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Abstract

This paper promotes the use of panel data methods in nowcasting. This shifts the focus of the
literature from national to regional nowcasting of variables like gross domestic product (GDP). We
propose a mixed-frequency panel VAR model and a bias-corrected least squares estimator which
attenuates the bias in fixed effects dynamic panel settings. Simulations show that panel forecast
model selection and combination methods are successfully adapted to the nowcasting setting. Our
novel empirical application of nowcasting quarterly U.S. state-level real GDP growth highlights the
success of state-level nowcasting, as well as the gains from pooling information across states.
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1 Introduction

Nowcasting has become established as an important way to make timely near-term predictions, partic-

ularly for economic output variables like gross domestic product (GDP) that are published with a lag.

However, until recently the existing literature has focussed on the use of time series methods to nowcast

time series aggregates. In this paper, we propose a new panel data nowcasting model which can be used

when the objective is to simultaneously make predictions across many disaggregates like regions or sec-

tors, and which allows for fixed effects and mixed frequency data. There are several reasons why this is

an important advancement. Firstly, the increasing availability of regional output data in some developed

countries has made regional nowcasting feasible. At the same time, regional data are often reported in a

less timely fashion than national aggregates which further motivates the need for nowcasting. Secondly, it

is often the case that national policymakers care about regional and sectoral developments and not only

∗The authors are grateful for very useful comments and discussions with Michael Clements, Ana Galvão, Ivan Petrella,
Gary Koop, Kalvinder Shields, Domenico Giannone, Dean Croushore, Shaun Vahey, Eleanora Granziera, Kevin Lee and
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†King’s Business School, King’s College London, U.K. E-mail address: jack.fosten@kcl.ac.uk
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§Department of Economics, The University of Auckland, New Zealand.
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the movements that take place at the national level. Finally, there are many cases when the target now-

cast variable is annual or quarterly where we might only have a small number of time series observations.

This can be problematic when performing historical reconstructions using pseudo out-of-sample methods

where the time series estimation window is only a limited portion of the total sample. Therefore, one

could expect substantial benefits from pooling information across regions or sectors to improve nowcast

model estimation.

The first contribution of this paper is to propose a mixed-frequency panel VAR (MF-PVAR) for now-

casting a low-frequency target variable with high-frequency predictor(s). We adopt the mixed-frequency

VAR (MF-VAR) approach of Ghysels (2016), originally proposed for modelling time series data, which

has since been applied in papers such as Baumeister et al. (2015) and Foroni et al. (2018). This method

stacks the low-frequency variable in a vector with the high-frequency variable(s) and is estimated at the

lower frequency. We extend this model to the case where we have panel data with observations measured

across time and individual units, and we also accommodate limited cross sectional heterogeneity through

fixed effects. We show how the model can be generalised to allow for exogenous variables which vary

across time but not individuals, such as when national aggregates are used to predict regional series. The

model can be used to generate multi-step predictions by iteratively forecasting the VAR system one step

ahead at a time. This feature enables backcasts, nowcasts and forecasts using the one-step, two-step and

three-step ahead predictions, which we showcase in our empirical application.

Our next contribution is in providing methods (i) to estimate the MF-PVAR and (ii) to select from

(or combine) different nowcasting model specifications. Both aspects of implementation are complicated

by the inclusion of fixed effects in the MF-PVAR. Firstly, the fixed effects cause the ordinary least

squares (OLS) estimator to be biased (Nickell, 1981), which inflates measures of forecast loss (Greenaway-

McGrevy, 2019). To attenuate the bias, we show how the bias-corrected least squares (BCLS) procedure

of Hahn and Kuersteiner (2002) can be adapted and applied to the mixed-frequency setting. Secondly,

because the estimated fixed effects themselves contribute to forecast loss, we require model selection (or

combination) methods that are specifically tailored to the purpose of forecasting model selection.1 We

therefore discuss how to adapt panel forecasting model selection methods to the nowcasting case, such

as the panel final prediction error (FPE) criterion, the Mallows selection criterion and panel Mallows

1This is as opposed to model selection for the purpose of inference after incidental parameters have been integrated out
(Greenaway-McGrevy, 2019).
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model averaging (MMA) for forecast combination (see Greenaway-McGrevy, 2019, 2020, 2021). We also

consider a simple equal-weights forecast combination scheme as another competing method. As existing

studies have not considered the effects of the mixed-frequency set-up on model selection, we provide

a detailed set of realistic Monte Carlo simulations. We show that our proposed approaches compare

favourably to recent panel forecast selection criteria (Lee and Phillips, 2015) and other näıve criteria.

The final contribution of this paper is to apply our methodology with a novel empirical study of

nowcasting U.S. state-level GDP growth. We exploit the flow of monthly information on employment-

related series at the state level which are available in a more timely fashion than quarterly real GDP. We

use a pseudo out-of-sample experiment to explore the performance of our methods for making forecasts,

nowcasts and backcasts. We make several new findings: (i) mean squared forecast error (MSFE) gains are

found in nowcasting state-level GDP by using timely employment data, over and above näıve univariate

benchmarks, (ii) pooling data across all states to form a panel is very useful and dominates over simple

time series regressions where the sample size is very small, (iii) there are even improvements from pooling

across all states compared to when we allow heterogeneity of coefficients across geographical or economic

sub-groups, (iv) the use of appropriate bias correction techniques yields improvements over non bias-

corrected methods, and (v) applying forecast combination to models with different lag lengths typically

performs better than using individual models, even when using a simple equal-weights combination

scheme. Another novelty of our application is that we can begin to draw inferences about the benefits of

panel nowcasting for individual states. For instance, we see that panel nowcast gains compared to time

series are particularly sizeable in the state of California which is larger than all other U.S. states and,

indeed, most developed economies in terms of real GDP.

Our paper contributes to a recent literature on panel nowcasting methodology which, until recently,

comprised only of a few empirical studies (one example being Mouchart and Rombouts, 2005). For

instance, the panel nowcasting approach of Koop et al. (2020) was recently developed for nowcasting

regional gross value added (GVA) using the national aggregate. Our method is different from theirs,

which treats regions as separate variables in a high-dimensional stacked VAR. Their approach allows

more heterogeneity but is much more highly parameterised than our model. Our set-up is therefore

more appropriate for studies with a large number of regions, such as in our empirical application to U.S.

state-level GDP. Another recent study by Babii et al. (2020) also looks at panel nowcasting but from a

machine learning perspective, developing oracle inequalities for LASSO-type estimators. Neither of these
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related approaches address the issue of the Nickell bias which we consider in this paper.

This work is also related to the very rich body of time series studies on nowcasting (see Banbura

et al., 2013, and Bok et al., 2018, for references). Given that our model is a panel extension of the

stacked-frequency MF-VAR approach of Ghysels (2016), it also relates to the alternative time series MF-

VAR approach which instead models the low-frequency variable as a latent high-frequency variable with

missing observations. This alternative approach requires the estimation of the latent series using either

expectation-maximisation (EM) algorithm methods (see Mariano and Murasawa, 2010; Kuzin et al.,

2011) or Bayesian methods (see Schorfheide and Song, 2015; Brave et al., 2019; McCracken et al., 2021).

Our approach is also related to more traditional single-equation time series nowcasting methods. In

essence, our nowcasting equation is a panel data version of an unrestricted MIDAS model, which is a

generalisation of the MIDAS model developed by Ghysels et al. (2007) and Clements and Galvão (2008,

2009) in the time series context. Furthermore, as Schumacher (2016) shows the link between MIDAS

models and bridge equations, our method is also indirectly related to bridge equation approaches (see for

instance Baffigi et al., 2004; Aastveit et al., 2014; Bragoli and Fosten, 2018).

As well as the link with the panel and time series nowcasting literatures, our paper also relates more

broadly to the recently-expanding literature of panel data models for forecasting and modelling mixed-

frequency data. Relative to the very long and established field of time series forecasting methodology, the

literature on panel forecasting has emerged more recently with perhaps the earliest survey being Baltagi

(2008) and recent new approaches including Liu et al. (2020). Our approach differs to these studies due

to the mixed-frequency set-up we use for nowcasting. There have also been recent studies which look to

address the issue of mixed frequencies in panel data (Binder and Krause, 2014, and Khalaf et al., 2021)

though not in the context of forecasting or nowcasting. We envisage that the application of panel methods

to the case of nowcasting may have fruitful applications in many other contexts: sectoral-level GDP or

output variables; predicting multiple different measures of national inflation; early warning predictions

of hospital expenditure in public healthcare systems to name but a few.

