ -0.003 -[0.045]∗ -0.058∗ -0.037 -0.032

(.012; .04; 1.52) (.008; .12; 3.32) (.009; .02; 1.41) (.000; .97; -0.00) (.008; .07; 0.91) (.010; .06; 1.45) (.004; .35; -0.48) (.005; .44; -0.07)

GDP 4l 0.095∗∗∗ 0.121∗∗∗ 0.134∗∗∗ 0.250 0.196∗∗∗ 0.184∗∗∗ 0.113 0.245∗∗

(.007; .00; 1.69) (.008; .01; 3.36) (.008; .00; 1.42) (.019; .10; 0.43) (.009; .00; 1.39) (.009; .00; 1.59) (.011; .10; 0.86) (.012; .01; 0.73)

Table 6: Shapley share coefficients ΓSk (9) for modelling UK (LHS) and US (RHS) GDP on a one-year horizon for different models. Significance levels: ∗ (10%), ∗∗ (5%), ∗∗∗

(1%). Green/red refers to positive/negative coefficients significant at the 10% level. Estimated standard errors for ΓSk , p-values regarding H0(Ω) and values of the Shapley regression

coefficients β̂S are shown in parentheses. The actual regression coefficients β̂ are shown for Reg. Square brackets indicate robustness of ΓSk for β̂S ∈ [0.9, 1.1], not shown for Reg.

Source: Author’s calculation.
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Proofs

Proof of Proposition 3.1

Without loss of generality, we can write f̂ in terms of linear and non-linear components, f̂(x) =

f̂l(x) + f̂nl(x), e.g. using a Taylor expansion. The Shapley decomposition can then be written

as

ΦS(x) =
m∑
k=0

φSk = f(x) = f̂l(x) + f̂nl(x) = f̂l(x) = xβ̂. (23)

The first step follows from local accuracy and the third from the assumption of linearity.

Properties (1)-(5) can be easily verified.

Proof of Proposition 3.2

Without loss of generality, we can again write f̂ in terms of a linear and a non-linear component,

f̂(x) = f̂l(x) + f̂nl(x). The Shapley regression can then be written as

ΦS(x)β̂S =
m∑
k=0

φSk β̂
S
k =

m∑
k=0

(φSk,l + φSk,nl)β̂
S
k = φSl (x)β̂S = f̂l(x)β̂S = x diag(β̂)β̂S = xβ̂. (24)

The last two steps follows from Proposition 1 and the uniqueness of the coefficients β̂ as solution

to the convex least-squared problem. This can be made explicit for the OLS estimator. By

setting x→ x diag(β̂) ≡ xDβ̂, one obtains

β̂S =
xDβ̂y

(xDβ̂)T (xDβ̂)
=
Dβ̂

D2
β̂

Xy

xTx
= D−1

β̂
β̂ = 1n+1 . (25)

Proof of Theorem 4.1

I provide proofs for analytic and non-analytic models, reflecting prominent model types from

machine learning. Analytic models f̂(x, θ) are differentiable almost everywhere (NN and SVM

in our case).

Proof. (analytic models): Let f̂(θ, x) be a function of inputs x ∈ Rm and parameters θ ∈ Rq,

which is (d′ + 1) times differentiable, where d′ is the degree of the highest polynomial pd
′
(x)

of the DGP f(β, x), such that the Taylor expansion of f̂ exists. Then, there exists an open

interval Ω ⊂ Rm where the difference between f and f̂ is error consistent for each x′ ∈ Ω around

a. Namely,

f − f̂
∣∣∣
Ω

(x′) =
m∑
k=0

(
βk − β̂k

)
pdk(x

′ − a) +R
(
f̂ (d′+1)(c), (x′ − a)(n−d)

)
. (26)
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That is, the polynomial expansion of f̂ around a will be functionally identical to f up to a

residual R with c between x′ and a. By assumption, (26) vanishes with increasing sample size,

from which follows (β − β̂, R)→ 0, as m→∞.

Second, non-analytic models are tree-based models with f̂(x) ≡ Txθ(x) = 〈xtheta〉x, with Txθ

describing the set leaf nodes of the model from training. Usually, |T | → ∞, as |xtrain| → ∞.

Examples are classification trees, random forests or extreme trees (Geurts et al. (2006)). The

main difference to analytic models is that tree-based models are not differentiable. However,

many tree-based models are based on bagging (e.g. forests) which smoothens model output

(Bühlmann and Yu (2002)).

