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Abstract

This paper proposes the three-dimensional HEAVY system of daily, intra-daily and range-based

volatility equations. We augment the bivariate model with a third volatility metric, the Garman-

Klass estimator, and enrich the trivariate system with power transformations and asymmetries. Most

importantly, we derive the theoretical properties of the multivariate asymmetric power model and ex-

plore its �nite-sample performance through a simulation experiment on the size and power properties

of the diagnostic tests employed. Our empirical application shows that all three power transformed

conditional variances are found to be signi�cantly a¤ected by the powers of squared returns, realized

measure, and range-based volatility as well. We demonstrate that the augmentation of the HEAVY

framework with the range-based volatility estimator, leverage and power e¤ects improves remarkably

its forecasting accuracy. Finally, our results reveal interesting insights for investments, market risk

measurement, and policymaking.

Keywords: asymmetries, HEAVY model, high-frequency data, power transformations, realized

volatility, risk management.

JEL classi�cation: C22, C58, G01, G15

*Corresponding Author: Dr Stavroula Yfanti. School of Business and Economics, Loughborough Univer-

sity, Epinal Way, Loughborough, LE11 3TU, UK. Telephone: +44 (0)1509 227091. Email: stavyfan@gmail.com.

ORCID ID: 0000-0001-8071-916X

1



1 Introduction

Financial volatility lies at the core of empirical �nance research, with direct employment in investments,

risk management practices, and �nancial stability oversight. Reliable modeling and accurate forecasting

of the volatility pattern has been the main objective of �nancial applications for business operations,

given that volatility is considered as one of the fundamental input variables in estimations and decision

processes of any corporation on derivatives pricing, portfolio immunization, investment diversi�cation,

�rm valuation, and funding choices. Financial volatility is also closely inspected by policymakers since it

entails critical destabilizing threats for the �nancial system.

We develop a three-dimensional HEAVY1 model by augmenting the bivariate system of Shephard

and Sheppard (2010) with a third variable, namely, the range-based Garman-Klass volatility. Another

contribution is the enrichment of the trivariate model with asymmetries and power transformations

through the APARCH structure of Ding et al. (1993). Motivated by the established merits of this

framework, which considerably improves Bollerslev�s (1986) GARCH process by adding leverage and

power e¤ects (see, for example, Brooks et al., 2000, Karanasos and Kim, 2006), we similarly extend

the trivariate system with these two features to explore its superiority over the benchmark speci�cation.

Most importantly, we derive the theoretical time series properties (optimal predictors and second moment

structure) of the multivariate asymmetric power system and explore its �nite-sample performance through

a simulation experiment. We further proceed with an empirical application of the proposed model, to

examine the various nested speci�cations in depth by investigating their performance over �ve stock

indices. One of our key �ndings is that each of the three powered conditional variances is signi�cantly

a¤ected by the �rst lags of all three power transformed variables, that is, squared negative returns,

realized variance, and Garman-Klass volatility.

Following the burst of the 2008 crisis, when volatilities rose sharply and persistently with crucial

systemic risk externalities, we witnessed a resurgence of regulators�and academics�interest in meaning-

ful volatility estimates, while, at the same time, practitioners remained alert to improving the relevant

volatility frameworks on a day-to-day basis. Financial economics scholars focused on volatility as a po-

tent catalyst of systemic risk build-up, which policymakers tried to limit. We demarcate this study from

the extant �nance bibliography by extending the benchmark HEAVY model with asymmetries, power

transformations, and Garman-Klass volatility providing a well-de�ned framework that adequately �ts the

volatility process. We further examine the theoretical properties of the proposed model and demonstrate

its forecasting superiority over the benchmark speci�cation using a rolling window out-of-sample fore-

casting procedure. The three-dimensional system of volatility equations, we establish, is ready-to-use,

1The acronym HEAVY is derived by �High-frEquency-bAsed VolatilitY�in Shephard and Sheppard (2010).
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not only on stock market returns but also on further asset classes or �nancial instruments (exchange rate,

cryptocurrency, commodity, real estate, and bond returns) and multiple �nancial economics applications

of business operations, such as bonds investing, foreign exchange trading and commodities hedging, core

daily functions in the treasuries of most �nancial and non-�nancial corporations.

Overall, our proposed volatility modeling framework improves the HEAVY model, with important

implications for market practitioners and policymakers on forecasting the trajectory of the �nancial

returns�second moment. Volatility modeling and forecasting are essential for asset allocation, pricing,

and risk hedging strategies. A reliable volatility forecast, exploiting in full the high-frequency domain,

is the input variable of paramount importance for the processes of derivatives pricing, e¤ective cross-

hedging, Value-at-Risk measurement, investment allocation, and portfolio optimization with di¤erent

asset classes and �nancial instruments. Moreover, the robust volatility modeling approach we introduce

provides a useful tool not only for market players but also for policymakers. Policymaking includes

continuous oversight duties and prudential regulation practices. In this vein, it is imperative for the

authorities to account for the volatility of �nancial markets across every aspect of the �nancial system�s

policy responses, both post-crisis through stabilization policy reactions and pre-crisis through proactive

assessment of �nancial risks. The asymmetric power HEAVY framework we propose here has been

shown to perform signi�cantly better than the benchmark speci�cation both in the short- and long-

term forecasting horizons. Trading and risk management processes mostly use one- to ten-day forecasts

while policymakers are involved in longer-term predictions of �nancial volatility. Hence, we illustrate our

model�s forecasting superiority with a Value-at-Risk example that provides both risk management and

policy implications.

The remainder of the paper is structured as follows. In Section 2 we detail the three-dimensional

HEAVY formulation and our extension, which allows for asymmetries and power transformations. Section

3 introduces the theoretical properties of the multivariate asymmetric power HEAVYmodel and contains a

simulation experiment on the �nite-sample properties of the diagnostic tests employed. Section 4 describes

the data and presents the results of the empirical application of the asymmetric power speci�cation. In

Section 5, we calculate multiple-step-ahead forecasts to measure the out-of-sample performance of the

proposed speci�cations. Finally, Section 6 concludes the analysis.

2 The HEAVY Framework

There are several studies introducing non-parametric estimators of realized volatility using high-frequency

market data. Andersen and Bollerslev (1998), Andersen et al. (2001) and Barndor¤-Nielsen and Shephard

(2002) were the �rst that econometrically formalized the realized variance with quadratic variation-like
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measures, while Barndor¤-Nielsen et al. (2008, 2009) focused on the realized kernel estimation as a

realized measure which is more robust to noise.

A large body of empirical research focuses on modeling and forecasting the realized volatility. Various

studies combine it with the conditional variance of returns. Engle (2002b) proposed the GARCH-X

process, where the former is included as an exogenous variable in the equation of the latter. Corsi et al.

(2008) suggested the HAR-GARCH formulation for modeling the volatility of realized volatility. Hansen

et al. (2012) introduced the Realized GARCH model that corresponds more closely to the HEAVY

framework of Shephard and Sheppard (2010), which jointly estimates conditional variances based on

both daily (squared returns) and intra-daily (it uses the realized measure - kernel and variance - as a

measure of ex-post volatility) data, so that the system of equations adopts to information arrival more

rapidly than the classic daily GARCH process. One of its advantages is the robustness to certain forms of

structural breaks, especially during the crisis periods, since the mean reversion and short-run momentum

e¤ects result in higher quality performance in volatility level shifts and more reliable forecasts. Borovkova

and Mahakena (2015) employed a HEAVY speci�cation with a skewed-t error distribution, while Huang

et al. (2016) incorporated the HAR structure of the realized measure in the GARCH conditional variance

speci�cation in order to capture the long memory of the volatility dynamics.

The benchmark HEAVY model of Shephard and Sheppard (2010) can be extended in many directions.

We allow for power transformations and leverage e¤ects in the conditional variance process to improve

volatility modeling and forecasting further (see also the Supplementary Appendix on the enrichment of

the trivariate asymmetric power speci�cation with long memory features and structural breaks).

2.1 Benchmark Model

The HEAVY model uses two variables: the close-to-close stock returns (rt) and the realized measure of

variation based on high-frequency data, RMt. We �rst form the signed square rooted (SSR) realized

measure as follows: ]RMt =sign(rt)
p
RMt, where sign(rt) = 1, if rt > 0 and sign(rt) = �1, if rt < 0.

In this paper we test the inclusion of an alternative measure of volatility to the HEAVY framework,

that is we employ the classic range-based estimator of Garman and Klass (1980), hereafter GK. We

further form the SSR GK volatility (gGKt = sign(rt)
p
GKt).

We assume that the returns, the SSR realized measure and GK volatility are characterized by the

following relations:

rt = ert�rt; ]RMt = eRt�Rt; gGKt = egt�gt; (1)

where the stochastic term eit is independent and identically distributed (i.i.d), i = r;R; g; �it is positive

with probability one for all t and it is a measurable function of F (XF )t�1 , that is the �ltration generated
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by all available information through time t � 1. We will use F (HF )t�1 (X = H) for the high-frequency

past data, i.e., for the case of the realized measure, or F (LoF )t�1 (X = Lo) for the low-frequency past data,

i.e., for the case of the close-to-close returns. Hereafter, for notational convenience, we will drop the

superscript XF .

In the HEAVY/GARCH model eit has zero mean and unit variance. Therefore, the three series have

zero conditional means, and their conditional variances are given by

E(r2t jFt�1 ) = �2rt; E(]RMt

2
jFt�1 ) = E(RMt jFt�1 ) = �2Rt, and E(gGK2

t jFt�1 ) = E(GKt jFt�1 ) = �2gt;

(2)

where E(�) denotes the expectation operator. The three equations are called HEAVY-i, i = r;R; g for the

returns, the realized measure, and Garman Klass volatility, respectively.

2.2 Asymmetric Power Formulation

The asymmetric power (AP) speci�cation for the three-dimensional (3D) HEAVY(1; 1) consists of the

following equations (in what follows for notational simplicity, we will drop the order of the model if it is

(1; 1)):

(1��iL)(�2it)
�i
2 = !i+(�ir+
irst�1)L(r

2
t )

�r
2 +(�iR+
iRst�1)L(RMt)

�R
2 +(�ig+
igst�1)L(GKt)

�g
2 ; (3)

where L is the lag operator, �i 2 R>0 (the set of the positive real numbers) are the power parameters,

for i = r;R; g, and st = 0:5[1�sign(rt)], that is, st = 1 if rt < 0 and 0 otherwise; 
ii, 
ij (i 6= j) are the

own and cross leverage parameters, respectively2 ; positive 
ii, 
ij means larger contribution of negative

�shocks�in the volatility process (in our long memory AP speci�cation we will replace �ii + 
iist�1 by

�ii(1+ 
iist�1); see the Supplementary Appendix, eq. (1)). In this speci�cation the powered conditional

variance, (�2it)
�i=2, is a linear function of the lagged values of the power transformed squared returns,

realized measure and GK volatility.

We will distinguish between three di¤erent asymmetric cases: the double one (DA: 
ij 6= 0 for all i

and j) and two more, own asymmetry (OA: 
ij = 0 for i 6= j only) and cross asymmetry (CA: 
ii = 0).

The �iR and 
iR are called the (six) Heavy parameters (own when i = R and cross when i 6= R). These

parameters capture the impact of the realized measure on the three conditional variances. Similarly, the

�ir and 
ir (six in total) are called the Arch parameters (own when i = r and cross for i 6= r). They

depict the in�uence of the squared returns on the three conditional variances. Finally, the �ig and 
ig

are called the (six) Garman parameters. These parameters capture the e¤ects of the GK volatility on

the three conditional variances.
2This type of asymmetry was introduced by Glosten et. al. (1993).
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The asymmetric power model is equivalent to a trivariate AP-GARCH process for the returns, the SSR

realized measure, and GK volatility (see, for example, Conrad and Karanasos, 2010). If all twelve Arch

and Garman parameters are zero, then we have the AP version of the benchmark HEAVY speci�cation

where the only unconditional regressor is the �rst lag of the powered RMt. Finally, we should mention

that all the parameters in this trivariate system should take non-negative values (see, for example, Conrad

and Karanasos, 2010).

To sum up, the bivariate benchmark model (eq. (2)) of Shephard and Sheppard (2010)3 is char-

acterized by two conditional variance equations, the GARCH(1,0)-X formulation for returns and the

GARCH(1,1) formulation for the SSR realized measure:

HEAVY-r: (1� �rL)�2rt = !r + �rRL(RMt);

HEAVY-R: (1� �RL)�2Rt = !R + �RRL(RMt):

Eq. (3) gives the general formulation of our asymmetric power extension, which adds asymmetries,

power transformations, and the GK volatility to the benchmark speci�cation. We also use the existing

Gaussian quasi-maximum likelihood estimators (QMLE) and multistep-ahead predictors already applied

in the APARCH framework (see, for example, He and Teräsvirta, 1999, Laurent, 2004, Karanasos and

Kim, 2006). We will �rst estimate the three conditional variance equations in the general form with

all Heavy, Arch, Garman, and Asymmetry parameters given by eq. (3) and in case a parameter is

insigni�cant, we will exclude it and this will result in a reduced form that is statistically preferred for

each volatility process. Before the empirical illustration of the proposed model on stock index volatility,

we �rst derive the time series properties of the multivariate AP-HEAVY system and examine its �nite-

sample performance through a simulation experiment.