The rest of this paper is organised as follows. Section 2 introduces the panel nowcasting MF-PVAR

model set-up as well as the BCLS estimation method, and outlines how to perform lag selection and

combination. Section 3 details an extensive Monte Carlo simulation experiment and documents the

results. Section 4 describes the data and empirical application to U.S. state-level GDP nowcasting.

Finally, Section 5 concludes the paper. The Appendix contains various additional details about model
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selection procedures, as well as further Monte Carlo and empirical results.

2 Bias-Corrected Least Squares Panel Data Nowcasting

In this section we outline the model and the estimation methodology we develop in this paper. We firstly

describe the MF-PVAR set-up for panel data nowcasting. We then provide details on how the model is

cast in companion form and show to use bias-corrected least squares to estimate the model. Finally, we

demonstrate how the set-up can be extended to allow for exogenous variables to enter the VAR system.

2.1 Set-up

We are interested in nowcasting the low-frequency target variable yi,t which has time series observations

t = 1, ..., T for individuals i = 1, ..., n. To simplify notation, we assume yi,t is measured at the quarterly

frequency which is in line with the majority of nowcasting studies including our empirical application.

To make predictions we use a higher frequency predictor with monthly observations for each individual

i which we denote xi,t−2/3, xi,t−1/3 and xi,t which correspond to the first, second and third month of

quarter t for all t = 1, ..., T . We therefore have a mixed-frequency set-up with monthly data which

are available in a more timely fashion than the quarterly target variable. Our framework can be easily

generalised to have multiple predictors and to have data frequencies other than quarterly and monthly.2

The variable yi,t (as well as xi,t) is assumed to be weakly dependent in that {yi,t}∞t=−∞ is a weakly

stationary sequence for each i and {yi,t}∞i=1 is weakly (cross section) dependent for each t

We propose to stack the low-frequency and high-frequency variables into a single vector Yi,t :=(
yi,t, xi,t+1, xi,t+2/3, xi,t+1/3

)′
and use the MF-PVAR at the quarterly frequency:

Yi,t = µi +
∑p
s=1 Λ′sYi,t−s + Ui,t, (1)

where µi is a vector of finite, real-valued individual-specific fixed effects, p is the lag length of the model,

Λs are matrices of coefficients for each lag s = 1, ..., p and Ui,t is a zero-mean vector of errors satisfying

E
[
(Yi,t−p, . . . , Yi,t−1)

′
Ui,t
]

= 0.3 Weak dependence in the vector process {Yi,t} implies that {Ui,t} is

2This is something we explore later in the Monte Carlo and empirical application.
3Clearly the number of parameters in Λs grows with the frequency of the xi,t variables. This could result in over-

parameterisation if, for example, daily data were to be stacked alongside the quarterly variable. On the other hand, papers
like Baumeister et al. (2015) have suggested to incorporate daily data into this stacked VAR model simply by using the
weekly aggregation of the daily data.
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weakly stationary and cross section dependent and that the eigenvalues of (I −
∑p
s=1 Λ′s) lie outside the

unit circle. Note that the VAR(p) is potentially misspecified because the error vectors are not assumed

to be independently distributed over time. The lag length p is unknown but can be estimated using

the model selection methods detailed below. This stacked approach follows the time series MF-VAR

approach of Ghysels (2016) which we extend to the panel data case as we have observations across i and

not only t, and also by allowing heterogeneity through the fixed effects terms µi.

Since our primary interest is the nowcasting model for the low-frequency variable yi,t, for later parts

it will be useful to separately write out the first equation from the system in Equation (1). To do this,

we first partition the vectors µi = (αi, ξ
′
i)
′

and Ui,t =
(
ui,t, υ

′
i,t

)′
, and the matrices Λs = [γs : Φs] for each

s. This allows us to write out the single equation for yi,t as:

yi,t = αi +
∑p
s=1 γ

′
sYi,t−s + ui,t (2)

Note that because αi is an individual fixed effect, it can be arbitrarily correlated with the high-frequency

covariates xi,s, s = t, t− 1
3 , t−

2
3 , ..., t− p+ 1

3 .

The specification of the vector Yi,t, in which the variables xi,t+1, xi,t+2/3, xi,t+1/3 appear one quarter

ahead of yi,t, is specific to the nowcasting case so that when Yi,t is lagged one or more periods on the

right hand side of Equation (2), then yi,t is a function of the three months of the current quarter of the

monthly predictor (xi,t, xi,t−1/3, xi,t−2/3) and the lagged dependent variable yi,t−1 (and any further lags

when p > 1). In this way, Equation (2) by itself is a panel extension of the unrestricted MIDAS model

seen in time series contexts (see Schumacher, 2016; Fosten and Gutknecht, 2020) and can be adapted

depending on the available data for the monthly lags.4

The model we propose above imposes homogeneity on the slope coefficients when we pool across

individuals. The issue of whether “to pool or not to pool” (see, for example, Wang et al., 2019) is a long-

standing question in panel data econometrics. While many methods now exist to allow for heterogeneity

in the slope coefficients (for example Pesaran and Smith, 1995; Pesaran et al., 1999; Pesaran, 2006),

studies dating back to Baltagi and Griffin (1997) and Baltagi (2008) have found that simple pooling

4For instance, if only the second month of data for quarter t were available (xi,t−1/3) but not the third month (xi,t)

then one could instead re-specify the vector Yi,t :=
(
yi,t, xi,t+2/3, xi,t+1/3, xi,t

)′
. Equation (2) would then relate yi,t to

xi,t−1/3, xi,t−2/3 and xi,t−1 as well as yi,t−1. The fact that this stacked MIDAS-type approach requires the model to
be re-specified at different nowcast points can be considered a drawback relative to the state space approaches mentioned
above. On the other hand, the stacked method does not require the estimation of the latent high-frequency equivalent of
the low-frequency variable.
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strategies can often dominate in terms of MSFE, particularly when the model permits limited cross

sectional heterogeneity via fixed effects. Whether pooling is appropriate is an empirical question which

we will explore in detail in our application.

The OLS estimators of the γs parameters in Equation (2) exhibit an O
(
T−1

)
bias due to the lagged

dependent variable yi,t−1 on the right hand side (see, among others, Nickell, 1981; Lee, 2012) and weak

exogeneity in the lags of the monthly predictor xi,t.
5 Thus, even if the lagged dependent variable is

omitted from Equation (2), the O
(
T−1

)
bias will persist unless the monthly predictors are strictly

exogenous (see Wooldridge, 2010, pp.322-323). This assumption appears unrealistic in many applications.

For example, in our empirical application where monthly measures of employment are used to nowcast

quarterly GDP growth, it is advisable to permit innovations to GDP growth to have an effect on future

employment growth.

The OLS bias inflates measures of out-of-sample MSFE, as seen in Hahn and Kuersteiner (2002) and

Greenaway-McGrevy (2019). BCLS provides an effective way to attenuate the impact of the OLS bias

on MSFE. Firstly, in contrast to many IV and GMM approaches to the problem, the bias correction

does not inflate the asymptotic variance of the estimator (Hahn and Kuersteiner, 2002) which features in

quadratic measures of forecast loss such as MSFE. Second, the asymptotic MSFE of the OLS estimator

can be reduced even when the set of candidate models is misspecified, provided that the candidate set

of models can grow large in the asymptotics and thus better approximate the true DGP (Greenaway-

McGrevy, 2019).

2.2 Bias-Corrected Least Squares Procedure

We adopt BCLS estimation of the model a similar way to Hahn and Kuersteiner (2002), and will first

present the bias correction expression. The bias correction here will be slightly different from the standard

forecasting case (for example Greenaway-McGrevy, 2013, 2019) because xi,t is shifted forward one quarter

in the vector Yi,t. Specifically, though Equation (2) can be estimated using data spanning t = p+1, . . . , T ,

the full system in Equation (1) can only be estimated with data spanning t = p+1, . . . , T −1 because Yi,t

contains xi,t+1. Thus, as we show below, the bias correction is implemented using an auxiliary regression

model that is estimated on fewer observations from the panel.