Proof. (non-analytic tree-based models): Let x′ ∈ Ω ⊆ D, where D is the domain of f and Ω

is the leaf node region of x′, with |Ω| being the number of xθ in this region. The difference

between f and f̂ can then be written as

f − f̂
∣∣∣
Ω

(x′) =
m∑
k=1

βkp
d
k(x
′)− 1

|Ω|

|Ω|∑
j=1

β̂kp
d
k(xj)

=
1

|Ω|

|Ω|∑
j=1

( m∑
k=1

(
|Ω|βkpdk(x′)− β̂kpdk(xj)

))
(27)

=
m∑
k=1

pdk(x
′)
(
βk − β̂k

)
.

We used the model optimising condition that values x′ fall into leave nodes with the same

expected value, i.e. 〈xj〉Ω = x′ in the limit m→∞. The above expression can then only vanish

if β − β̂ → 0 as n→∞.

Proof of Corollary 4.1

For each ε > 0 there is a neighbourhood Bδ of radius δ > 0 around every x′ ∈ Ω, such that

|f − f̂ |x′ < ε. For each Bδ and ε, there will be an large enough n′ such that there exist δ′ ≤ δ

and ε′ and ε′′ with ε′+ ε′′ < ε for which |f − f̂ |x′ < ε′ and |f̂ − f̂p|x′ < ε′′. The conclusion follows

form the assumption of error consistency.

Proof of Theorem 4.2

The second part is a consequence of error consistency. For the first part, it is enough to show

that the difference between Ψ̂ and Ψ? vanishes beyond nu. Here,

0 = Ψ∗ − β̂SΨ̂ =
C∑
c=1

ψ∗c −
C∑
c=1

β̂Sc ψ̂c =
C∑
c=1

ψ∗c − ψ̂c . (28)
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The RHS of Eq. 28 only vanishes if ψ∗c = ψ̂c, ∀c ∈ {1, . . . , C}.

Series expansion of RBF SVM

A SVM regression is the weighted sum of kernel-transformed inputs of the form

ŷi = f̂(xi; θ̂) =
n∑
i=1

θ̂iK(xi, x) . (29)

The sum runs over the whole training set, while only contributions from the so-called support

vectors close to the target regression line have non-zero weights. K(x, x′) is a kernel function

which returns a distance-like scalar between its two inputs. Common kernels are radial biases

functions (RBF; Gaussian kernel) or polynomial kernels. SVM are known to be error consistent

(see e.g. Steinwart (2002); Christmann and Steinwart (2008)). For a RBF kernel, this can be

intuitively understood by looking at the Taylor expansion of the kernel,

KRBF (x, x′) = exp

(
γ |x− x′|2

)
=

∞∑
n=0

(−γ |x|2)n

n!

∞∑
n=0

(−γ |x′|2)n

n!

∞∑
n=0

(−2γ x · x′)n

n!
. (30)

It contains an (infinite) sum of polynomials. The magnitude of each summand is proportional

to the norm of xi and its alignment with the corresponding support vector as a measure of

proximity.
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Shapley value mapping from Section 5.1

The knowledge of the DGP f(xi) and the model decomposition

ŷi = f̂(xi) =
3∑

k=0

φSk = ΦS(xi) (31)

can be used to estimate the coefficients learned by f̂ . To do so, we solve (31) for x̂k
(
ΦS, f(x)

)
, k ∈

{1, 2, 3}. The results are used to estimate y =
∑

k β̂
S
k fk(x̂) to obtain the normalised coefficients

β̂u = β̂S/β. f̂ generalises well to f if the normalised coefficients are one at a chosen confidence

level.

The reconstructed feature values x̂k
(
ΦS, f(x)

)
for the two processes (20, 21) are:

• f1,γ:

x̂1 = ±(φ1/β1)
1
γ (32)

x̂2 = φ2/β2 (33)

x̂3 = φ3/β3 (34)

• f2:

x̂1 =
−(β2x2 + β3)±

√
(β2x2 + β3)2 − 4β1(β4x2 + β0 − φ12)

2β1

(35)

x̂2 =
φ12 − β1x

2
1 − β3x1 − β0

β2x1 + β4

(36)

x̂3 = φ3/β5 (37)

φ12 =
2∑
j=0

φj

The positive/negative sign applies to positive/negative values of xk. This reconstruction is not

always perfect and creates outliers which can affect regression results, especially for small nq.

I therefore drop reconstructed values outside the 95% percentile region for each x̂k or f̂(x̂).
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