3 Theoretical Properties of the Multivariate AP-HEAVYmodel

3.1 Notation

Throughout this Section, we adhere to the following conventions:

Notation 1 (Z>0) Z; and Z�0 stand for the sets of (positive) integers, and non-negative integers respec-

tively. Similarly, (R>0) R and R�0 stands for the set of (positive) real numbers, and non-negative real

numbers respectively.

3The benchmark HEAVY speci�cation as established by Shephard and Sheppard (2010) does not incorporate our third

variable, that is GK volatility.
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Notation 2 We will use upper (lower) case boldface symbols to refer to square matrices (vectors). That

is, y = [yi]i=1;:::;N is an N � 1 column vector, Y = [yij ]i;j=1;:::;N is a square matrix of order N .

IN is the N -dimensional identity matrix (hereafter, we will drop the subscript for notational simplicity).

Notation 3 Using standard notation, Y0 and Y�1 are the transpose and the inverse of the square matrix

Y. Y^k = [ykij ] is the element-wise exponentiation, whereas y
^x = [yxii ], that is the element occupying

the i-th entry of vector y is raised to the power of the element occupying the i-th entry of vector x.

Yk =
Yk

i=1
Y means that the matrix Y is raised to the power of k.

In addition, diag[y], and diag[Y] denote diagonal matrices with elements yi and yii, respectively.

We will refer to the element-wise absolute value of Y as jYj = [jyij j]. Finally, the inequality Y � 0

means that all elements of Y are non-negative real numbers.

Notation 4 The elementwise expectation operator is denoted by E, i.e., E(Y) = [E(yij)] (similarly,

E(Y jFt�1 ) denotes the elementwise, conditional on time t� 1, expectation operator).

Notation 5 Let Y
2 = Y 
 Y, where 
 is the Kronecker product of two matrices, and vec(Y) is a

vector in which the columns of the matrix Y are stacked one underneath the other.

3.2 Multivariate System

In this Section, we will examine the theoretical properties of the multivariate AP-HEAVY model. We

will consider the N -dimensional vector process, rt = [rit], i = 1; : : : ; N , N 2 Z�1, t 2 Z. For example,

for the trivariate case, r1t = rt, r2t = gRM t, and r3t = gGKt. Similarly to eq. (1), we assume that the

vector rt is characterized by the relation

rt = Zt�t, (4)

where Zt = diag[et], et = [eit], and �t = [�it] is Ft�1 measurable with Ft�1 = �(rt�1; rt�2; : : :) with

�t > 0 for all t. That is, rt = [eit�it]. Analogously with the assumptions in Section 2.1 the stochastic

vector et = [eit] is independent and identically distributed (i.i.d) with E(jeitj�i jejtj�j ) 2 R>0 for i; j =

1; : : : ; N .

In the N -dimensional (constant conditional correlation) multivariate GARCH model et has zero mean,

unit variance, and positive de�nite time invariant conditional correlation matrix R = [�ij ] with �ii = 1.

The conditional covariance matrix of rt is denoted byHt = E(rtr0t jFt�1 ), and it is given byHt = �tR�t,

where �t = diag[�t] = diag[H
1
2
t ].

The N -dimensional AP-HEAVY(1; 1) model is given by

(I�BL)�^�t = !+LAt jrtj^� ; (5)
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where � = [�i], is the vector with the power parameters with �i 2 R>0 for all i, �^�t = [��iit ], and

jrtj^� = [jeitj�i ��iit ] (we recall that rt and �t have been de�ned in eq. (4)). B = [�ii] is a diagonal

matrix (of order N); ! = [!i] is a vector that contains the drifts; At= A+ �t, where A = [�ij ] and

�t= [
ijsjt], are N -dimensional full matrices. Note that �t can be written as �t= �diag[st] where

� = [
ij ] and st = [sit]. The cross diagonal elements of A capture the shock (or unconditional) spillovers,

whereas those of �t capture the asymmetric shock spillovers.

3.2.1 Weak VARMA Representation

In order to derive the optimal predictors, we need to obtain the weak VARMA representation of the

model in eq. (5). First, we will introduce the following de�nitions.

De�nition 1 i) Let Z(�)=E(jZtj^�) be a diagonal matrix with the element occupying the i-th entry

denoted by zi = E(jeitj�i),

ii) De�ne the serially uncorrelated vector with, under (see below) Condition 1, zero mean as follows:

vt(�) = jrtj^� � E(jrtj^� jFt�1 ). In view of eq. (4), vt can be written as

vt = jrtj^� � Z�^�t =
�
jZtj^� � Z

�
�^�t

(to lighten the notation, in what follows we drop the parenthesis �; we recall that � is given in eq.

(5).

Proposition 1 The weak VARMA(1,1) representation of the N -dimensional AP-HEAVY (1; 1) process

is given by

[I� LCt]�^�t = ! + LAtvt; (6)

where

Ct= B+AtZ

(B and At have been de�ned in eq. (5); notice that Ct depends on �, but again in order to simplify

the notation we will use Ct instead of Ct(�)).

The proof is trivial: we add and subtract At�1Z�
^�
t�1 in the right-hand side of eq. (5).

Next, let us call

Dt;k =
k�1Y
r=0

Ct�1�r; (7)

where k 2 Z�1. We further extend the de�nition of Dt;k by assigning the initial matrix value Dt;0 = IN .
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3.2.2 General Solution

Next, we will present the general solution, which generates all the main time series properties of the

AP-HEAVY multivariate system.

Theorem 1 The general solution of the weak VARMA representation in eq. (6) under the initial matrix

value �^�t�k, is given by

�^�t =
kX
r=1

Dt;r�1 (! +At�rvt�r)| {z }
(Particular Solution)

+ Dt;k�
^�
t�k| {z }

(Homogeneous Sol.)

: (8)

The proof is trivial. It is obtained by using repeated substitution in eq. (6).

In the above Proposition �^�t is decomposed into two parts. The homogeneous solution, which consists

of the initial (matrix) value �^�t�k times Dt;k, and the particular one that is formed by products involving

the matrix Dt;r�1 times i) the drift !, and ii) the matrix At�r times the serially uncorrelated vector

vt�r.

Remark 1 When k = 1 the general solution in Theorem 1 coincides with eq. (6). This is a consequence

of the following statement: Dt;0 = I and Dt;1 = Ct�1 (see eq. (7)).

3.2.3 Optimal Predictors

In what follows, we will obtain the linear predictor of the AP-HEAVY system.

First, we will introduce some additional notation.

Notation 6 i) Let the expected value of Ct and At be denoted as C =E(Ct) and A=E(At) respectively

(where Ct is given in eq. (6)). Thus

C = B+AZ; with A =

�
A+ �

1

2

�
(9)

(since E[diag[st]] = E[diag[s2t ]] = (1=2)I), and thus eq. (7) implies that E(Dt;k) = C
k.

ii) Let �max(C) refer to the modulus of the largest eigenvalue of C.

iii) Let (
;z; P ) be a probability space and L2(
;z; P ) (in short L2) be the Hilbert space of random

variables with �nite �rst and second moments de�ned on (
;z; P ).

Condition 1 �max(C) < 1.

Taking the conditional expectation of eq. (8) with respect to the � �eld Ft�k�1 yields the following

Proposition.
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Proposition 2 The k-step-ahead optimal (in L2 sense) linear predictor of the powered transformed �t

for the N -dimensional AP-HEAVY(1; 1) model is readily seen to be

E(�^�t jFt�k�1 ) = (I�C)�1(I�Ck)! +Ck�^�t�k: (10)

Under Condition 1 the unconditional mean of �^�t , that is �(�) = E(�^�t ) is equal to the limk!1 E(�^�t jFt�k�1 ),

and thus it is given by

� = (I�C)�1!: (11)

(where C has been de�ned in eq. (9)).

Finally, the following Proposition gives the optimal linear predictor of the power transformed observed

vector jrtj^� as well as its �rst unconditional moment.

Proposition 3 The k-step-ahead optimal (in L2 sense) linear predictor of jrtj^� is given by

E(jrtj^� jFt�k�1 ) = ZE(�^�t jFt�k�1 );

(Z has been de�ned in De�nition 1(i), and eq. (10) gives E(�^�t jFt�k�1 )).

Under Condition 1, the unconditional mean of jrtj^�, that is r(�) = E(jrtj^�) is equal to limk!1 E(jrtj^� jFt�k�1 ),

and thus it is given by

r = Z�: (12)

The proof is trivial. It follows from the de�nition of jrtj^� in eq. (4) and Proposition 2. Alternatively,

we could obtain the optimal linear predictor and the �rst unconditional moment of jrtj^� using its weak

VARMA(1; 1) representation, which is not di¢ cult to show (proof is not reported but it is available upon

request) that it is given by:

[I� LCt] jrtj^� = Z! + (I�BL)vt:

A Comparison

Next, we provide a comparison between the benchmark HEAVY system and the more general AP

speci�cation. Their di¤erence is captured by the matrix C (see eq. (9)). We will examine the bivariate

case, which is when N = 2. For the more general double asymmetric power (DAP) speci�cation, C is a

full matrix with: i) diagonal elements given by �i+(�ii+
ii=2)zi, i = r;R, we recall that zi = E(jeitj
�i),

and ii) o¤-diagonal elements given by (�ij +
ij)zj , i; j = r;R, for i 6= j. For the benchmark model, since


ij = 0, zi = 1, for all i; j = r;R, and �Ri = 0, C is restricted to being an upper diagonal matrix. That
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is, we have

DAP Speci�cation: C=

24 �r + (�rr + 
rr=2)zr (�rR + 
rR=2)zR

(�Rr + 
Rr=2)zr �R + (�RR + 
RR=2)zR

35
Benchmark HEAVY: C=

24 �r �rR

0 �R + �RR

35 :

Figure 1 presents the comparison of the benchmark and DAP-HEAVYmodels�forecasting performance

(see also Section 5). We apply the optimal predictor of jrtj^� (under Proposition 3) on Dow Jones returns

and realized variance data and calculate 50-step-ahead forecasts. The more general speci�cation produces

forecasts signi�cantly closer to the actual values for both returns (Fig.1, a & b) and realized measure

(Fig.1, c & d). Most importantly, its forecasts are more accurate in peaks of returns and realized

variance actual values. The benchmark model remains behind our proposed asymmetric power extension

in predicting low- and high-frequency volatility indicators. It produces, mostly, lower volatility forecasts

(dotted lines) in comparison with the DAP (dashed lines) and actual (solid lines) values. Therefore, our

�rst contribution, which is the asymmetric power extension, provides a signi�cant improvement on the

HEAVY system of Shephard and Sheppard (2010).
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Figure 1. Dow Jones Returns and Realized Variance k-step-ahead forecasts

3.3 Second Moments

Now that we have derived the optimal predictors and the �rst unconditional moment of the AP-HEAVY

system, we will examine its second moment structure.

3.3.1 Notation

But �rst, we will introduce some further notation.

Covariances

Let �(`; �) = [
ij(`; �)], ` 2 Z�0, be the multidimensional covariance function of f�^�t g; as usual in

what follows we will suppress the index � for ease of notation, that is we will use �(`; �) = �(`). In view

of this de�nition we have:

�(`) = E[(�^�t�` � �)(�^�t � �)0] = �(`)� ��0; (13)
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where �(`) = E(�^�t�`(�^�t )0). In addition, let the vectorizations of �(`) and �(`) be denoted by s(`) and


(`), respectively. Explicit solutions for the �(`) and conditions for its existence will be presented below.

Further, let

D = diag[
p

11(0); : : : ;

p

NN (0)];

where 
ii(0) is the element occupying the i-th diagonal entry of �(0). To further �x notation, write the

`-th order, for ` � 1, autocorrelation matrix of �^�t as

R(`) = D�1�(`)D�1:

Kronecker Products

In what follows we will introduce some additional notation, which involves various Kronecker products.

Notation 7 Let

C
2 = C
C; A

2
= A
A; (14)

where C and A have been de�ned in eq. (9).

We continue by introducing the following notation.

Notation 8 Let

Z
2 = Z
 Z; E
��
jZtj^�

�
2�
= E(jZtj^� 
 jZtj^�);

eZ = �E�jZtj^��
2�� Z
2 = E ��jZtj^� � Z�
2� ;
be three diagonal matrices of order N2 (Zt and Z have been de�ned in eq. (4) and De�nition 1(i),

respectively).