5OLS estimates of the fixed effects are also biased, although most of the extant literature focuses on the bias in the
estimates of common parameters.
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In deriving the bias correction we first denote Λp =
[
Λ′1 : Λ′2 : · · · : Λ′p

]′
. We can then express Equation

(1) in companion form as follows:

Yi,t = µi + A′pYi,t−1 + Ui,t (3)

where Yi,t :=
(
Y ′i,t, ..., Y

′
i,t−p+1

)′
, µi = (µ′i, 0

′)
′
, Ui,t =

(
U ′i,t, 0

′)′ and, denoting m = dim(Yi,t):

Ap := [Λp : Lp] , Lp :=

 Im(p−1)

0m×(p−1)m

 .
Returning to the parameters of the nowcasting model for the target variable in Equation (2), letting

γ̃ denote the OLS estimator, and assuming that Ui,t is independently distributed over time,6 we can

characterise the bias to the OLS estimates of the nowcasting equation as:

E (γ̃ − γ) = − 1
T−pΓ−1p

(
Imp −A′p

)−1
Jpm,mΣJm,1+O

(
T−2

)
(4)

where Γp = cov (Yi,t|µi), Σ = cov (Ui,t) , and Jm2,m1
=
[
Im1 : 0m1×(m2−m1)

]′
for integers m2 ≥ m1 (see

Hahn and Kuersteiner, 2002).

Although much of the literature derives analytic expressions for the OLS bias under cross section

independence (see, e.g., Nickell, 1981; Hahn and Kuersteiner, 2002; Lee, 2012; Greenaway-McGrevy,

2013), the analytic expression employed in the bias correction remains valid in the presence of weak-form

cross-sectional correlation in the error term. This is because the bias expressions are expectations of cross-

sectional averages, and cross-sectional averages converge to their expectations under weak correlation (see,

e.g., Chudik et al., 2011; Sarafidis and Wansbeek, 2012). Strong-from correlation alters the bias function

(Phillips and Sul, 2007) and thus cannot be accommodated in our framework.

Although Equation (4) is derived under the restriction that the vector is generated by a VAR(p)

(since the formula is derived assuming that Ui,t is independently distributed over time), Greenaway-

McGrevy (2019) shows that the bias correction reduces MSFE as both T and n grow large, thereby

providing an asymptotic justification for the use of the bias correction even when the set of candidate

forecasting models is misspecified. In severely misspecified models, the impact of OLS bias is dominated

6This is ensured iff the eigenvalues of I −Ap lie outside the unit circle.
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by specification error in the MSFE, so the accuracy of the bias correction is of second-order magnitude

in the asymptotic expression. Larger models suffer from less specification error and thus the accuracy

of the bias correction becomes more important. However, as the lag order increases, the bias correction

becomes more accurate at a sufficiently fast rate (Greenaway-McGrevy, 2019).

With the analytic expression for the bias and the model cast into companion form in Equation (3),

we can now outline the BCLS procedure for making a nowcast for yi,T+1, given information on the same

quarter’s monthly predictors xi,T+1, xi,T+2/3 and xi,T+1/3, and further lags.

Bias Correction Procedure

1. Estimate Equation (2) for t = p+1, ..., T and i = 1, ..., n. Let γ̃ = (γ̃′1, γ̃
′
2, ..., γ̃

′
p)
′ denote the vector

of OLS estimates.

2. Estimate the system in Equation (1) for t = p+ 1, ..., T −1 and i = 1, ..., n. Let Λ̃p denote the OLS

estimates of Λp and let µ̃i denote the OLS estimates of µi. We also construct:

Q̃ := 1
n(T−p−1)

∑T−1
t=p+1

∑n
i=1 Ÿi,t−1Ÿ

′
i,t−1,

where Ÿi,t := Yi,t − Ȳi; Ȳi := 1
T−p−1

∑T−1
t=p+1 Yi,t−1, and

Σ̃ := 1
n(T−p−1)

∑T−1
t=p+1

∑n
i=1 Ũi,tŨ

′
i,t,

where Ũi,t = Yi,t −
∑p
s=1 Λ̃′sYi,t−s − µ̃i.

3. The bias-corrected OLS estimator of γ is

γ̂ := γ̃ + 1
(T−p)Q̃

−1
(
I− Ã

′
p

)−1
Jpm,mΣ̃Jm,1

where

Ã′p :=
[
Λ̃p : Lp

]
Then the bias-corrected fixed effects are α̂i := 1

(T−p)
∑T
t=p+1

(
yi,t − γ̂′Yi,t−1

)
.
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4. The bias-corrected nowcast is then:

ŷi,T+1 = α̂i +
∑p
s=1 γ̂

′
sYi,T+1−s = α̂i + γ̂′Yi,T (5)

for all i = 1, ..., n.

In addition to the prediction ŷi,T+1 we can also generate multi-step predictions using the iterated

method. For instance, the two-step forecast can be obtained as ŷi,T+2 = α̂i + γ̂′Ŷi,T+1, where Ŷi,T+1 is

the one-step prediction of the entire Y vector. In our empirical application, according to the data flow,

the one-step prediction is a backcast, the two-step prediction is a nowcast and the three-step prediction

is a forecast.7

2.3 Model Selection and Combination Methods

In the previous section, we detailed how to estimate the panel nowcasting model when we know the

number of lags p in Equation (2). In practice, we need to be able to select between different lag lengths

using appropriate selection techniques. In the remainder of the paper we will focus on three different

methods to combine or select between nowcasting models with different lag specifications, each estimated

using the BCLS procedure as detailed above. These methods are: panel MMA, a panel Mallows criterion

and a panel FPE criterion. The first method is a nowcast combination approach in which each model in

the candidate set is assigned a different weight, whereas the other methods are model selection approaches

which assign a weight of zero to all models except one.

These methods require a mixed-frequency adaptation of the methods proposed in the papers of

Greenaway-McGrevy (2019, 2020, 2021). For the sake of space, we provide a detailed description of

all considered methods in Section 6.1 in the Appendix. Notably, we will compare these methods to ex-

isting panel model selection criteria of Lee and Phillips (2015). We will also compare the combination

method to an equal-weights combination which is simpler to compute and can sometimes be preferred in

empirical settings. Since the relative finite sample properties of these different model selection methods

7This method corresponds to an iterative forecast. An alternative is the direct forecast, which is generated from a
model tailored to the forecast horizon. This can be obtained by replacing Yi,t in Equation (1) with Yi,t+h−1. Greenaway-
McGrevy (2020) provides formulae for the associated bias correction and model selection criteria for choosing p. Under
misspecification the direct forecast exhibits a lesser asymptotic MSFE than the iterative forecast. However, in the finite
sample, it is unclear whether the direct forecast will have a smaller MSFE because the variance of the iterative forecast is
less than that of the direct forecast for a given lag length. See Greenaway-McGrevy (2013) for further details. Thus, the
iterative (direct) forecast will be more accurate if the degree of misspecification is sufficiently small (large). Introducing
data-determined lag selection or model averaging for each method compounds the difficultly of ranking the two methods.
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are not yet known in the presence of mixed-frequency data, in a later section we perform detailed Monte

Carlo simulations to explore this.

2.4 Extension to Include Exogenous Variables

The baseline nowcasting model assumes that all of the xi,t variables in Equation (2) are endogenous in

the sense that they each appear as an equation of the MF-PVAR system in Equation (1). In practice,

however, there might be cases in which we want to allow for exogenous variables. In the case of panel data

nowcasting, this might include national (time series) variables being added into a regional nowcasting

model. The assumption of exogeneity of national predictors is reasonable unless any single region accounts

for a very high proportion of national variation.

We will briefly outline the adjustment which must be made to the BCLS procedure to allow us to

nowcast using exogenous variables. Suppose we now have additional regressor variable(s) zi,t which we

wish to use in nowcasting the target variable yi,t. We adapt Equation (2) to be:

yi,t = αi +
∑p
s=1 γ

′
sYi,t−s + θ′zi,t + ui,t (6)

where zi,t is strictly exogenous in that E(zi,tui,t−s) = 0 for all t and s = . . .− 2,−1, 0, 1, 2 . . . . It will be

convenient to combine the parameters into the vector η := [γ′ : θ′]
′
.

The OLS estimators of both γ and θ exhibit O
(
T−1

)
bias (Phillips and Sul, 2007; Lee, 2012). As

above, we employ a bias correction as follows. First, the full MF-PVAR with exogenous variables (MF-

PVAR-X) is of the form:

Yi,t = µi +
∑p
s=1 Λ′sYi,t−s + Θ′zi,t + Ui,t (7)

We first estimate Equation (7) by least squares to obtain the estimates Λ̃s,Θ̃ and µ̃i for s = 1, ..., p

and i = 1, ..., n. We next construct:

Q̃Z := 1
n(T−p−1)

∑T−1
t=p+1

∑n
i=1 Z̈i,t−1Z̈

′
i,t−1,

where Zi,t =
(
Y′i,t, z

′
i,t

)′
; Z̈i,t := Zi,t − Z̄i; Z̄i := 1

T−p−1
∑T−1
t=p+1 Zi,t−1, and:

Σ̃ := 1
n(T−p−1)

∑T−1
t=p+1

∑n
i=1 Ũi,tŨ

′
i,t,
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where Ũi,t = Yi,t −
∑p
s=1 Λ̃′sYi,t−s − Θ̃′zi,t − µ̃i.

The bias-corrected OLS estimator of η, denoting mz = dim(zi,t), is then:

η̂ := η̃ + 1
(T−p)Q̃

−1
Z Jpm+mz,pm

(
I− Ã

′
p

)−1
Jpm,mΣ̃Jm,1

and the nowcast for yi,T+1 can be found in the same way as before.

3 Monte Carlo Study

We conduct a battery of simulation experiments in order to explore the out-of-sample forecasting per-

formance of the model specification methods described above. Our goal is to provide practical advice

for choosing a panel model nowcasting specification by exploring how the different methods perform in a

variety of settings realistic to nowcasting.

In these simulations we allow a general aggregation frequency k, so we have the time series index

t = 1
k ,

2
k , ...,

k−1
k , 1, 1 + 1

k , 1 + 2
k , ..., T, T + 1

k , ..., T + 1 for individuals i = 1, ... , n. When k = 3 we

therefore simulate according to a quarterly to monthly frequency mix which is the case of Equation (2).

Meanwhile, annual aggregation of quarterly data corresponds to k = 4 and annual aggregation of monthly

data corresponds to k = 12. We will focus on the results for k = 3 which is the most common scenario

in the nowcasting literature, with results for k = 4 and k = 12 available upon request.

We generate data for the low-frequency target variable by assuming a latent high-frequency process

y∗i,t which is only observed upon aggregation of the time series yi,t at t = 1, 2, ..., T , namely:

{yi,t}Tt=1 =
{
y∗i,t + y∗i,t−1/k + ...+ y∗i,t−(k−1)/k

}T
t=1

(8)

whereas we do directly observe the high-frequency predictor variable xi,t.

We generate a bivariate panel VARMA(1,1) process for y∗i,t and xi,t at the high frequency as follows:

 y∗i,t

xi,t

 =

 ρ11 ρ12

ρ21 ρ22


 y∗i,t−1/k

xi,t−1/k

+ vi,t,

vi,t =

 θ1 0

0 θ2

 εi,t−1/k + εi,t, εi,t ∼ iidN

0,

 1 φ

φ 1
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This provides us with the low-frequency data for yi,t aggregated using Equation (8) and the high-

frequency data xi,t, required to run the nowcasting MF-PVAR regressions described in Equation (1)

above. Since these nowcasting models are mixed frequency VARs of different lag orders p, all models

within the candidate set will be misspecified relative to the DGP. Thus the framework retains a trade-off

between misspecification and model complexity when selecting the size of a model even in large samples

(c.f. Schorfheide, 2005).

We generate results for a wide range of serial dependence in the VARMA(1,1) by setting θ1 = θ2 = 0.5

and letting the AR dependence parameter ρ11 = ρ22 = ρ take on values ρ = 0.2, 0.5, 0.8. To ensure that

the system remains stable under these values of ρ11 and ρ22 we set ρ12 = ρ21 = 0.1. We set φ = 0.5 so

that there is a moderate correlation between the innovations to the two time series. For the sample sizes,

we consider n = 25, 50, 100, 200, 400 and T = 20, 40, 80, 160. This corresponds to 5, 10, 20 and 40 years of

data for the monthly-to-quarterly aggregation. Our empirical application is somewhere in the middle of

these ranges for n and T . We will generate results for predictive horizons h = 1, 2, 3 which will correspond

to the backcast, nowcast and forecast cases discussed in our application. In setting the maximum lag

order we use the rule pmax = int
(

max
(√

2T ,min
(√

2n, 12T
)))

.8 We use M = 1000 simulation draws.

We consider six different methods for selecting the lag order of the nowcasting model: panel Mallows,

panel FPE, and the Lee and Phillips (2015) KLIC and BIC criteria, model averaging with equal weights,

and fixing the lag order to one (see Appendix for details). We compare the various lag order selection

methods to panel Mallows model averaging. By way of comparison, we also show the results for KLIC

and BIC selection when using OLS instead of BCLS for estimation.

We evaluate the different model specification methods by their out-of-sample MSFEs. The MSFEs are

the simple average of the squared forecast errors for each i = 1, . . . , n, i.e. n−1
∑n
i=1 (yi,T+1 − ŷi,T+1)

2
,

where ŷi,T+1 denotes a given forecast. Tables A1 to A9 in the Appendix exhibit the MSFEs of the various

model selection (and averaging) methods. To facilitate comparisons between the various methods, we (i)

normalize each MSFE by subtracting off the unforecastable component of the MSFE,9 and (ii) express

the normalized MSFE relative to panel MMA (so that an entry greater than one indicates that panel

MMA had a lower MSFE across the simulations, on average).

8Greenaway-McGrevy (2019a,c) shows that the maximum permissible rate of expansion in the lag order is just slower

than max
(√

n,
√
T
)
. This lag order selection rule ensures that pmax grows at a rate just above this maximum permissible

rate.
9This is the MSFE of an infinitely large model with known (not estimated) parameters.
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The results show that the relative performance depends on the forecast horizon h and amount of time

series dependence (as governed by ρ). For the backcast (h = 1), panel MMA generally outperforms the

model selection methods. For the nowcast and forecast (i.e. h = 2 and h = 3), fixing the lag order to one

when serial dependence is limited (ρ = 0.2) results in the most accurate forecast. When the magnitude

of serial dependence is moderate or large (ρ = 0.5, 0.8), the BIC and KLIC criteria perform better than

panel MMA. This may reflect that the panel MMA weights are optimized to minimize MSFE for one-

step forecasts – not iterative multistep forecasts. Although there are selection criteria for use in iterative

multistep forecasting in time series applications (Bhansali, 1997), these have not yet been generalised to

the panel data context.

Results for the quarterly-to-annual (k = 4) and monthly-to-annual (k = 12) aggregations are similar

to that for the k = 3 case. We do not reports the results here but they are available upon request. For

these simulations we consider n = 25, 50, 100, 200, 400 and T = 5, 10, 20, 40, which corresponds to 5, 10,

20 and 40 years of data for annual aggregations

4 Empirical Application: Nowcasting State-Level GDP

In this section we will present a detailed empirical application of our methodology by nowcasting the

real GDP growth rate across the 50 U.S. states using employment data. This is a novel contribution

to the empirical nowcasting literature as all of the aforementioned studies of U.S. real GDP nowcasting

have taken place at a national level (for instance Giannone et al., 2016; Aastveit et al., 2018; Fosten and

Gutknecht, 2020). On the other hand, the ability to produce timely state-level real GDP nowcasts could

be of significant interest to national and regional policymakers. Similar state-level data for unemployment

have been used in a recent paper of Gonzalez-Astudillo (2019), but this was in the context of using local

data to predict national business cycles and not for the purposes of making nowcasts of state-level GDP.

Elsewhere, the Philadelphia Fed uses state-level employment as a coincident index for the states, but also

not in the context of GDP nowcasting.10

10See: https://www.philadelphiafed.org/research-and-data/regional-economy/indexes/coincident [Last accessed
07/08/20]
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4.1 Data

Quarterly State-Level GDP Data

The target variable for this study is the real GDP growth rate for all U.S. states. The data are available

at the quarterly frequency, produced by the Bureau of Economic Analysis (BEA),11 and the time span

ranges from 2005Q1 to 2018Q1 for all 50 states. The raw panel dimensions for the study are therefore

T = 52 and n = 50, though the time series dimension will be lower when we perform the pseudo out-of-

sample exercise. In terms of the timeliness of data release, which is of critical importance for nowcasting,

the data for state-level GDP are only available around four to five months (on average) after the end of

the reference quarter. This is a substantial publication lag relative to the national GDP figures where

the preliminary estimate is available less than a month after the end of the reference quarter. The lack

of timely data in this setting gives a strong case for the use of nowcasting. Our study uses final release

data and not fully real-time data as the first available historic vintage of data occurs in 2015 which does

not give sufficient real-time observations for our out-of-sample evaluation.12

Features of the GDP data are displayed in Table 1 which shows the largest and smallest four states

ranked by average real GDP over the sample period. Figure 1 provides a graphical depiction of the real

GDP data whereas Figure 2 depicts the year-on-year real GDP growth rate. These display the disparity

in real GDP across states, with California having around 60% higher real GDP than the next highest,

Texas, on average over the sample period and more than 75 times the real GDP of the lowest state,

Vermont. There is also considerable variability in terms of real GDP growth which can be seen in Figure

2. With the exception of Texas, the rankings in real GDP do not tend to match up with those of real

GDP growth over the sample period. For example, Florida’s growth is near the bottom of the rankings

and North Dakota (not seen in Table 1) is at the top of the GDP growth rankings (5.0%) while being

near the bottom in terms of the level of real GDP ($40bn).