Remark 2 The element occupying the r-th diagonal entry of eZ, with r = [(i � 1)N + j], where i; j =

1; : : : ; N , is given by

E(jeitj�i jejtj�j )� E(
��e(it���i)E(jejtj�j ):

Notation 9 Let eC = C
2 +A
2eZ (15)

(where C
2 and A

2
are given in eq. (14), and eZ is de�ned in Notation 8.

Condition 2 �max(eC) < 1:
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3.3.2 Covariance Structure

In the following theorem, we will present an explicit formula for 
(0).

Theorem 2 Consider the N -dimensional vector AP-HEAVY (1; 1) process. Under Condition 2 the vec-

torization of �(0), is given by


(0) =
�
IN2 � eC��1A
2eZ�
2: (16)

Further, 
(`), for ` � 1, is given by


(`) =
�
C` 
 I

�

(0): (17)

Next, let us denote the multidimensional covariance function of fjrtj^�g by �r(`) = [
ij;r(`)].

Theorem 3 Consider the N -dimensional vector AP-HEAVY (1; 1) process. Under Condition 2 the vec-

torization of �r(0), is given by


r(0) =

�
E
��
jZtj^�

�
2��
IN2 � eC��1A
2

+ IN2

� eZ�
2 (18)

Moreover, 
r(`), for ` � 1, is given by



r
(`) = Z
r(0): (19)

In Appendix A, we derive the proofs of Theorems 2 and 3.

3.4 Simulations

After deriving the time series properties of the multivariate AP-HEAVY system, we examine the �nite-

sample performance of the diagnostic tests employed in terms of both their size and power properties.

Given that simulation studies have already widely explored the �nite-sample properties of the univariate

(AP-)GARCH-X and the multivariate GARCH with volatility spillovers (A and B full matrices) but

without asymmetries, that is the � full matrix, (see, for example, Lundbergh and Teräsvirta, 2002,

Halunga and Orme, 2009, Francq and Thieu, 2019, Pedersen and Rahbek, 2019, Li et al., 2019, Nakatani

and Teräsvirta, 2009, Pedersen, 2017), here in the multivariate AP-HEAVY/GARCH case, we choose to

focus our simulation experiment on the signi�cance of the asymmetric e¤ects, the Sign Bias Test (SBT)

of Engle and Ng (1993) accounting for both own and cross leverage of each equation in the system,

and the likelihood-ratio test (LRT) for model selection (benchmark vs AP-HEAVY). We conduct the

Monte Carlo simulations in OxMetrics 7 for the bivariate case of the Asymmetric Power speci�cation

with own and cross Arch and Heavy parameters. For each data-generating process (DGP) with Gaussian

innovations drawn from the standard Normal distribution (e1t; e2t~IIDN(0; 1)), we use the sample sizes

14



T = 1000; 2500; 5000; 10; 000 after discarding the �rst 1000 observations to avoid initialization e¤ects.

All simulations are based on 5000 replications and the empirical rejection frequencies are compared with

the 5% nominal size of each test.

We �rst consider the size properties of the SBT statistic for the DGPs 1-5 reported in Table 1, Panel

A. We test �ve di¤erent speci�cations of the bivariate benchmark Heavy. The SBT statistic is calculated

on each equation (e1t and e2t processes) with similar results and the actual rejection frequencies from

both equations are stated in Table 2, Panel A. The SBT results suggest that signi�cant sign e¤ects are

omitted by the benchmark speci�cation. For DGPs 3 and 5, the test is relatively undersized in the sample

size T = 1000 and slightly oversized in the sample size T = 10; 000. Overall, our Monte Carlo experiment

shows that in most cases the sign bias test has reasonable size properties quite close to the 5% nominal

level in larger samples.

Next, the simulations for the power of the sign bias test are based on DGPs 6-10 (Table 1, Panel B)

corresponding to �ve bivariate AP-HEAVY models. The B matrix remains diagonal as in the benchmark

case, that is without volatility spillovers from the cross Garch e¤ects (�12 = �21 = 0). The A matrix

is either a full matrix with all own and cross Arch e¤ects (DGPs 9 & 10) or with the own Arch e¤ect

excluded in the �rst equation (DGPs 6-8), similarly to the returns and the Garman Klass volatility

equations estimated in our empirical application (see Tables 5A and 5C below). The � matrix contains

the leverage parameters, either own asymmetries (OAP model, DGP 6) or cross asymmetries (CAP

model, DGP 7) or a full matrix with both own and cross asymmetric e¤ects (DAP model, DGPs 8-10).

The power transformations in � are common for both equations in the system with �i = 1:5 for DGPs 6-9.

In the case of DGP 10, we test di¤erent powers (�1 = 1:5 and �2 = 1:0) for the conditional variance of the

two processes. Table 2, Panel B reports the SBT power simulation results with signi�cant asymmetric

e¤ects not ignored across all AP-HEAVY models considered. The power of the test improves as the

sample size increases for most DGPs, while in the DAP models with full � matrix (DGPs 8-10) the power

is already high from smaller samples.

Finally, we perform the likelihood ratio test of the AP model compared with the benchmark one

for both equations. We consider DGPs 6-10 as the unrestricted speci�cations and the corresponding

benchmark ones (with � = 0 and �11 = �21 = 0) as the restricted cases. The LRT results in Table

2, Panel C support the superiority of the asymmetric models to the benchmark formulations. The test

suggests the signi�cant improvement in terms of the log-likelihood maximization for the more richly

parametrized unrestricted models versus the respective restricted cases.

All in all, the simulation experiment suggests very good size and power properties of the SBT in

detecting asymmetries in the HEAVY framework and quite good performance of the LRT for model

selection across all sample sizes. Furthermore, our simulation results have also shown that the empirical
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distribution of the t-statistics of all estimated parameters in both equations is quite close to normal (the

average di¤erence of the true parameter and its estimate [bias], the standard error and the root mean

square error of the estimate are available upon request for all parameters), mostly converging to normal

in higher sample sizes regardless of the degree of persistence tested under each DGP, and at the same time

validating the �nite-sample performance of the QML estimators. In the remaining part of the paper, the

AP-HEAVY model�s overperformance in- and out-of-sample is further illustrated through an empirical

application on stock index data (Sections 4 and 5).
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Table 1. DGPs for size & power simulations

Heavy models DGPs A B � �

Panel A: Size simulations

Benchmark DGP 1

24 0 0:30

0 0:40

35 24 0:65 0

0 0:55

35 24 0 0

0 0

35 24 2:0

2:0

35
Benchmark DGP 2

24 0 0:20

0 0:40

35 24 0:75 0

0 0:60

35 24 0 0

0 0

35 24 2:0

2:0

35
Benchmark DGP 3

24 0 0:25

0 0:35

35 24 0:85 0

0 0:65

35 24 0 0

0 0

35 24 2:0

2:0

35
Benchmark DGP 4

24 0 0:18

0 0:25

35 24 0:80 0

0 0:70

35 24 0 0

0 0

35 24 2:0

2:0

35
Benchmark DGP 5

24 0 0:30

0 0:30

35 24 0:80 0

0 0:70

35 24 0 0

0 0

35 24 2:0

2:0

35
Panel B: Power simulations

OAP DGP 6

24 0 0:10

0:05 0:10

35 24 0:80 0

0 0:70

35 24 0:08 0

0 0:10

35 24 1:5

1:5

35
CAP DGP 7

24 0 0:10

0:05 0:10

35 24 0:80 0

0 0:70

35 24 0 0:08

0:10 0

35 24 1:5

1:5

35
DAP DGP 8

24 0 0:10

0:05 0:10

35 24 0:80 0

0 0:70

35 24 0:08 0:10

0:05 0:10

35 24 1:5

1:5

35
DAP DGP 9

24 0:04 0:10

0:05 0:10

35 24 0:80 0

0 0:70

35 24 0:05 0:05

0:05 0:10

35 24 1:5

1:5

35
DAP DGP 10

24 0:04 0:10

0:05 0:10

35 24 0:80 0

0 0:70

35 24 0:05 0:05

0:05 0:10

35 24 1:5

1:0

35
Notes: For all DGPs ! =

24 0:01

0:02

35.
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Table 2. Size & power simulation results

1st equation (e1t) 2nd equation (e2t)

Panel A: Size simulations (SBT empirical rejection frequencies)

T DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 1 DGP 2 DGP 3 DGP 4 DGP 5

1000 0:031 0:046 0:009 0:059 0:010 0:026 0:039 0:001 0:051 0:012

2500 0:035 0:041 0:030 0:044 0:045 0:031 0:040 0:036 0:040 0:047

5000 0:040 0:049 0:041 0:039 0:049 0:049 0:055 0:049 0:047 0:043

10; 000 0:046 0:052 0:058 0:045 0:059 0:046 0:052 0:055 0:048 0:061

Panel B: Power simulations (SBT empirical rejection frequencies)

T DGP 6 DGP 7 DGP 8 DGP 9 DGP 10 DGP 6 DGP 7 DGP 8 DGP 9 DGP 10

1000 0:442 0:204 0:632 0:841 0:809 0:506 0:233 0:701 0:892 0:831

2500 0:261 0:356 0:891 0:992 0:878 0:286 0:447 0:856 0:976 0:924

5000 0:755 0:694 0:949 0:997 1:000 0:623 0:688 0:991 0:999 1:000

10; 000 0:893 0:905 0:995 1:000 1:000 0:850 0:969 1:000 1:000 1:000

Panel C: LRT p-values for AP (unrestricted) vs benchmark (restricted) Heavy speci�cation

T DGP 6 DGP 7 DGP 8 DGP 9 DGP 10 DGP 6 DGP 7 DGP 8 DGP 9 DGP 10

1000 0:043 0:067 0:011 0:014 0:000 0:038 0:044 0:009 0:020 0:010

2500 0:037 0:055 0:025 0:018 0:001 0:042 0:041 0:019 0:027 0:003

5000 0:049 0:048 0:008 0:022 0:031 0:047 0:051 0:012 0:026 0:036

10; 000 0:050 0:046 0:030 0:020 0:018 0:052 0:048 0:036 0:018 0:024

Notes: Empirical rejection frequencies based on the 5% nominal level..

4 Empirical Application

4.1 Data Description

We provide an empirical application of the HEAVY framework on �ve stock indices� returns, realized

and GK volatilities. We use daily data for �ve stock market indices extracted from the Oxford-Man

Institute�s (OMI) realized library version 0.3 of Heber et al. (2009): Dow Jones Industrial Average from

the US (DJ), Korea Composite Stock Price Index from South Korea (KOSPI), CAC 40 from France

(CAC), All Ordinaries from Australia (AORD), and MXSE IPC from Mexico (IPC). Our sample covers

the period from 03/01/2000 to 30/09/2019 for most indices. The OMI�s realized library includes daily

stock market returns and several realized volatility measures calculated on high-frequency data from the
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Reuters DataScope Tick History database. The data are �rst cleaned and then used in the realized

measures calculations. According to the library�s documentation, the data cleaning consists of deleting

records outside the time interval that the stock exchange is open. Some minor manual changes are also

needed when results are ineligible due to the rebasing of indices. We use the daily closing prices, PCt ,

to form the daily returns as follows: rt = ln(PCt ) � ln(PCt�1), and two realized measures as drawn from

the library: the realized kernel and the 5-minute realized variance. The estimation results using the two

alternative measures are very similar, so we present only the ones with the realized variance (the results

for the realized kernel are available upon request).

4.1.1 Realized Measures

The library�s realized measures are calculated in the way described in Shephard and Sheppard (2010).

The realized kernel, which we use as an alternative to the realized variance (results are not reported

but they are available upon request), is calculated using a Parzen weight function as follows: RKt =PH
k=�H k(h=(H + 1))
h, where k(x) is the Parzen kernel function with 
h =

Pn
j=jhj+1 xj;txj�jhj;t; xjt =

Xtj;t �Xtj�1;t are the 5-minute intra-daily returns where Xtj;t are the intra-daily log-prices and tj;t are

the times of trades on the t-th day. Shephard and Sheppard (2010) declared that they selected the

bandwidth of H as in Barndor¤-Nielsen et al. (2009).

The 5-minute realized variance, RVt, which we choose to present here, is calculated with the formula:

RVt =
P
x2j;t. Heber et al. (2009) additionally implement a subsampling procedure from the data to

the most feasible level in order to eliminate the stock market noise e¤ects. The subsampling involves

averaging across many realized variance estimations from di¤erent data subsets (see also the references in

Shephard and Sheppard, 2010 for realized measures surveys�, noise e¤ects, and subsampling procedures).