This disparity in the real GDP growth rates across states gives motivation for the inclusion of fixed

effects in Equation (2).

11See https://www.bea.gov/data/gdp/gdp-state. [Last accessed: 25/10/18]
12See: https://apps.bea.gov/regional/histdata/ [Last accessed: 04/05/21]
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Table 1: Largest and Smallest Four States by Real GDP (Average 2005-2018)

State Real GDP ($billion, ann. SA) Real GDP Growth (%)

California 2073.9 1.89
Texas 1290.3 3.13
New York 1204.0 1.20
Florida 770.6 0.69

Montana 38.3 1.73
South Dakota 38.1 1.90
Wyoming 35.2 1.54
Vermont 26.7 0.68

Figure 1: Real GDP by State, average over 2005-2018

500

1000

1500

2000

Real GDP ($billion, ann. SA)

Monthly State-Level Employment Data

We will use employment-related series as the main source of predictor variables in the MF-PVAR analysis.

There are several reasons we use these in our analysis. Firstly, employment-type series are amongst the

most commonly-used predictors in previous empirical nowcasting studies. Secondly, this can serve as a

proxy to labour income which is one of the key ingredients of the BEA’s methodology for constructing

state-level GDP data. Finally, there are limited regional data on other typical nowcast predictors such

as industrial production.
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Figure 2: Real GDP Growth (% year-on-year) by State, average over 2005-2018
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The Bureau of Labour Statistics (BLS) produces monthly state-level data for employees on nonfarm

payrolls through the Current Employment Statistics (CES) programme, and state unemployment through

the Local Area Unemployment Statistics (LAUS) programme.13 The fact that these data are monthly

makes them ideal candidates for use in nowcasting, particularly as the data are released in a much more

timely fashion than real GDP, being available around a month and a half after the end of the reference

month. This flow of data, depicted in Figure 3, means that we have data on all three months of a given

quarter well in advance of the same quarter’s GDP data release. This can allow us to build up an early

picture of state-level GDP.

Figure 3: Graphical Illustration of the Data Flow in Predicting Q1
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13See: https://www.bls.gov/sae/ and https://www.bls.gov/lau/ [Last accessed: 25/10/18]
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4.2 Pseudo Out-of-Sample Set-up

We will perform a panel pseudo out-of-sample evaluation to see how our proposed methods compare

to competitors throughout history. As is customary in the nowcasting literature since studies such as

Giannone et al. (2008), we will assess the performance of our models in making predictions at different

points in the data flow depicted in Figure 3. Specifically, we will make three different predictions per

quarter of interest: a forecast, a nowcast and a backcast. These will be made roughly in the middle of

the quarter, just after the release of GDP data, when the employment data for all three months of the

previous quarter are available. As an example, looking at Figure 3, the backcast of Q1 will be made in

the middle of Q2 just after the release of the Q4 GDP data when all three months of the employment

data for Q1 are available. Similarly, the nowcast of Q1 is made in the middle of Q1 and the forecast is

made in the middle of Q4.

We first transform the data to stationarity using the year-on-year growth rates of the series which

is the same growth rate as that presented by the BEA. This gives a final time series dimension of

T = 49 quarterly observations for real GDP growth (denoted gdpi,t) and 3T = 147 for the monthly

employment and unemployment variables (denoted empi,t and unemi,t respectively). The use of the

year-on-year transformation is in line with other nowcasting studies which follow the year-on-year growth

rate convention used by the relevant statistical authority, including Dahlhaus et al. (2017) and Bragoli

and Fosten (2018). However, we will also compare our results to those using the quarter-on-quarter real

GDP growth rate which is more common in studies which nowcast national aggregates.

To perform the out-of-sample evaluation we split the sample in the time series dimension into T =

R+P observations. We use the first R quarters of the data to make the backcasts, nowcasts and forecasts

across the n states and then proceed in a recursive fashion, adding one quarter of data at a time and re-

estimating the parameters (including the bias correction) and the predictions throughout the remainder

of the sample. As a central scenario, we start making out-of-sample nowcasts in 2012Q1 which splits the

sample equally, giving a total of P = 25 quarters of evaluation over the n states and an initial estimation

window of R = 24 quarters. To assess robustness to the choice of sample split, we will also report present

results where nowcasting commences in 2010Q1 (R = 16, P = 33) and 2014Q1 (R = 32, P = 17). We will

also check robustness to the use of the rolling estimation scheme, where the estimation window is held

fixed at R quarters, unlike the recursive scheme where the window expands by one quarter at a time.
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Since we are estimating the models using small estimation windows in the time series dimension relative

to the cross-section dimension, we are in a situation where bias correction is particularly relevant.

For the monthly endogenous explanatory variables in the MF-PVAR we will try both xi,t := empi,t

and xi,t := unemi,t.
14 For the lag specification, we will search over models up to pmax = 4 lags to

allow up to annual dynamics. For the BCLS MF-PVAR nowcasts we use four methods: lag selection

using the panel FPE criterion above (denoted “MF-PVAR(FPE)” in the results), the Mallows model

averaging method (“MF-PVAR(MMA)”), equal-weights forecast averaging (“MF-PVAR(EW)”) and a

bias-corrected panel VAR(1) model (“MF-PVAR(1)”) which fixes the lag length at p = 1 in every period

and does not select lags optimally. In order to compare BCLS with simple OLS (non-bias corrected)

predictions, we will also present the MF-PVAR results where OLS is used for model estimation with a

näıve BIC criterion (“MF-PVAR(BIC)”) which is detailed in the Appendix.

We will also report results for three benchmark methods. Firstly, in order to assess the importance of

the pooled panel approach, we will report results where individual time series OLS nowcasting regressions

are run for each state (“MIDAS(1)”). This is like an unrestricted version of the MIDAS model of Clements

and Galvão (2008, 2009) and corresponds to estimating Equation (2) state-by-state instead of pooling the

data across states. Since the sample size for time series regression will be as low as R = 16, we restrict

the number of parameters by fixing the lag length to be p = 1, which we denote the MIDAS(1) model.

Finally, we will use two univariate benchmarks: a panel AR(1) model with homogeneous AR(1) coefficient

estimated by OLS, and a time series AR(1) model which does not pool the information across states.

The AR(1) model with no additional predictors is the most commonly-used benchmark in nowcasting

studies, which is why we assess the performance of our methods relative to the panel and time series

version of this benchmark.

In measuring the accuracy of the nowcasts across the various competing methods, we will use the

MSFE criterion which averages the squared nowcast errors across the n states and the P evaluation

periods.15 The unweighted MSFE is also used as the evaluative criterion for panel nowcasts in the papers

of Babii et al. (2020) and Koop et al. (2020). If we generically define ûi,t = yi,t − ŷi,t as the nowcast

14Earlier versions of the paper also checked the results when both predictors were used and xi,t := [empi,t, unemi,t]
′.

The results did not improve over the main results and these models involved the estimation of more parameters.
15We do not assess the statistical significance of the MSFE differences between models as in Diebold and Mariano (1995)

and West (1996). Although there have been recent papers looking at panel versions of the Diebold-Mariano (DM) test for
pairwise comparisons (Timmermann and Zhu, 2019; Akgun et al., 2020), they are not applicable in our context which looks
at multiple different forecast methods with no single ‘benchmark’ model (like Hansen et al., 2011 provide in the time series
context). Additionally, the contribution of parameter estimation to DM tests has not yet been explored in a panel context,
which is particularly relevant in our case with small panel dimensions and the introduction of an estimated bias correction.
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errors from any of the above methods, then we calculate MSFE as:

MSFE =
1

nP

n∑
i=1

T∑
t=R+1

û2i,t (9)

Finally, we will also explore the results by way of a subgroup analysis, where we restrict the sample

of states to selected groups of size smaller than n. This is to check the impact of the homogeneous

coefficients assumption on the results. The groupings will be discussed in more detail later.

4.3 Results: Pseudo Out-of-Sample Nowcast Evaluation

Results across all States

We first present the main set of results where we compare the panel nowcasting methods estimated on

information pooled across all states. The results of the pseudo out-of-sample evaluation of the forecasts,

nowcasts and backcasts are displayed in Table 2. This shows the average MSFE across all states for each

of the methods, first for the employment version of the model (top panel) and then for the unemployment

version (bottom panel). There are several key findings to draw out of these results.

We firstly note that the idea of incorporating timely information is important for nowcasting. We

can see from the top panel of Table 2 that the MF-PVAR models with employment have substantially

lower MSFE on average than the panel or time series AR(1) methods. For example, in the case where

R = 24, P = 25, the BCLS MF-PVAR(1) method gives uniformly lower MSFE than the panel AR(1)

method by a factor of 9% for the backcast and around 13% for both the nowcast and forecast. This result

is robust to the choice of R and P with even larger relative MSFE gains in the case of R = 32, P = 17.

On the other hand, looking at the lower panel of Table 2 we see that the unemployment version of the

model fares much worse than the employment version of the model, typically with 10%-30% higher MSFE

depending on the method. This indicates that employment growth provides a better timely signal than

the unemployment rate, and we will focus on these results in what follows.

In relation to the bias-corrected methods, there are two main points to draw out of Table 2. We

firstly note that the backcasts are improved by the use of model selection or combination yields, relative

to fixing the number of lags at p = 1 as is done in the BCLS MF-PVAR(1) method. We especially note

that the equal weights forecast combination method MF-PVAR(EW) delivers the lowest MSFE across

forecast, nowcast and backcast with the exception of the R = 32, P = 17 case. In some cases the gain is
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well above 20% relative to the panel AR(1) model. This indicates that the use of forecast combination

in conjunction with BCLS can be a very useful method in making state-level nowcasts of real GDP

growth. Secondly, we find that the bias correction is, indeed, beneficial since the BCLS method using

FPE results in lower MSFE than the equivalent use of OLS with the standard BIC selection criterion.

The improvement is in the range of 5% to 10% across all of the results in the top panel of Table 2. We

expect gains from bias correction to be even larger in other applications where the overall time series

dimension T is yet smaller.

Finally, a very important result is that there appear to be substantial gains from pooling information

across states in our panel nowcasting approach. The MIDAS(1) model, which uses employment infor-

mation in state-by-state time series regressions, performs poorly relative to the panel methods and even

relative to the time series AR(1) method in some cases. The fact that the MIDAS(1) and time series

AR(1) are the worst performing methods across most of the results in Table 2 illustrates the benefits

from pooling information across states rather than obtaining predictions from time series models with

few observations and many parameters.

In addition to displaying the robustness of the results to choice of R and P , in Table 4 we also

report results where we change to the rolling parameter estimation scheme. This is where the estimation

window is held fixed at R time series observations rather than expanding the window one-by-one as in

the recursive scheme. Focussing again on the employment version of the model, in the top panel of Table

4 we see that the MSFE is larger than that of recursive estimation in all cases. For instance, taking

the BCLS MF-PVAR(1) method for R = 24, P = 25, the rolling scheme gives 8% higher MSFE for the

backcast, 15% higher for the nowcast and 20% higher for the forecast. The gap is even larger when

R = 16 which highlights the need to use the maximum number of observations possible in estimating the

models. Also, we see huge inflation of MSFE for the time series MIDAS(1) and AR(1) models as these

are only estimated on a small window of observations which does not grow as in the recursive scheme. We

therefore would not recommend the use of rolling estimation in panels with similar dimensions to these.

That being said, the results are qualitatively similar in the sense that the BCLS MF-PVAR methods

typically deliver the lowest MSFE in the employment model, especially in the equal weights forecast

averaging method.

We also ran results for the quarter-on-quarter growth rate which, although not reported by the BEA

in the context of state-level GDP growth, is often used by researchers interested in national aggregate real
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GDP growth. The results can be found in Table A11 in the Appendix. These show qualitatively similar

findings to the year-on-year results above, where the model with employment data seems to perform

better than unemployment data. The gains from nowcasting, relative to autoregressive benchmarks,

appear to be slightly smaller than in the year-on-year case, but can still be over 20%, for example the

backcast results for the R = 35, P = 17 case.

State-Level Results

Rather than focussing on the nowcast model performance on average across states, it is interesting to

zoom in and see how the models perform within specific states. To achieve this we can also present

the MSFE results from Table 2 for individual states, acknowledging that this is based on a relatively

small quarterly time series sample. For this reason, we now turn attention to the results with the largest

evaluation window P = 33.

Returning to the four states with highest real GDP from Table 1 above, Table 3 presents the bench-

mark results as in Table 2 but for these four states. We can see from these results that the BCLS

MF-PVAR methods also perform the best when looking at these individual states, delivering the lowest

MSFE in 11 out of the 12 cases. Again, it appears that the use of lag selection can, in fact, give larger

MSFE in the forecast and nowcast periods and the BCLS MF-PVAR(1) method gives the lowest MSFE

in many cases.

We also see that there is considerable variation in the performance of the time series MIDAS(1)

models. In some cases the MIDAS(1) method appears better than the average we see in Table 2, and in

some cases worse. For instance, in Texas the MIDAS(1) method gets close to the MF-PVAR methods

in terms of MSFE. On the other hand, for New York we see that the results are much worse for the

MIDAS(1), with almost 80% higher MSFE than the panel AR(1) in the forecast column. The variation

in these results seems to gives some motivation towards exploring the assumption of homogeneity of the

panel model coefficients which we impose in Equation (2). We will explore this in more detail in a later

section.

Finally, in addition to exploring the state-level results in these four important cases, we can also

shed further light by looking at the distribution of MSFE across all states. In the Appendix, we display

histograms (Figures A5, A7 and A9) representing the distribution of the MSFE across states for forecast,

nowcast and backcast, corresponding to the results in Table 2. We also present the same histograms
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Table 3: MSFE Results - Largest 4 States

California Florida
Forecast Nowcast Backcast Forecast Nowcast Backcast

Panel BCLS MF-PVAR(FPE) 2.853 1.931 0.937 5.201 2.138 0.996
MF-PVAR(MMA) 2.856 1.931 0.937 5.202 2.138 0.996
MF-PVAR(EW) 1.997 1.504 0.903 3.484 1.716 1.071
MF-PVAR(1) 2.099 1.335 0.877 2.587 1.479 1.163

Panel OLS MF-PVAR(BIC) 3.332 2.128 0.929 5.466 2.405 1.001
Panel AR(1) 4.013 2.604 1.317 4.796 2.893 1.530

TS OLS MIDAS(1) 1.898 1.589 1.190 5.985 3.561 1.775
AR(1) 3.761 2.486 1.295 3.815 2.273 1.349

New York Texas
Forecast Nowcast Backcast Forecast Nowcast Backcast

Panel BCLS MF-PVAR(FPE) 3.545 2.084 1.543 4.425 2.438 1.031
MF-PVAR(MMA) 3.524 2.084 1.543 4.426 2.438 1.031
MF-PVAR(EW) 2.149 1.687 1.408 3.672 2.372 1.080
MF-PVAR(1) 3.147 2.416 1.692 3.566 2.336 1.252

Panel OLS MF-PVAR(BIC) 2.947 2.201 1.634 5.067 2.631 1.060
Panel AR(1) 3.344 2.988 1.929 4.693 3.080 1.359

TS OLS MIDAS(1) 5.944 4.070 2.261 4.097 2.684 1.541
AR(1) 3.281 2.954 1.869 5.725 3.279 1.352

Notes: These results are for the model with employment as the single predictor, and for R = 16, P = 33 with
recursive estimation.
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but for the MSFE relative to the panel AR(1) model (Figures A6, A8 and A10) which is less prone to

the outliers seen in the raw MSFE histograms. These results confirm that the equal-weights forecast

averaging method MF-PVAR(EW) seems to perform well across forecast, nowcast and backcast, with

the bulk of the MSFE distribution being to the left of all of the other methods. The results also serve to

highlight that there can be extreme outliers when using the non-pooled time series AR(1) method instead

of using pooled panel methods. This is evident especially in the nowcast and forecast results where the

highest MSFE for the time series AR(1) method is more than double that of the equal-weights method.

Exogenous National-Level Predictors

It is possible that the predictions of real GDP growth across states can be improved by incorporating

variables related to national business cycle movements. Similar arguments are used in a different context

by Koop et al. (2020) who nowcast regional GVA in the U.K. using national GVA. On the other hand,

the opposite approach is taken in the U.S. by Gonzalez-Astudillo (2019) who uses state-level data to

estimate national business cycles.