4.1.2 GK Volatility

Using data on the daily high, low, opening, and closing prices of each index in the OMI�s realized library

we generate an additional daily measure of price volatility. To avoid the microstructure biases introduced

by high-frequency data and based on the conclusion of Chen et al. (2006), that the range-based and high-

frequency integrated volatility provide essentially equivalent results, we construct the daily GK volatility

as follows:

GKt =
1

2
u2t � (2 ln 2� 1)c2t ;

where ut and ct are the di¤erences in the natural logarithms (as of time t) of the high and low and of

the closing and opening prices, respectively. The Garman-Klass is an open-to-close range-based volatility

estimator that is documented as a more precise volatility proxy, with superior empirical performance in
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the GARCH framework. Recently, Molnár (2016) has demonstrated that the inclusion of the Parkinson

and GK estimators in the Range-GARCH model he proposed, outperforms the standard GARCH(1; 1),

and it performs particularly better in situations, where volatility level changes rapidly. Several studies

have also discussed the improvement of the GARCH framework through the open-to-close range-based

volatility proxies, regarded as more accurate than the close-to-close squared returns: they exclude the

noise from the dynamics of the opening jumps and they ensure greater accuracy in volatility forecasting

through the range information they provide (see Chou et al. 2010, 2015, Molnár, 2012 and the references

therein). Therefore, we incorporate the GK variable in our HEAVY system, in order to improve the

model�s forecasting performance.

Table 3 presents the �ve stock indices extracted from the database and provides volatility estimations

for each one�s squared returns, realized variances, and GK volatilities time series for the respective

sample period (see also the DJ series graphs in Appendix B, Figures A.1-A.4). We calculate the standard

deviation of the series and the annualized volatility. Annualized volatility is the square rooted mean

of 252 times the squared return or the realized variance. The standard deviations are always lower

than the annualized volatilities. The realized variances and the GK volatilities have lower annualized

volatilities and standard deviations than the squared returns since they ignore the overnight e¤ects and

are a¤ected by less noise. The returns represent the close-to-close yield, the realized variance the open-to-

close variation, and the GK volatility the open-to-close range-based variation. The annualized volatility

of the realized and GK measure is between 10% and 18%, while the squared returns show �gures from

14% to 24%.

Table 3. Data Description

Sample period r2t RVt GKt

Index Start date End date Obs. Avol sd Avol sd Avol sd

DJ 03/01/2000 27/09/2019 4950 0.178 0.040 0.165 0.026 0.145 0.022

KOSPI 04/01/2000 30/09/2019 4857 0.235 0.067 0.174 0.022 0.170 0.027

CAC 03/01/2000 30/09/2019 5034 0.222 0.052 0.182 0.022 0.175 0.021

AORD 04/01/2000 30/09/2019 4985 0.143 0.022 0.108 0.008 0.100 0.009

IPC 03/01/2000 30/09/2019 4953 0.202 0.044 0.144 0.018 0.155 0.017

Notes: Avol is the annualized volatility and sd is the standard deviation.

Next, we examine the sample autocorrelations of the power transformed absolute returns jrtj�r , signed

square rooted realized variance jSSR_RMtj�R , and GK volatility jSSR_GKtj�g , for various values

of �i. Figures 2, 3, and 4 show the autocorrelograms of the Dow Jones index from lag 1 to 120 for

�r = 1:3; 1:7; 2:0, �R = 1:1; 1:5; 2:0, and �g = 1:0; 1:5; 2:0 (similar autocorrelograms for the other four
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indices available upon request). The sample autocorrelations for jrtj1:3 are greater than the sample au-

tocorrelations of jrtj�r for �r = 1:7; 2:0 at every lag up to at least 120 lags. In other words, the most

interesting �nding from the autocorrelogram is that jrtj�r has the strongest and slowest decaying auto-

correlation when �r = 1:3. Similarly, for the realized measure and GK volatility, the powers with the

strongest autocorrelation function are �R = 1:1 and �g = 1:0, respectively. Furthermore, Figures 5, 6, and

7 present the sample autocorrelations of jrtj�r , jSSR_RMtj�R , and jSSR_GKtj�g as a function of �i for

lags 1; 12; 36; 72 and 96. For example, for lag 12, the highest autocorrelation values of power transformed

absolute returns and signed square rooted realized and GK volatility are calculated closer to the power of

1:5 and 1:0, respectively. These �gures explain our motivation to extend the benchmark HEAVY through

the APARCH framework of Ding et al. (1993) and con�rm the power choice of our econometric models,

which is �r = 1:3 for returns, �R = 1:1 for the realized measure, and �g = 1:0 for GK volatility (see

Section 4).

Figure 2. Autocorrelation of Dow

Jones jrtj�r for �r = 1:3; 1:7; 2:0

Figure 3. Autocorrelation of Dow

Jones jSSR_RMtj�R for

�R = 1:1; 1:5; 2:0

Figure 4. Autocorrelation of Dow

Jones jSSR_GKtj�g for

�g = 1:0; 1:5; 2:0

Figure 5. Autocorrelation of Dow

Jones jrtj�r at lags 1; 12; 36; 72; 96

Figure 6. Autocorrelation of Dow

Jones jSSR_RMtj�R at lags

1; 12; 36; 72; 96

Figure 7. Autocorrelation of Dow

Jones jSSR_GKtj�g at lags

1; 12; 36; 72; 96
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4.2 Estimated Models

Building upon the introduction of the GARCH-X process by Engle (2002b) to include realized measures

as exogenous regressors in the conditional variance equation, Han and Kristensen (2014) and Han (2015)

studied the asymptotic properties of this new speci�cation with a fractionally integrated (nonstationary)

process included as covariate (see also Francq and Thieu, 2019). Moreover, Nakatani and Teräsvirta

(2009) and Pedersen (2017) focused on the multivariate case, the so-called extended constant condi-

tional correlation, which allows for volatility spillovers and they developed inference and testing for the

QMLE parameters (see also Ling and McAleer, 2003 for the asymptotic theory of vector ARMA-GARCH

processes). For the extended HEAVY models, we employ the existing Gaussian QMLE and multistep-

ahead predictors applied in the APARCH framework (see, for example, He and Teräsvirta 1999, Laurent,

2004, Karanasos and Kim, 2006, and the theoretical properties derived in Section 3). Following Pedersen

and Rahbek (2019), we �rst test for arch e¤ects and after rejecting the conditional homoscedasticity hy-

pothesis we apply one-sided signi�cance tests of the covariates added to the estimated GARCH processes.

We �rst estimate the bivariate benchmark formulation as in Shephard and Sheppard (2010), that

is, without asymmetries and power transformations, obtaining very similar results (Table 4). For the

benchmark speci�cation, the only unconditional regressor in both equations is the �rst lag of the RMt.

In other words, the chosen returns equation is a GARCH(1; 0)-X process leaving out the own Arch e¤ect,

�rr, from lagged squared returns since it becomes insigni�cant when we add the cross e¤ect of the lagged

realized measure as regressor, with a Heavy coe¢ cient, �rR, high in value and signi�cance across all

indices. The momentum parameter, �r, is estimated around 0:44 to 0:84. For the SSR realized variance,

the best-chosen model is the GARCH(1; 1) without the cross e¤ect from lagged squared returns. The

Heavy term, �RR, is estimated between 0:25 and 0:47 and the momentum, �R, is around 0:53 to 0:74. The

benchmark system of equations chosen (three alternative GARCH models are tested for each dependent

variable with order: (1; 1), (1; 0)-X, and the most general one, that is, (1; 1)-X) is the same as in Shephard

and Sheppard (2010) with similar parameter values and the identical conclusion that the realized measure

of variation does all the work of moving around the conditional variances of stock returns and the SSR

realized variance. The benchmark�s conclusion, as we show in this study, does not hold for the more

richly parametrized asymmetric power model. More importantly, according to the SBT statistics, the

asymmetric e¤ect is obviously omitted from the benchmark speci�cation with the sign coe¢ cient always

signi�cant (p-values lower than 0:02).
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Table 4. The Benchmark HEAVY model

DJ KOSPI CAC AORD IPC

Panel A: Stock Returns, HEAVY-r

(1� �rL)�2rt = !r + �rRL(RMt)

�r 0:65
(15:99)���

0:67
(10:58)���

0:44
(7:68)���

0:78
(26:61)���

0:84
(28:45)���

�rR 0:39
(7:62)���

0:62
(5:27)���

0:82
(9:05)���

0:37
(6:88)���

0:25
(5:17)���

Q12 15:43
[0:22]

12:94
[0:37]

12:05
[0:44]

14:40
[0:28]

15:40
[0:21]

SBT 3:07
[0:00]

2:32
[0:02]

2:29
[0:02]

2:60
[0:01]

4:91
[0:00]

lnL �6336:82 �7599:64 �7762:45 �5728:74 �7582:94

Panel B: Realized Measure, HEAVY-R

(1� �RL)�2Rt = !R + �RRL(RMt)

�R 0:57
(14:06)���

0:53
(13:11)���

0:57
(17:08)���

0:74
(30:57)���

0:67
(11:56)���

�RR 0:44
(9:26)���

0:47
(10:59)���

0:42
(12:40)���

0:25
(10:45)���

0:33
(5:19)���

Q12 12:52
[0:41]

16:20
[0:18]

9:54
[0:66]

16:77
[0:16]

16:23
[0:17]

SBT 3:68
[0:00]

3:49
[0:00]

2:25
[0:02]

2:47
[0:01]

2:99
[0:00]

lnL �5930:41 �6140:66 �6819:26 �4362:39 �5823:11

Notes: The numbers in parentheses are t-statistics.

���, ��, � denote signi�cance at the 0:01, 0:05, 0:10

level, respectively. Q12 is the Box-Pierce Q-statistics on

the standardized residuals with 12 lags. SBT denotes the

Sign Bias test of Engle and Ng (1993). lnL denotes the

log-likelihood value for each speci�cation. The numbers in

square brackets are p-values.

Moving to our proposed extension of the benchmark bivariate system, Tables 5A-5C present the

estimation results for the chosen three-dimensional asymmetric power speci�cations (see also the 3D-

Benchmark model in Appendix C, Table A.1). Wald and t-tests are used to test the signi�cance of the

Heavy, Arch, and Garman parameters, rejecting the null hypothesis at 10% in all cases. We should

highlight the fact that since all the parameters take non-negative values, we use one-sided tests (see, for

example, Pedersen and Rahbek, 2019).

For all three dependent variables, we statistically prefer the double asymmetric power (DAP) speci-

�cation since most power transformed conditional variances are signi�cantly a¤ected by own and cross

asymmetries. KOSPI�s realized measure equation is the only case where we prefer the cross asymmetric
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power (CAP) model since own asymmetries are insigni�cant and therefore excluded. Furthermore, we

estimate the power terms separately with a two-stage procedure, as follows: We, �rst, estimate univariate

asymmetric power speci�cations for the returns, the realized measure, and GK volatility. The Wald tests

for the estimated power terms (available upon request) reject the hypothesis of �i = 2 in all cases. In the

second stage, we use the estimated powers, �r, �R, and �g, from the �rst step to power transform each

series� conditional variance and incorporate them into the trivariate model. The sequential procedure

produces the �xed power term values, which are the same for the three speci�cations (�r, �R, and �g are

common for Panels A, B, and C).

For the returns, the estimated power, �r, is between 1:30 and 1:60 (see Table 5A). The Heavy asym-

metry parameter, 
rR, is signi�cant and around 0:06 (min. value) to 0:13 (max. value). Although �rr is

insigni�cant and excluded in all cases, the own asymmetry parameter is signi�cant with 
rr 2 [0:08; 0:11].

In addition, the cross Garman parameter, �rg, is signi�cant and 0:07 � �rg � 0:13 in all cases. In other

words, the lagged values of all three powered variables, that is, the negative signed realized measure, the

squared negative returns, and the GK volatility, drive the model of the power transformed conditional

variance of returns. Moreover, the momentum parameter, �r, is estimated to be around 0:80 to 0:90.

Obviously, all �ve indices generated very similar DAP speci�cations.