We therefore add in national real GDP growth as an exogenous variable into the mixed frequency

VAR methods. This also gives us the opportunity to explore the modified bias correction which holds

in the presence of exogenous predictors, as outlined above. The results are displayed in Table 5 which

contains the MSFE results for the employment model and for the R = 16, P = 33 case. These results

can be compared to the upper left panel of Table 2 which show the equivalent set of results without the

exogenous national GDP predictor. This seems to suggest that we do not gain a lot by adding in the

exogenous national variable. Focussing on the equal weights forecast averaging method, which delivers

the best results generally, we see an improvement in MSFE over Table 2 of around 4% for the backcast,

1% for the nowcast and a worsening of around 20% for the forecast. Overall, while there may be some

small gains to be had from adding in national predictors to regional nowcasting models in the U.S.,

further work should be done to explore the circumstances of these improvements.

Allowing Heterogeneity: Sub-group Pooling versus All-States Pooling

The results of the MF-PVAR nowcasting models up until now have used information pooled across all

n = 50 states under the assumption that each state has homogeneous slope coefficients in Equations (2)

and (1). We also found that it was not advisable to allow heterogeneity by estimating individual time
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Table 5: MSFE Results - Exogenous National GDP

Forecast Nowcast Backcast

Panel BCLS MF-PVAR(FPE) 9.805 4.184 2.102
MF-PVAR(MMA) 9.664 4.154 2.096
MF-PVAR(EW) 6.230 3.306 1.983
MF-PVAR(1) 5.436 3.549 2.214

Panel OLS MF-PVAR(BIC) 6.836 4.094 2.182
Panel AR(1) 6.097 4.228 2.409

TS OLS MIDAS(1) 10.787 6.153 3.413
AR(1) 7.365 4.551 2.433

Notes: These numbers display the MSFE for the model with employment as
the single predictor, and for R = 16, P = 33 with recursive estimation. The
Panel and Time Series AR(1) methods give the same MSFE as in Table 2 as
they do not use any additional predictors.

series equations when the sample size is prohibitively low. In this section we explore whether there is

any merit to pooling across specific subgroups of states, as an intermediate step between all-state pooling

and time series estimation.

In dividing the U.S. states into smaller subgroups there are many possibilities. The first, and perhaps

most obvious, way to categorise is based on geographical regions. We therefore break down the states into

the U.S. Census Bureau’s four census regions: Northeast (n1 = 9), Midwest (n2 = 12), South (n3 = 16)

and West (n4 = 13).16 Other categorisations we consider are those discussed in Greenaway-McGrevy and

Hood (2019) which are based on states with similar production characteristics. As such we will look at

energy-producing states (n1 = 7) as well as the so-called “Rust Belt” states (n2 = 7) which experienced

common industrial decline since the 1980’s. For completeness we will also report an “Other” subgroup

(n3 = 36) which excludes both energy and Rust Belt states. These groupings are displayed in Table

A10 in the Appendix. To avoid only using pre-determined groups, we also check our results using a

data-driven method suggested by Su et al. (2016) which identifies latent subgroup structures in panel

data using a classifier-Lasso (C-Lasso).

Table 6 displays the MSFE results from sub-group pooling versus all-states pooling for the backcast

and for the model with employment as the single predictor with recursive estimation and sample split

R = 16, P = 33. The nowcast and forecast results can be found in Tables A12 and A13 in the Appendix.

To produce these results, we first estimate the panel models (MF-PVAR and panel AR(1)) only using the

the sub-group data and report the average MSFE for that sub-group. We then take the results from the

16See: https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us regdiv.pdf [Last accessed: 17/07/2019].
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all-states estimation (as used in Table 2) and report the average MSFE measure for the same sub-group.

This helps us to gauge whether results improve if we strip out extra states, or whether pooling additional

information from other other states can improve estimation and therefore the predictions in particular

sub-groups.

The striking result from Table 6 is that there appears to be no evidence in favour of using sub-group

pooling as a way to allow for heterogeneity in the coefficients. In fact, the opposite result holds that the

MSFE actually tends to be lower when all-states pooling is used to estimate the parameters of the model.

These gains from all-states pooling are typically in the region of 5% to 10% but can be as large as 40% in

some cases. The nowcast and forecast results in the Appendix show even worse results for the sub-group

estimation, perhaps because they iterate forward the estimates from very small samples. This result is

in favour of our baseline approach for modelling the panel by pooling across all states with homogeneous

coefficients.

Overall, these results indicate that in relatively small panels like this, the gains from pooling in-

formation across all states appear to outweigh any improvement from permitting heterogeneity across

subgroups. This provides further evidence in favour of pooling in the “to pool or not to pool” debate

posed by Wang et al. (2019) and others. We also note that we find similar results when using a data-driven

selection of the subgroups using the C-Lasso approach of Su et al. (2016) instead of these pre-determined

subgroups.17

In looking across the geographical regions, the worsening from subgroup pooling is lowest in the

South, which is the region with the largest number of states. This also gives evidence that pooling across

a large estimation sample size is more important than allowing heterogeneity in this example. In the

lower panel of Table 6 a similar story emerges in that the largest “Other” category gives similar results

between sub-group and all-state pooling. As a final extension to explore subgroup pooling, we added

in the inflation in the West Texas Intermediate (WTI) crude oil price as an exogenous variable into the

MF-PVAR for energy-producing states to see if this yielded any MSFE improvements.18 While there

were some minimal improvements in the order of 1%-2% gain in MSFE for some of the methods, we did

not find any substantial and consistent improvements in adding this as an exogenous predictor.

17Specifically, we find that the C-Lasso approach predominantly picks out a very small subgroup of three energy-producing
states when it is used to identify two latent sub-groups: Alaska, North Dakota and Wyoming. When we run the results for
this small subgroup the results are poor relative to the all-state pooled results, presumably due to the very small sample
size for estimation. The results are therefore not presented here, but are available on request.

18Data accessed from FRED Economic Data: https://fred.stlouisfed.org/series/DCOILWTICO [Last Accessed:
17/07/2019]
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5 Conclusion

In this paper, we look to shift the attention of the existing nowcasting literature away from time series

methods to the panel data context. This allows us to perform near-term prediction of regional or sectoral

data which typically suffer from even worse issues with data timeliness than national aggregate data

such as real GDP. In our empirical application we find clear gains from pooling information using panel

methods when the purpose is nowcasting U.S. state-level GDP growth.

We propose a mixed-frequency panel VAR approach to nowcasting and demonstrate how the model

can be estimated using a bias-corrected least squares approach. We also suggest several model selection

and combination methods, building on recent panel forecasting research by Greenaway-McGrevy (2019,

2020, 2021). Since the model selection methods have not been developed in a mixed-frequency framework,

we are careful to demonstrate, though Monte Carlo simulation, the effectiveness of these model selection

methods relative to näıve benchmarks. Our application to U.S. state-level GDP nowcasting yields further

insights than previous national studies which cannot give state-level information, and highlights the

usefulness of pooling information across states. We envisage many further possible applications of our

methods, such as the prediction of sectoral GDP or nowcasting multiple different proxies for inflation.

Further work may look to enhance this panel nowcast model specification by allowing factors to

be estimated from a large set of external (time series) variables, or to estimate a common factor from

the panel of endogenous variables itself. This would extend existing factor-based time series nowcasting

methods (see: Giannone et al., 2008; Banbura et al., 2013; Antolin Diaz et al., 2017; Fosten and Gutknecht,

2020) to the panel data context.
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6 Appendix

6.1 Model Selection Methods

Before detailing the various model selection methods, we first require some additional notation. Let û (p)

be an nTpmax × 1 vector of residuals from the model with p lags fitted (by BCLS) to t = pmax + 1, . . . , T

and i = 1, . . . , n. Here pmax denotes the maximum lag order, and Tpmax
:= T − pmax. Finally, let:

σ̂2 (p) := 1
n(Tpmax−1)

û (p)
′
û (p)

6.1.1 Mallows Model Averaging

Forecast combination through model averaging often enhances forecast accuracy when compared to selec-

tion of a single model (for surveys, see Clemen, 1989; Granger, 1989; Diebold and Lopez, 1996; Newbold

and Harvey, 2002; Timmermann, 2006). Greenaway-McGrevy (2021) generalizes the MMA method pro-

posed by Hansen (2008) to panel data VARs and shows that it generally outperforms conventional averag-

ing methods such as equal weights, exponentiated AIC and BIC averaging, and Granger and Ramanathan

(1984) cross validation in a set of Monte Carlo studies.