Table 5A. The 3D-DAP-HEAVY model

DJ KOSPI CAC AORD IPC

Panel A: Stock Returns

(1� �rL)(�2rt)
�r
2 = !r + 
rrst�1L(r

2
t )

�r
2 +


rRst�1L(RMt)
�R
2 + �rgL(GKt)

�g
2

�r 0:81
(45:11)���

0:82
(25:25)���

0:80
(24:33)���

0:87
(55:05)���

0:91
(65:59)���

�rg 0:10
(4:78)���

0:13
(4:66)���

0:12
(3:19)���

0:08
(3:83)���

0:07
(3:99)���


rr 0:08
(5:08)���

0:09
(4:84)���

0:10
(6:00)���

0:09
(6:46)���

0:11
(8:39)���


rR 0:10
(4:76)���

0:12
(3:48)���

0:13
(4:32)���

0:07
(2:76)���

0:06
(3:90)���

�r 1:30 1:50 1:40 1:60 1:60

�R 1:10 1:20 1:10 1:30 1:00

�g 1:00 1:20 1:10 1:20 1:20

Q12 15:89
[0:20]

11:64
[0:48]

15:12
[0:24]

13:73
[0:19]

8:12
[0:62]

SBT 1:16
[0:24]

0:84
[0:40]

0:31
[0:75]

0:41
[0:68]

0:11
[0:91]

lnL �5974:12 �6933:25 �7078:02 �5584:51 �6890:68

Notes: See notes in Table 4.
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Similarly, for the realized measure the most preferred speci�cation is the DAP one in most cases,

as the estimated power is �R 2 [1:00; 1:30] (see Table 5B). Both Heavy parameters, �RR and 
RR, are

mostly signi�cant: �RR is around 0:05 (min. value) to 0:27 (max. value), while 
RR, is between 0:03

and 0:05. Only for the KOSPI index, the own asymmetries are insigni�cant and excluded. Moreover,

the cross Arch asymmetry parameter is signi�cant with 
Rr 2 [0:04; 0:09], as well as the cross Garman

parameter, �Rg, (with estimated values between 0:05 and 0:12). This means that the power transformed

conditional variance of gRM t is signi�cantly a¤ected by the lagged values of all three powered variables:

squared negative returns, realized measure, and GK volatility. Lastly, the momentum parameter, �R, is

estimated to be around 0:62 to 0:81.

Table 5B. The 3D-DAP-HEAVY model

DJ KOSPI CAC AORD IPC

Panel B: Realized Measure

(1� �RL)(�2Rt)
�R
2 = !R+

(�RR + 
RRst�1)L(RMt)
�R
2 +


Rrst�1L(r
2
t )

�r
2 + �RgL(GKt)

�g
2

�R 0:71
(41:14)���

0:62
(25:07)���

0:72
(36:11)���

0:81
(47:29)���

0:73
(31:23)���

�RR 0:10
(5:62)���

0:27
(12:04)���

0:16
(7:57)���

0:05
(3:43)���

0:19
(9:48)���

�Rg 0:12
(7:94)���

0:06
(3:83)���

0:05
(4:38)���

0:08
(5:96)���

0:05
(4:33)���


RR 0:05
(5:09)���

0:03
(3:61)���

0:04
(4:60)���

0:03
(2:82)���


Rr 0:08
(8:23)���

0:04
(9:44)���

0:05
(11:25)���

0:04
(6:75)���

0:09
(5:74)���

�R 1:10 1:20 1:10 1:30 1:00

�r 1:30 1:50 1:40 1:60 1:60

�g 1:00 1:20 1:10 1:20 1:20

Q12 15:18
[0:23]

14:40
[0:28]

15:16
[0:23]

13:72
[0:19]

13:68
[0:20]

SBT 0:64
[0:52]

0:71
[0:48]

0:74
[0:46]

1:01
[0:31]

1:12
[0:26]

lnL �5264:81 �5346:23 �5865:78 �4151:74 �5230:93

Notes: See notes in Table 4.

Finally, regarding the GK volatility the DAP speci�cation is again the chosen one (see Table 5C). In

particular, the own power term is 1:00 � �g � 1:20 in all cases. In addition, the Heavy (�gR), the own

asymmetry, 
gg, and the Arch asymmetry, 
gr, parameters are signi�cant in all cases. In other words,

the �rst lags of all three powered variables (realized measure, negative signed GK volatility, and squared

negative returns) drive the model of the power transformed conditional variance of gGKt.
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Table 5C. The 3D-DAP-HEAVY model

DJ KOSPI CAC AORD IPC

Panel C: GK volatility

(1� �gL)(�2gt)
�g
2 = !g + 
ggL(GKt)

�g
2 +

�gRst�1L(RMt)
�R
2 + 
grst�1L(r

2
t )

�r
2

�g 0:76
(35:34)���

0:65
(18:49)���

0:75
(28:51)���

0:82
(44:50)���

0:84
(42:41)���

�gR 0:11
(8:07)���

0:26
(9:18)���

0:16
(7:44)���

0:09
(7:93)���

0:09
(5:57)���


gg 0:07
(7:87)���

0:02
(1:77)�

0:05
(5:82)���

0:03
(3:52)���

0:03
(3:11)���


gr 0:05
(6:62)���

0:05
(7:85)���

0:04
(8:33)���

0:04
(6:83)���

0:05
(8:66)���

�g 1:00 1:20 1:10 1:20 1:20

�r 1:30 1:50 1:40 1:60 1:60

�R 1:10 1:20 1:10 1:30 1:00

Q12 13:70
[0:32]

14:98
[0:24]

15:04
[0:24]

13:75
[0:30]

13:72
[0:31]

SBT 0:78
[0:44]

0:91
[0:36]

1:16
[0:25]

0:90
[0:37]

1:08
[0:28]

lnL �4990:36 �5213:30 �5677:71 �3421:67 �5838:98

Notes: See notes in Table 4.

Overall, our results show strong Heavy e¤ects (captured by the 
rR, �RR, 
RR and �gR parameters),

asymmetric Arch in�uences (as the estimated 
rr, 
Rr and 
gr are signi�cant), as well as Garman impacts

(captured by the �rg, �Rg and 
gg parameters). According to the log-likelihood (lnL) values reported,

the log-likelihood is always higher for the DAP speci�cations compared to the benchmark ones, that

is without asymmetries and powers, proving the superiority of our model�s in-sample estimation. The

SBT statistics further show that the asymmetric e¤ect is not omitted any more since the sign coe¢ cients

are insigni�cant, with p-values consistently higher than 0:24 (see also the Supplementary Appendix on

the empirical application of the trivariate AP speci�cation with long memory [Section A] and structural

breaks [Section B]).

Lastly, we estimated the trivariate system of the extended HEAVY models with four alternative corre-

lation models:the CCC-Constant Conditional Correlations (Bollerslev, 1990), the DCC-Dynamic Condi-

tional Correlations (Engle, 2002a), the ADCC-Asymmetric Dynamic Conditional Correlations (Cappiello

et al., 2006) and the DECO-Dynamic Equicorrelations (Engle and Kelly, 2012). For simplicity, hereafter,

we will assume that �i = 2 for all i = 1; : : : ; N . The conditional covariance matrix for the N -dimensional

vector rt, Ht (see Section 3.2, as well), when the conditional correlation matrix is time-varying and is
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denoted by Rt, can be written as:

Ht = �tRt�t;

where the elements occupying the o¤-diagonal entries of Rt are given by �ij;t = �ij;t=�it�jt for i 6= j.

In our HEAVY model, we initially assumed that the conditional covariances and dynamic correlations

are zero: �ij;t = �ij;t = 0 for all t and i 6= j. This implies that Rt = I and Ht is a diagonal matrix

(Ht = �
2
t ). Allowing for non-zero conditional correlations does not alter our estimation results because

the estimation of various non-zero correlation models-the four alternative speci�cations, namely the CCC,

DCC, ADCC, and DECO-is a two-step procedure, where in the �rst step the parameters in the �t matrix

are estimated using the conditional variance equations, while the second step consists of estimating the

(o¤-diagonal) parameters in Rt (or R for the CCC case). To see this more explicitly, we present the

quasi-likelihood (QL) function. But �rst, note that rt can be written as (see eq. 4):

rt = Zt�t = �tet, or equivalently et = �
�1
t rt:

Then QL is given by

QL = QL1 +QL2

= �
TX
t=1

(n log(2�) + 2 log j�tj+ r0t��2t rt)| {z }
QL1

�
TX
t=1

(log j�tj+ e0tR�1
t et + e

0
tet)| {z }

QL2

:

Thus in the �rst step the parameters of the various extensions of the multivariate HEAVY process

are estimated using QL1, and in the second step we estimate the o¤-diagonal element in Rt using the

standardized residuals: bet = b��1t rt in QL2. In all cases, the three alternative dynamic models (DCC,

ADCC and DECO) estimate the average conditional correlations for the three volatility measures around

0:75 to 0:95 similar to the CCC constant correlation values.

All in all, the conditional correlations extension does not improve further the 3D-DAP-HEAVY for-

mulation since it provides identical results for the conditional variance equations and estimates similar

correlation levels for all indices�formulations (results not reported but available upon request).

5 Forecast Evaluation

Following the in-sample estimation of the proposed extensions to the HEAVY system of equations, we

perform multistep-ahead out-of-sample forecasting in order to compare the forecasting accuracy of the

enriched speci�cations proposed in this study with the benchmark model introduced by Shephard and

Sheppard (2010). We compute 1-, 5-, 10-, and 22-step-ahead forecasts of the (power transformed) con-

ditional variances for the benchmark and the 3D-DAP models. We apply a rolling window in-sample
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estimation using 2500 observations (the initial in-sample estimation period for DJ spans from 3/1/2000

until 24/12/2009). Each model is re-estimated daily based on the 2500-day rolling sample. The resulted

out-of-sample forecasts of each speci�cation calculated for DJ are as follows: 2450 one-step-ahead, 2446

�ve-step-ahead, 2441 ten-step-ahead, and 2439 twenty-two-step-ahead forecasted variances.

We then use the time series of the forecasted values to compute the Mean Square Error (MSE) and the

QLIKE Loss Function (Patton, 2011) of each point forecast compared to the respective actual value. For

each formulation and each forecast horizon, we calculate the average MSE and QLIKE to build the ratio of

the forecast losses for each extended HEAVY speci�cation to the loss of the benchmark one. A ratio lower

than the unity indicates the forecasting superiority of the proposed models relative to the benchmark one.

The lowest ratio means lowest forecast losses, that is the model with the best forecasting performance.

Based on the MSE calculations, we further apply the test for the pairwise comparison of nested models

(here the benchmark speci�cation vs the AP extensions) suggested by Harvey, Leybourne, and Newbold

(1998), HLN thereafter. The HLN forecast encompassing test was introduced as a modi�cation to the

Diebold-Mariano test (Diebold and Mariano, 1995) to account for the fact that models are nested (here

the 3D-DAP nests the benchmark speci�cation). HLN test whether the di¤erences between the two

competing formulations� forecasts are statistically signi�cant and the larger model�s forecast losses are

lower than the nested model�s ones (see also Clark and McCracken, 2001).

We apply the optimal predictor jrtj^� (under Proposition 3 in Section 3.2.3) and calculate the out-

of-sample forecasts. The results, presented in Tables 6 and 7 for the DJ index (similar forecasting results

for the other four indices available upon request), clearly show the preference for our extensions over the

benchmark models across all time horizons. The 3D-DAP speci�cation dominates the benchmark model

with the lowest MSE and QLIKE (Table 6). Given the HLN test, the Asymmetric Power formulation

performs signi�cantly better than the benchmark HEAVY model in the short- and long-term horizons,

with the computed forecasts signi�cantly closer to the actual values for the enriched HEAVY formulations.

HLN test results reject the null hypothesis of equal forecasts in favor of the 3D-DAP model�s lower forecast

losses at 5% signi�cance level (Table 7). Investors, traders and risk managers can bene�t from the superior

short-term forecasts for one up to ten days, while policymakers should focus on the longer-term forecasting

performance to predict �safely�the one-month-forward �nancial volatility given the signi�cant range-based

e¤ects.
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Table 6. Mean Square Error (MSE) and QLIKE of m-step-ahead out-of-sample forecasts for DJ

as a Ratio of the benchmark model and HLN test.

MSE QLIKE

Speci�cations# m-steps ! 1 5 10 22 1 5 10 22

Panel A: Stock Returns (HEAVY-r)

Benchmark (bivariate) 1:000 1:000 1:000 1:000 1:000 1:000 1:000 1:000

3D-DAP 0:769 0:791 0:824 0:872 0:711 0:747 0:761 0:833

Panel B: Realized Measure (HEAVY-R)

Benchmark (bivariate) 1:000 1:000 1:000 1:000 1:000 1:000 1:000 1:000

3D-DAP 0:784 0:836 0:845 0:946 0:721 0:744 0:780 0:865

Panel C: GK volatility (HEAVY-g)

Benchmark� 1:000 1:000 1:000 1:000 1:000 1:000 1:000 1:000

3D-DAP 0:804 0:773 0:850 0:912 0:832 0:741 0:841 0:897

Notes: Bold numbers indicate minimum values across the di¤erent speci�cations.

�The Benchmark Heavy-g speci�cation is de�ned in Table A.1, Panel C (Trivariate Benchmark)

Table 7. HLN Forecast encompassing test results for DJ (p-values).

Speci�cations# m-steps ! 1 5 10 22

Panel A: Stock Returns (HEAVY-r)

Benchmark vs 3D-DAP 0:011 0:019 0:033 0:041

Panel B: Realized Measure (HEAVY-R)

Benchmark vs 3D-DAP 0:017 0:022 0:036 0:053

Panel C: GK volatility (HEAVY-g)

Benchmark vs 3D-DAP 0:020 0:015 0:038 0:046

Notes: The numbers reported are p-values of the HLN (1998) test

of the null hypothesis for equal forecasting performance against

the one-sided alternative that the 3D-DAP outperforms the nested

benchmark speci�cation.

The forecasting performance of the proposed models can be further examined in a real-world risk

management empirical example. Value-at-Risk (VaR) is a daily metric for market risk measurement,

de�ned as the potential loss in the value of a portfolio, over a pre-de�ned holding period, for a given

con�dence level. The most important input in the VaR calculation is the one-day volatility forecast of

the risk factor relevant to the trading portfolio under scope. We directly apply our conditional variance
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forecasts in a long portfolio position to one Dow Jones Industrial Average index contract starting from

7/5/2019. We calculate 100 daily VaR values from 8/5/2019 to 27/9/2019 using the one-day conditional

variance forecasts of each model for returns and realized measure (4 models in total). Given that the

conditional mean return is zero and the returns follow the normal distribution, we, �rst, calculate the one-

day VaR with 99% and 95% con�dence level. According to the parametric approach to VaR calculation,

we multiply the daily portfolio value with the one-day-ahead conditional volatility forecast (equal to the

square root of the conditional variance forecast) and the left quantile at the respective con�dence level of

the normal distribution (the z-scores for 99% and 95% con�dence level are 2.326 and 1.645, respectively).

Secondly, we calculate the daily realized return of the portfolio (gains and losses) and, thirdly, we perform

the backtesting exercise, comparing the realized returns with the respective one-day VaR for the 99%

and 95% con�dence levels. In the cases where the realized loss exceeds the respective day�s VaR value,

we record it as an exception in the backtesting procedure, meaning that the VaR metric fails to cover

the loss of the speci�c day�s portfolio value.

According to the backtesting results (see Table 8: Backtesting results, No. of Exceptions), the

number of exceptions across all models is in line with the selected con�dence level (the 99% and 95%

con�dence levels allow for 1 and 5 exceptions, respectively, every 100 days) and low enough to prevent

supervisors from increasing the capital charges (in which case we refer to a bank�s trading portfolio).

The higher number of exceptions means higher market risk capital requirements for �nancial institutions

since regulators heavily penalize banks�internal models that fail to cover trading losses through the VaR

estimates. Following the Basel tra¢ c light approach, the market risk capital charge increases when the

backtesting exceptions are more than 4 in a sample of 250 daily observations and 99% con�dence level.

Since all models provide adequate coverage of the realized losses, we should further compare the average

and minimum VaR estimates calculated based on the forecasts of each speci�cation (Table 8: Descriptive

statistics). The VaR estimate that provides the higher loss coverage with the lower capital charges is

the one with the lower minimum and higher mean values. This is achieved by the realized measure

speci�cations, where we prefer the asymmetric power model, augmented with the range-based volatility

impact. Given that the market risk capital requirement is calculated on the trading portfolio total 99%

VaR (absolute value, 60-day average) adjusted by the penalty of the backtesting exceptions (higher than

4 in the 250-day sample), the bank needs the smallest possible VaR average with the larger minimum

estimate in absolute terms. Thereupon, our proposed models clearly satisfy both criteria, contributing

to the risk manager�s VaR calculation of the volatility forecasts that better capture the loss distribution

(higher extreme loss coverage with higher absolute minimum value) without in�ating the capital charges

(lower absolute mean).
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Table 8. VaR Backtesting results and Descriptive statistics for the DJ portfolio.

Backtesting results Descriptive statistics

No. of Exceptions 99% VaR 95% VaR

Speci�cations 99% VaR 95% VaR Mean Min. Mean Min.

Panel A: Stock Returns (HEAVY-r)

Benchmark (bivariate) 1 3 �700:04 �1; 418:87 �494:97 �1; 003:22

3D-DAP 1 3 �656:75 �1; 346:29 �468:80 �951:90

Panel B: Realized Measure (HEAVY-R)

Benchmark (bivariate) 1 3 �632:24 �934:48 �447:03 �660:72

3D-DAP 1 3 �641:20 �1;241:32 �456:90 �877:68

Notes: Mean and Min. denote the average and minimum VaR estimate, respectively. Bold numbers

indicate the preferred speci�cations for the lower market risk capital charge with the higher loss coverage.

Furthermore, the volatility forecasts produced by the 3D-DAP-HEAVY model are directly applicable

to a wide range of business �nance operations, alongside the well-established risk management practice

outlined in the VaR empirical exercise. Portfolio managers should rely on the proposed framework to

predict future volatility in asset allocation and minimum-variance portfolio selection complying with their

clients�risk appetite. Risk-averse investors�mandates specify low volatility boundaries on their portfolio

positions, while risk lovers allow for higher volatilities on the risk-return trade-o¤ of their investments.

Accurate volatility predictions can also be used in a forward-looking performance evaluation context,

through the risk-adjusted metrics, i.e. the Sharpe or the Treynor risk-adjusted return ratios. Traders

and risk managers focus on the volatility trajectory in derivatives pricing, volatility targeting strategies,

and several other trading decisions. Trading and hedging in �nancial markets depend on risk factors

whose predicted volatilities are the main input of any pricing function applied. Moreover, �nancial chiefs

consider volatility forecasts when they decide on investment projects or funding choices (bond and equity

valuation de�ning the cost of capital) given that expected future cash-�ow variation is a critical factor in

business analytics.

Finally, policymakers and authorities supervising and regulating the �nancial system should take

into account reliable volatility forecasts in designing macro- and micro-prudential policy responses. The

risk management of the �nancial system is structured as follows: i) identi�cation of risk sources (both

endogenous - �nancial market volatility - and exogenous - the macroeconomy), ii) assessment of the

nature of risk factors, iii) risk measurement (micro-prudential metrics at the �nancial institution level

and macro-prudential metrics at the system and markets level), and iv) risk mitigation with proactive

regulation and crisis preparedness plans and strategies. Therefore, regulators should employ the range-
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informed �nancial volatility forecasts of the 3D-DAP-HEAVY model across the whole risk management

process and the �nancial stability oversight tools, such as the early warning systems, the macro stress-

tests on �nancial institutions and the bank capital and risk frameworks. For example, the macro stress-

test scenario inputs, which include, among others, stock market volatility predictions for the �nancial

institutions�trading books, should consider range-informed volatility estimates. Furthermore, complying

with the capital and risk frameworks set by supervisors (Basel committee and central banks), �nancial

institutions measure their trading portfolio�s market risk (beyond the credit risk of their loan portfolio)

with the daily Value-at-Risk (VaR) metric. Given that reliable volatility forecasts, provided by our

superior modeling framework, improve the VaR estimates considerably, supervisors should encourage

banks to improve their market risk internal models with more accurate range-informed volatility forecasts

based on both low- and high-frequency data.

6 Conclusions

Our study has extended the bivariate HEAVY system to the three-dimensional DAP speci�cation. Our

major contribution to volatility modeling research within this HEAVY framework is twofold: We, �rstly,

augment the benchmark model with a third variable, that is the range-based volatility, in order to achieve

greater accuracy in volatility forecasting. Secondly, we enrich the trivariate formulation by taking into

consideration leverage and power characteristics. Thirdly, we derive the theoretical time series properties

(optimal predictors and second moment structure) of the multivariate asymmetric power system and

assess its �nite-sample performance through a simulation study. Our empirical results favor the most

general asymmetric power speci�cation, where the lags of all three powered variables - squared negative

returns, GK volatility, and realized variance - move the dynamics of each power transformed conditional

variance. The asymmetric response to negative and positive shocks and its power transformations ensure

the superiority of our contribution, which can be implemented on the areas of asset allocation and

portfolio selection, as well as on several risk management practices. Further, we provide evidence on the

forecasting superiority of our extensions over the benchmark HEAVY model through the rolling window

out-of-sample forecasting across multiple short- and long-term horizons.

Our empirical �ndings on the nexus between low-frequency daily squared returns, range-based volatil-

ity, and high-frequency intra-daily realized measures, provide a volatility forecasting framework with

important implications for policymakers and market practitioners, from investors, risk and portfolio

managers up to �nancial chiefs, leaving ample room for future research on further model extensions.

Thereupon, policymakers and market players should use our HEAVY framework to closely watch and

forecast �nancial volatility patterns in the process of devising drastic policies, enforcing the �nancial
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system�s regulations to preserve �nancial stability, deciding on asset allocation, hedging strategies, and

investment projects. As part of future research, it would be interesting to extend the theoretical frame-

work of the asymmetric power system with long memory features and structural breaks (supporting our

empirical illustrations in the Supplementary Appendix). A further interesting line of future research

could be the enrichment of the multivariate HEAVY formulation of Noureldin et al. (2012) with leverage,

power transformations, and long memory, extending the recent study of Dark (2018), who has applied a

long memory multivariate GARCH model to the multivariate HEAVY, or Opschoor et al. (2018) within

the Generalized Autoregressive Score (GAS) process of Creal et al. (2013).

Data Availability Statement

The data that support the �ndings of this study are publicly available in the Oxford-Man Institute

Realized Library at https://realized.oxford-man.ox.ac.uk/data/download.
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A APPENDIX: Second Moments (Proofs)

In this Section we will derive the proofs of Theorems 2 and 3. But �rst we present the following lemma

that we will use in the proofs below.

Lemma 1 The vec
�
E
�
At�1vt�1v

0
t�1A

0
t�1
��
is given by

vec
�
E
�
At�1vt�1v

0
t�1A

0
t�1
��

= A

2eZ �
(0) + �
2� : (A.1)

Proof. Using the de�nition of vt�1 in De�nition 1(ii) and interchanging the vec and expectation opera-

tors, the left hand side of eq. (A.1) takes the form:

E
�
vec

�
At�1

�
jZtj^� � Z

�
�^�t (�

^�
t )

0
�
jZtj^� � Z

�0
A0
t�1

��
:

Using the rules of the vec operator (see, for example, Lütkepohl, 1996, Section 7.2) and, under Condition

2, applying the expectation operator, in view of eq. (13) the above expression yields

vec
�
E
�
At�1vt�1v

0
t�1A

0
t�1
��

= E
�
A
2
t�1
�
E
�
jZtj^� � Z

�
2
(
(0) + �
2): (A.2)

Since E
�
A
2
t

�
= A


2
and in view of Notation 8, it follows that the right hand-side of eq. (A.2) equals

the right hand-side of eq. (A.1) as required.

Proof. (of Theorem 2) Rewrite the weak VARMA representation, eq. (6), as

�^�t = ! +Ct�1�
^�
t�1 +At�1vt�1:

Using ! = (I�C)� (see eq. (11)) the above equation can be expressed in terms of deviations from the

mean:

�^�t � � = (Ct�1 �C)� +Ct�1(�
^�
t�1 � �) +At�1vt�1: (A.3)

Taking the transpose on both sides of eq. (A.3) yields

(�^�t � �)0 = �0(Ct�1 �C)0 + (�^�t�1 � �)
0
C0t�1 + v

0
t�1A

0
t�1: (A.4)

Right-multiplying eq. (A.3) by eq. (A.4) and, under Condition 2, taking expectations on both sides,

yields (in view of eq. (13) and ignoring zero terms):

�(0) = E
�
Ct�1(�

^�
t�1 � �)(�^�t�1 � �)

0
C0t�1

�
+ E

�
At�1vt�1v

0
t�1A

0
t�1
�
: (A.5)

Applying the vec operator to both sides of eq. (A.5) yields


(0) = E
�
C
2t

�

(0) + vec

�
E
�
At�1vt�1v

0
t�1A

0
t�1
��
:
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In view of Lemma 1 and the fact that E
�
C
2t

�
= C
2, we have


(0) = C
2
(0) +A

2eZ �
(0) + �
2� :

Solving the above equation for 
(0) gives


(0) =
�
IN2 � eC��1A
2eZ�
2

(eC is given in eq. (15)), which completes the proof of eq. (16).

Next, rewrite the general solution in eq. (8) as

(�^�t )
0 =

X̀
r=1

(!0+v0t�rA
0
t�r)D

0
t;r�1+(�

^�
t�`)

0D
0
t;`
:

Left-multiplying the above equation by �^�t�`, taking expectations on both sides under Condition 2, and

using E(Dt;`) = C
`, see the text next to eq. (9), yields (in view of eq. (13) and ignoring zero terms):

�(`) = �!0[(I�C)�1]0(I�C`)0 +�(0)(C`)0:

On account of ! =(I�C)�, it follows that

�(`) = �(0)(C`)0:

Applying the vec operator to both side of the above equation yields eq. (17) as claimed.

Proof. (of Theorem 3) Rewrite jrtj^� in terms of deviations from the mean (see eqs. (4) and (12)):

jrtj^� � r = jZtj^� (�^�t � �) +
�
jZtj^� � Z

�
� or�

jrtj^� � r
�0
= (�^�t � �)0

�
jZtj^�

�0
+ �0

�
jZtj^� � Z

�0
:

Multiplying jrtj^� � r by its transpose, using the above expressions, taking expectations on both sides,

and ignoring zero terms, it follows that the vectorization of �r(0) is given by


r(0) = E
��
jZtj^�

�
2�

(0) + eZ�
2:

Applying eq. (16) to the above expression of 
r(0), eq. (18) follows (the proof of eq. (19) is similar to

the proof of eq. (18) and, thus it is omitted) and the proof is complete.
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B APPENDIX: Dow Jones Graphs

Figure A.1. Dow Jones Close-to-close Returns Figure A.2. Dow Jones Squared Returns

Figure A.3. Dow Jones Realized Variance Figure A.4. Dow Jones Garman Klass Volatility
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C APPENDIX: 3D-Benchmark Model Results

Table A.1. The 3D-Benchmark HEAVY model

DJ KOSPI CAC AORD IPC

Panel A: Stock Returns, HEAVY-r

(1� �rL)�2rt = !r + �rRL(RMt) + �rgL(GKt)

�r 0:68
(17:59)���

0:67
(10:81)���

0:44
(7:65)���

0:77
(25:67)���

0:91
(61:24)���

�rR 0:18
(3:36)���

0:40
(2:99)���

0:76
(6:66)���

0:28
(4:48)���

0:07
(6:78)���

�rg 0:23
(4:41)���

0:23
(1:86)�

0:06
(3:52)���

0:13
(2:26)��

0:20
(7:21)���

Q12 16:89
[0:15]

11:83
[0:46]

12:19
[0:43]

15:27
[0:23]

16:90
[0:15]

SBT 3:13
[0:00]

2:53
[0:01]

2:35
[0:02]

2:59
[0:01]

4:60
[0:00]

lnL �6315:85 �7579:14 �7757:28 �5721:07 �7398:91

Panel B: Realized Measure, HEAVY-R

(1� �RL)�2Rt = !R + �RRL(RMt) + �RgL(GKt)

�R 0:58
(12:42)���

0:55
(13:81)���

0:57
(16:89)���

0:73
(28:21)���

0:67
(11:04)���

�RR 0:31
(4:44)���

0:34
(8:33)���

0:36
(9:78)���

0:19
(7:20)���

0:26
(3:49)���

�Rg 0:14
(4:18)���

0:11
(3:95)���

0:06
(2:88)���

0:09
(3:82)���

0:06
(2:66)���

Q12 12:85
[0:38]

15:44
[0:22]

9:46
[0:66]

16:89
[0:15]

9:53
[0:48]

SBT 3:45
[0:00]

5:26
[0:00]

2:39
[0:02]

2:67
[0:01]

3:12
[0:00]

lnL �5922:35 �6135:93 �6818:17 �4357:03 �5816:53

Panel C: GK volatility, HEAVY-g

(1� �gL)�2gt = !g + �gRL(RMt)

�g 0:58
(12:13)���

0:50
(7:36)���

0:57
(13:46)���

0:75
(31:27)���

0:76
(14:33)���

�gR 0:33
(7:67)���

0:46
(7:04)���

0:38
(9:84)���

0:20
(9:86)���

0:24
(4:44)���

Q12 9:65
[0:65]

12:72
[0:24]

9:33
[0:67]

12:39
[0:26]

9:62
[0:66]

SBT 4:42
[0:00]

3:01
[0:00]

2:85
[0:00]

3:22
[0:00]

8:70
[0:00]

lnL �5402:41 �6068:15 �6630:57 �3997:18 �6290:51

Notes: See notes in Table 4.
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A Long Memory Extension

A.1 Hyperbolic Formulation

In this Section, we extend the 3D-DAP-HEAVY framework by incorporating long memory. First, we

present the most general hyperbolic (HY) speci�cation (see, for example, in the context of a univariate

GARCH model Davidson, 2004, Dark, 2005, 2010, and Scho¤er, 2003):

(1� �rL)[(�2rt)
�r
2 � !r] = Ar(L)(1 + 
rrst)(r2t )

�r
2 + (�rR + 
rRst�1)L(RMt)

�R
2 + (�rg + 
rgst�1)L(GKt)

�g
2 ;

(1� �RL)[(�2Rt)
�R
2 � !R] = AR(L)(1 + 
RRst)(RMt)

�R
2 + (�Rr + 
Rrst�1)L(r

2
t )

�r
2 + (�Rg + 
Rgst�1)L(GKt)

�g
2 ;

(1� �gL)[(�2gt)
�g
2 � !g] = Ag(L)(1 + 
ggst)(GKt)

�g
2 + (�gR + 
gRst�1)L(RMt)

�R
2 + (�gr + 
grst�1)L(r

2
t )

�r
2 ;

(1)

with

Ai(L) = (1� �iL)� (1� �iL)[(1� �i) + �i(1� L)di ]; i = r;R; g;

where j�ij < 1, di, is the fractional di¤erencing parameter with 0 � di � 1, and �i, is the amplitude or

hyperbolic parameter with 0 � �i � 1. In other words, we have three long memory parameters, �i, �i,

and di. So, now the Heavy parameters are nine in total. Similarly, the Arch parameters are nine, and

the Garman parameters as well.

If �i = 0 and �i � �i = �ii, the HYDAP speci�cation reduces to the DAP ones (see eq. (3) in the

main body of the paper), since in this case Ai(L) = �iiL.
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The HY speci�cation also nests the fractional integrated (FI) one (see, for example, Baillie et al.,

1996, Tse, 1998, Karanasos et al., 2004, and Conrad and Karanasos, 2006) by imposing the restriction

�i = 1. In this case Ai(L) in eq. (1) becomes

Ai(L) = (1� �iL)� (1� �iL)(1� L)di :

Finally, note that the su¢ cient conditions of Dark (2005, 2010) for the non-negativity of the conditional

variance of a HYAPARCH (1; di; 1) speci�cation are: !i > 0, �i��idi � �i � 2�di
3 and �idi(�i� 1�di

2 ) �

�i(�i � �i + �idi), i = r;R; g (see also Conrad, 2010). When �i = 1 they reduce to the ones for the

FIGARCH (1; di; 1) model (see Bollerslev and Mikkelsen, 1996).

A.2 Long Memory Estimation Results

We further extend the HEAVY framework by incorporating long memory. For the returns and the GK

volatility, the chosen speci�cation is the FIDAP, whereas for the realized measure we select the HYDAP

one (with the exception of KOSPI realized variance, where the HYCAP model is preferred). In all cases,

the power terms are presented as �xed parameters since they are estimated separately using univariate

models. Tables 1A-1C present the 3D-HYDAP-HEAVY results.

In the FIDAP speci�cation for the returns (see Table 1A), dr is close to 0:50 (around 0:38 to 0:45).

In all cases, the Wald tests (available upon request) reject the null hypotheses of dr = 0 or 1. The

other two long memory parameters, �r and the hyperbolic one, �r, were insigni�cant and, therefore,

they were excluded. The own and Garman asymmetry parameters are signi�cant with estimated values


rr 2 [0:33; 0:50] and 
rg 2 [0:15; 0:19], respectively. The Heavy parameter, �rR, is signi�cant as well

and with estimated values between 0:06 and 0:12. In other words, the lagged values of all three powered

variables (squared negative returns, realized measure and negative signed GK volatility) drive the model

of the power transformed conditional variance of returns.
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Table 1A. The 3D-HYDAP-HEAVY model

DJ KOSPI CAC AORD IPC

Panel A: Stock Returns, FIDAP Speci�cation

(1� �rL)[(�2rt)
�r
2 � !r] =�

(1� �rL)� (1� L)dr
�
(1 + 
rrst)(r

2
t )

�r
2 +

�rRL(RMt)
�R
2 + 
rgst�1L(GKt)

�g
2

�r 0:38
(4:56)���

0:41
(5:83)���

0:37
(2:74)���

0:36
(4:78)���

0:32
(2:85)���

dr 0:42
(2:75)���

0:45
(9:23)���

0:42
(5:25)���

0:40
(7:68)���

0:38
(7:68)���

�rR 0:07
(4:91)���

0:12
(2:25)��

0:10
(2:99)���

0:07
(3:12)���

0:06
(5:01)���


rr 0:50
(5:04)���

0:33
(5:00)���

0:48
(6:11)���

0:43
(7:24)���

0:35
(5:78)���


rg 0:17
(3:43)���

0:19
(3:27)���

0:18
(3:26)���

0:15
(2:92)���

0:16
(2:95)���

�r 1:30 1:50 1:40 1:60 1:60

�R 1:10 1:20 1:10 1:30 1:00

�g 1:00 1:20 1:10 1:20 1:20

Q12 14:80
[0:25]

12:49
[0:41]

12:56
[0:40]

18:19
[0:11]

12:58
[0:39]

SBT 1:09
[0:28]

0:21
[0:84]

0:26
[0:79]

0:72
[0:47]

0:85
[0:40]

lnL �5337:06 �6584:66 �6785:68 �5277:31 �6330:71

Notes: The numbers in parentheses are t-statistics.

���, ��, � denote signi�cance at the 0:01, 0:05, 0:10

level, respectively. Q12 is the Box-Pierce Q-statistics on

the standardized residuals with 12 lags. SBT denotes the

Sign Bias test of Engle and Ng (1993). lnL denotes the

log-likelihood value for each speci�cation. The numbers in

square brackets are p-values.

In the HYDAP speci�cation for the realized measure (see Table 1B), there is strong evidence of hyper-

bolic memory as not only dR but also �R is signi�cant, with estimated values 0:47� 0:55 and 0:66� 0:90,

respectively, with the Wald tests (available upon request) always rejecting the null of either a FIDAP

(H0 : �R = 1) or a DAP formulation (H0 : �R = 0). The own and the cross (Arch) asymmetric para-

meters, 
RR 2 [0:18; 0:57] and 
Rr 2 [0:06; 0:10], are also signi�cant, as well as the Garman parameter,

�Rg 2 [0:06; 0:15]. Own asymmetries are insigni�cant and excluded in the Korean index only, where we

statistically prefer a HYCAP speci�cation. This means that the power transformed conditional variance

of gRM t is signi�cantly a¤ected by the lagged values of all three powered variables: realized measure, GK

3



volatility and squared negative returns.

Table 1B. The 3D-HYDAP-HEAVY model

DJ KOSPI CAC AORD IPC

Panel B: Realized Measure, HYDAP Speci�cation

(1� �RL)[(�2Rt)
�R
2 � !R] =


Rrst�1L(r
2
t )

�r
2 + �RgL(GKt)

�g
2 +

(1� �RL)[(1� �R) + �R(1� L)dR ](1 + 
RRst)(RMt)
�R
2

�R 0:63
(15:77)���

0:36
(6:28)���

0:58
(14:25)���

0:44
(4:54)���

0:36
(2:33)��

�RR 0:33
(3:90)���

0:18
(2:13)��

0:32
(8:09)���

0:03
(7:56)���

0:05
(5:82)���

�R 0:70
(17:30)���

0:66
(7:75)���

0:84
(37:40)���

0:81
(28:05)���

0:90
(14:23)���

dR 0:53
(10:02)���

0:47
(12:10)���

0:54
(21:91)���

0:55
(9:97)���

0:47
(11:31)���

�Rg 0:15
(8:56)���

0:10
(5:57)���

0:06
(3:99)���

0:12
(5:75)���

0:08
(1:88)�


RR 0:42
(2:64)���

0:18
(3:36)���

0:57
(4:87)���

0:21
(2:99)���


Rr 0:10
(8:80)���

0:06
(11:46)���

0:07
(11:33)���

0:07
(6:78)���

0:06
(3:61)���

�R 1:10 1:20 1:10 1:30 1:00

�r 1:30 1:50 1:40 1:60 1:60

�g 1:00 1:20 1:10 1:20 1:20

Q12 14:97
[0:24]

14:61
[0:26]

15:55
[0:21]

14:95
[0:25]

13:50
[0:30]

SBT 0:30
[0:76]

1:03
[0:30]

0:37
[0:71]

1:05
[0:29]

0:82
[0:41]

lnL �4261:79 �4341:16 �4853:86 �3550:86 �4767:10

Notes: See notes in Table 1A.

Similarly to the model for the returns, in the FIDAP speci�cation for the GK volatility (see Table

1C), dg is around 0:40 to 0:44, whereas the hyperbolic parameter was insigni�cant. The own (Garman)

and the cross Heavy asymmetric parameters, 
gg 2 [0:10; 0:22] and 
gR 2 [0:06; 0:10], are also signi�cant.

However, the Arch asymmetric e¤ect, 
gr, was insigni�cant and excluded, with the direct e¤ect from

powered squared returns, �gr, included. Therefore, the lagged values of all three powered variables, that

is, the squared returns and the negative signed realized variance and GK volatility, drive the model of

the power transformed conditional variance of the range-based measure.
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Table 1C. The 3D-HYDAP-HEAVY model

DJ KOSPI CAC AORD IPC

Panel C: GK volatility, FIDAP Speci�cation

(1� �gL)[(�2gt)
�g
2 � !g] =

�grL(r
2
t )

�r
2 + 
gRst�1(RMt)

�R
2 +�

(1� �gL)� (1� L)dg
�
(1 + 
ggst)(GKt)

�g
2

�g 0:27
(3:49)���

0:26
(1:90)�

0:26
(1:93)��

0:34
(2:14)��

0:28
(4:76)���

dg 0:41
(9:56)���

0:43
(16:27)���

0:40
(14:31)���

0:40
(7:72)���

0:44
(2:01)��

�gr 0:02
(1:71)�

0:02
(2:26)��

0:02
(2:77)���

0:03
(3:20)���

0:05
(1:90)��


gg 0:22
(4:96)���

0:15
(5:14)���

0:17
(3:46)���

0:12
(2:66)���

0:10
(2:84)���


gR 0:10
(3:59)���

0:07
(2:68)���

0:10
(4:66)���

0:09
(3:38)���

0:06
(5:01)���

�g 1:00 1:20 1:10 1:20 1:20

�r 1:30 1:50 1:40 1:60 1:60

�R 1:10 1:20 1:10 1:30 1:00

Q12 10:93
[0:54]

15:21
[0:23]

11:06
[0:52]

10:99
[0:53]

10:89
[0:56]

SBT 0:40
[0:69]

0:39
[0:70]

1:29
[0:20]

1:20
[0:23]

1:11
[0:27]

lnL �4343:66 �5061:74 �5218:49 �3078:81 �5283:32

Notes: See notes in Table 1A.

All in all, our long memory extension of the asymmetric power speci�cation demonstrates once more

that all powered conditional variances receive the notable impact from the �rst lags of the three power

transformed variables. We �nd that a fractionally integrated speci�cation better �ts the squared re-

turns and the Garman-Klass volatility, whereas a hyperbolic type of memory is preferred for the realized

measure. The long memory feature reinforces our main argument that the lagged values of the power

transformations of all three aforementioned variables move the dynamics of the three powered conditional

variances. The fractionally integrated (asymmetric power) model for the returns and the Garman-Klass

volatility equations pools information across both low-frequency and high-frequency based volatility in-

dicators. Similarly, the more richly parametrized hyperbolic process for the realized variance equation is

bolstered with low-frequency information as well since the lagged value of the powered squared negative

returns improves the in-sample performance of the model. Intriguingly, these results stand in sharp con-

trast to the benchmark HEAVY model, where the intra-daily realized measure is not a¤ected by squared

daily returns and the daily returns conditional variance is only determined by the lagged realized measure
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and the lagged returns variance since the asymmetries from negative returns are completely neglected.

Furthermore, the powers are estimated with the two-stage procedure same as the asymmetric power

speci�cation with similar �r, �R, and �g values common across the three volatility equations.

B Structural Breaks

Since we analyzed the superiority of our asymmetric power extensions for the HEAVY system, in this

Section, we investigate the impact of structural changes (detected in the three power transformed time

series used as dependent variables) on the Heavy, Arch and Garman estimated parameters. The time-

varying behavior of these parameters can be signi�cant around a �nancial crisis break, in particular,

indicative of the crisis e¤ects on the volatility pattern. As an alternative to the long memory speci�cation,

we incorporate structural break dummies in the 3D-DAP-HEAVY system. We �rst identify the structural

breaks in the three volatility series for DJ, focusing mainly on the recent global �nancial crisis, and study

their impact on the three-dimensional framework. The methodology in Bai and Perron (1998, 2003a,b) is

employed to test for structural breaks. They address the problem of testing for multiple structural changes

in a least squares context and under very general conditions on the data and the errors. In addition to

testing for the presence of breaks, these statistics identify the number and location of multiple breaks.

So, we identify the structural breaks in the three powered series (power transformations [PT] of squared

returns, realized measure, and GK volatility, see Tables 5A-5C in the main body of the paper) with the

Bai and Perron methodology (see Table 2 and Figures 1-3). We use the breaks identi�ed in order to build

the slope dummies for the various parameters. One break date for the recent �nancial crisis of 2007/08

is detected so that we can focus on the crisis e¤ect. We also detect one break date before and one after

the crisis.

Table 2. The break dates for Dow Jones

1st Break 2nd Break 3rd Break

r 28/04/2003 31/10/2007 30/11/2011

R 06/08/2003 30/10/2007 20/12/2011

g 06/08/2003 31/10/2007 20/12/2011

Notes: Bai & Perron breaks identi�cation: Results selected

from the repartition procedure for 1% signi�cance level with

5 maximum number of breaks and 0:15 trimming parameter.

Dates in bold indicate that the corresponding dummy

coe¢ cient is used in the 3D-DAP-HEAVY model.

6



Figure 1. Dow Jones PT Squared

Returns with Breaks

Figure 2. Dow Jones PT Realized

Variance with Breaks

Figure 3. Dow Jones PT GK

Volatility with Breaks

We present the estimation results for the DJ index in Table 3 (similar results for the other four indices

available upon request), where we choose to use the 3 breaks of the power transformed realized variance

series: (1) 06/08/2003: pre-crisis break, (2) 30/10/2007: crisis break and (3) 20/12/2011: post-crisis

break. The three dummies multiplied by the respective Heavy, Arch and Garman variables (to construct

the slope dummies) are de�ned as follows: Di;t = 0, if t < Ti and Di;t = 1, if t > Ti, i = (1); (2); (3) the

three break dates. The 3D-DAP speci�cation with structural breaks consists of the following equations

(superscripts in parentheses indicate the break date):

(1� �rL)(�2rt)
�r
2 = !r+

(
rr + 

(1)
rr D1;t�1 + 


(2)
rr D2;t�1 + 


(3)
rr D3;t�1)st�1L(r

2
t )

�r
2 +

(
rR + 

(1)
rRD1;t�1 + 


(2)
rRD2;t�1 + 


(3)
rRD3;t�1)st�1L(RMt)

�R
2 +

(�rg + �
(1)
rg D1;t�1 + �

(2)
rg D2;t�1 + �

(3)
rg D3;t�1)L(GKt)

�g
2

(2)

(1� �RL)(�2Rt)
�R
2 = !R + [�RR + �

(1)
RRD1;t�1 + �

(2)
RRD2;t�1 + �

(3)
RRD3;t�1+

(
RR + 

(1)
RRD1;t�1 + 


(2)
RRD2;t�1 + 


(3)
RRD3;t�1)st�1]L(RMt)

�R
2 +

(
Rr + 

(1)
RrD1;t�1 + 


(2)
RrD2;t�1 + 


(3)
RrD3;t�1)st�1L(r

2
t )

�r
2 +

(�Rg + �
(1)
RgD1;t�1 + �

(2)
RgD2;t�1 + �

(3)
RgD3;t�1)L(GKt)

�g
2

(3)

(1� �gL)(�2gt)
�g
2 = !g+

(
gg + 

(1)
gg D1;t�1 + 


(2)
gg D2;t�1 + 


(3)
gg D3;t�1)st�1L(GKt)

�g
2 +

(�gR + �
(1)
gRD1;t�1 + �

(2)
gRD2;t�1 + �

(3)
gRD3;t�1)L(RMt)

�R
2 +

(
gr + 

(1)
gr D1;t�1 + 


(2)
gr D2;t�1 + 


(3)
gr D3;t�1)st�1L(r

2
t )

�r
2 ;

(4)

We �rstly apply the slope dummies in the Heavy, Arch, and Garman parameters of the DAP-HEAVY-

r equation (see Panel A). In the returns equation, we estimate three di¤erent speci�cations with breaks:
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the �rst (I) with the slope dummies on the cross Garman parameter, �rg, the second (II) with the slope

dummies on the own asymmetry (Arch) parameter, 
rr, and the third (III) on the cross asymmetry

(Heavy) parameter, 
rR. All parameters increase with the crisis dummy and decrease with the pre-

and post-crisis breaks. Regarding the realized measure equation (see Panel B), the Heavy impact, as

captured by the Heavy parameter �RR, and the own asymmetry 
RR, the Arch asymmetric in�uence

(captured by 
Rr), and the Garman e¤ect (�Rg), all fall pre- and post-crisis and rise with the crisis

break (speci�cations: I, II, III,IV ). Finally, in the GK equation (Panel C), the own and the cross Arch

asymmetries, 
gg and 
gr, and the Heavy impact, �gR, increase during crisis and decrease during the

pre- and post-crisis periods (speci�cations: I, II, III).
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Table 3. The 3D-DAP-HEAVY model with structural breaks for Dow Jones

Panel A: Stock Returns

I �r �rg �
(1)
rg �

(2)
rg �

(3)
rg 
rr 
rR

0:80
(41:55)���

0:12
(4:71)���

�0:04
(�3:41)���

0:04
(3:15)���

�0:03
(�2:41)��

0:08
(4:75)���

0:11
(5:06)���

II �r �rg 
rr 

(1)
rr 


(2)
rr 


(3)
rr 
rR

0:81
(44:92)���

0:10
(4:27)���

0:09
(4:37)���

�0:05
(�2:63)���

0:07
(3:33)���

�0:03
(�1:86)�

0:10
(4:85)���

III �r �rg 
rr 
rR 

(1)
rR 


(2)
rR 


(3)
rR

0:81
(44:74)���

0:10
(4:22)���

0:08
(4:74)���

0:13
(5:08)���

�0:05
(�2:81)���

0:05
(2:95)���

�0:04
(�2:22)��

Panel B: Realized Measure

I �R �RR �
(1)
RR �

(2)
RR �

(3)
RR �Rg 
RR 
Rr

0:71
(39:24)���

0:10
(5:12)���

�0:02
(�3:22)���

0:02
(4:66)���

�0:03
(�6:08)���

0:12
(7:66)���

0:06
(5:53)���

0:08
(8:25)���

II �R �RR �Rg �
(1)
Rg �

(2)
Rg �

(3)
Rg 
RR 
Rr

0:71
(38:87)���

0:08
(4:62)���

0:13
(8:47)���

�0:02
(�3:43)���

0:03
(5:07)���

�0:04
(�6:40)���

0:06
(5:55)���

0:08
(8:34)���

III �R �RR �Rg 
RR 

(1)
RR 


(2)
RR 


(3)
RR 
Rr

0:71
(40:47)���

0:09
(4:70)���

0:13
(8:04)���

0:06
(5:11)���

�0:02
(�1:79)�

0:04
(3:70)���

�0:05
(�4:69)���

0:08
(8:15)���

IV �R �RR �Rg 
RR 
Rr 

(1)
Rr 


(2)
Rr 


(3)
Rr

0:72
(39:97)���

0:08
(4:45)���

0:13
(8:13)���

0:05
(5:18)���

0:08
(8:22)���

�0:01
(�1:68)�

0:03
(2:95)���

�0:04
(�3:29)���

Panel C: GK volatility

I �g 
gg 

(1)
gg 


(2)
gg 


(3)
gg �gR 
gr

0:77
(35:21)���

0:11
(9:13)���

�0:04
(�4:13)���

0:02
(2:25)��

�0:03
(�3:83)���

0:09
(6:75)���

0:05
(6:83)���

II �g 
gg �gR �
(1)
gR �

(2)
gR �

(3)
gR 
gr

0:76
(34:40)���

0:08
(8:38)���

0:11
(7:23)���

�0:03
(�5:19)���

0:02
(3:29)���

�0:02
(�5:54)���

0:06
(7:13)���

III �g 
gg �gR 
gr 

(1)
gr 


(2)
gr 


(3)
gr

0:77
(34:94)���

0:08
(7:96)���

0:10
(6:77)���

0:08
(8:14)���

�0:03
(�3:64)���

0:01
(1:70)�

�0:02
(�2:25)��

Powers �i

�r

1:30

�R

1:10

�g

1:00

Notes: See notes in Table 1A.

All in all, we evidence consistently the same signs of the dummies coe¢ cients across all speci�cations

with Heavy, Arch, and Garman parameters. The dummy parameters corresponding to the 2003 and 2011

breaks are negative, whereas the ones for the 2007/08 crisis are positive.
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