Let w be a pmax× 1 vector of arbitrary weights. Let p = (m, 2m, . . . , pmaxm)
′
, so that it is a pmax× 1

vector consisting of the size of each model, where m = dim(Yi,t) where Yi,t is as specified in Equation

(1), so for example m = 4 in a standard nowcasting case with a single monthly predictor of a quarterly

variable. Our estimator of MSFE based on w is:

L̂n,T (w) = 1
nTpmax

w′û′n,T ûn,Tw + σ̂2 (pmax) ·
[

2
nTpmax

p′w+ 1
T 2
pmax

w′Pw
]
,

where ûn,T := [û (1) : û (2) : · · · : û (pmax)]
′
is an nTpmax

×pmax matrix of residuals and P is a pmax×pmax

matrix with the (r, s) element set to min{r, s}. Panel MMA is finding a vector of weights that minimizes

L̂n,T (w). This is the solution to quadratic programming problem:

w∗ = arg min
w

(
L̂n,T (w)

)
. (10)
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subject to:

1′Kw = 1, wk ∈ [0, 1]

6.1.2 Panel Mallows Criterion

The Mallows-type criterion can also be used to perform nowcast model selection rather than model

averaging. Greenaway-McGrevy (2020) proposes lag selection by minimization of a panel version of the

Mallows estimator, specifically:

p̂mal = arg min
p

(
1

nTpmax
û (p)

′
û (p) + σ̂2 (pmax) ·

[
2mp

nTpmax
+ 1

T−p

])
(11)

Greenaway-McGrevy (2020) outlines conditions under which the model selection rule is asymptotically

efficient in that it minimizes the asymptotic MSFE as both n→∞ and T →∞. In this paper we apply

this criterion to the case of nowcast model selection.

6.1.3 Panel FPE Criterion

Another model selection criterion which can be adapted to this nowcasting setting is a panel version of

the final prediction error which was also explored by Greenaway-McGrevy (2019). This can be written

as:

p̂fpe = arg min
p

(
1

nTpmax
û (p)

′
û (p) + σ̂2 (p) ·

[
2mp

nTpmax
+ 1

T−p

])
(12)

Note that the primary difference to Equation (11) is that the model complexity penalty is based on

the fitted VAR(p) and not VAR(pmax). Greenaway-McGrevy (2019) outlines conditions under which the

model selection rule is asymptotically efficient.

We will apply all three of the above methods to our context of the panel data nowcasting model.

Detailed Monte Carlo simulation evidence will be presented to ascertain the performance of these criteria

in the mixed-frequency setting. We finally turn to two more panel model selection criteria which have

been proposed in the literature.
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6.1.4 KLIC

Lee and Phillips (2015) generalize model selection via minimization of Kullback-Leibler information loss

to a panel setting. Their criterion chooses the lag length according to the following:

p̂klic = arg min
p

(
ln
(
σ̂2 (p)

)
+ 2mp

nTpmax
+ mp

T 2
pmax

+ 1
Tpmax

ω̂2(p)
σ̂2(p)

)
(13)

where ω̂ (p) is an estimate of the long-run variance of the errors. The KLIC is designed for OLS and

thus the final term is a penalty that accounts for the impact of the fitted incidental parameters on OLS

bias. Whereas the Mallows and FPE criertia are tailored to minimizing the MSFE of the model, the

KLIC minimizes infomation loss with respect to the common parameters of the model once the incidental

parameters have been integrated out of the likelihood.

6.1.5 BIC

Lee and Phillips (2015) also generalize BIC model selection to panel data models with incidental param-

eters, specifically:

p̂bic = arg min
p

(
ln
(
σ̂2 (p)

)
+

mp ln(nTpmax )
nTpmax

+ mp
T 2
pmax

+ 1
Tpmax

ω̂2(p)
σ̂2(p)

)
(14)

The BIC is consistent for the true lag order when the data are generated according to model within the

candidate set.

6.1.6 Näıve BIC

Finally, Lee and Phillips (2015) also note the use of the näıve BIC which is most commonly used in

practice:

p̂nbic = arg min
p

(
ln
(
σ̂2 (p)

)
+

mp ln(nTpmax )
nTpmax

)
(15)

which is näıve in the sense that it ignores the impact of fixed effects.

6.2 Monte Carlo Simulation Results
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Table A1: Simulation Results h = 1, ρ = 0.2, θ = 0.5.

n T pmax Kmax MMA FPE MAL KLIC BIC EW p = 1 KLICOLS BICOLS

25 20 5 20 1 1.144 1.120 1.060 1.030 1.087 1.030 1.109 1.073
40 6 24 1 1.084 1.073 1.066 1.154 1.032 1.145 1.096 1.172
80 9 36 1 1.055 1.039 0.979 2.366 1.269 2.669 1.075 2.398
160 13 52 1 1.833 1.727 1.675 3.941 6.684 24.997 2.305 4.283

50 20 7 28 1 1.143 1.087 1.065 1.067 1.151 1.067 1.098 1.099
40 7 28 1 1.046 1.045 1.061 1.212 1.045 1.232 1.100 1.232
80 9 36 1 1.000 0.997 0.990 1.170 1.123 1.862 1.000 1.167
160 13 52 1 0.861 0.867 0.884 0.771 1.921 7.898 1.002 0.848

100 20 10 40 1 1.210 1.133 1.070 1.070 1.183 1.070 1.110 1.11
40 10 40 1 1.011 1.001 1.020 1.268 1.098 1.315 1.064 1.291
80 10 40 1 1.010 1.004 0.974 0.971 1.052 1.853 0.998 0.989
160 13 52 1 1.010 1.012 1.003 0.997 1.057 1.974 1.018 1.008

200 20 10 40 1 1.163 1.112 1.083 1.083 1.139 1.083 1.125 1.125
40 14 56 1 1.008 0.996 1.024 1.259 1.115 1.334 1.051 1.278
80 14 56 1 1.010 1.009 0.995 0.990 1.086 2.092 1.032 1.021
160 14 56 1 0.991 0.993 1.002 1.037 1.079 4.118 1.023 1.052

Notes: Here Kmax represents the total number of parameters in the model and is given by Kmax = 4pmax for the
quarterly-to-monthly aggregation frequency. MSFEs are normalized and expressed as ratio to panel MMA (i.e. a
ratio > 1 denotes panel MMA had a smaller MSFE). FPE and MAL denote lag selection by Panel FPE and Panel
Mallows. KLIC and BIC denote lag selection by Lee and Phillips panel KLIC and BIC. EW denotes the equal weights
forecast combinations and p = 1 is the model which fixes a single lag instead of perfoming model selection. Finally,
KLICOLS and BICOLS denote Lee and Phillips KLIC and BIC lag selection but with the forecasting model fitted by
OLS (not BCLS).
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Table A2: Simulation Results h = 1, ρ = 0.5, θ = 0.5.

n T pmax Kmax MMA FPE MAL KLIC BIC EW p = 1 KLICOLS BICOLS

25 20 5 20 1 1.157 1.116 1.100 1.113 1.045 1.107 1.165 1.157
40 6 24 1 1.036 1.030 1.038 1.347 1.024 1.367 1.081 1.372
80 9 36 1 1.149 1.135 1.112 1.878 1.203 4.137 1.220 1.942
160 13 52 1 1.165 1.166 1.163 0.978 1.635 6.236 1.264 1.051

50 20 7 28 1 1.195 1.126 1.155 1.172 1.118 1.172 1.203 1.211
40 7 28 1 1.031 1.020 0.995 1.259 1.04 1.464 1.045 1.286
80 9 36 1 1.034 1.032 1.020 1.038 1.088 2.798 1.047 1.055
160 13 52 1 1.125 1.109 1.134 0.988 1.677 11.429 1.277 1.049

100 20 10 40 1 1.205 1.132 1.196 1.201 1.165 1.201 1.245 1.249
40 10 40 1 1.019 1.009 0.972 1.098 1.088 1.665 1.022 1.145
80 10 40 1 1.007 1.005 1.004 1.010 1.041 2.286 1.031 1.028
160 13 52 1 1.014 1.013 1.016 1.050 1.045 2.670 1.029 1.059

200 20 10 40 1 1.139 1.080 1.218 1.218 1.120 1.218 1.264 1.264
40 14 56 1 1.011 1.002 0.968 1.002 1.109 1.640 1.000 1.034
80 14 56 1 1.015 1.014 1.023 1.041 1.064 2.613 1.066 1.069
160 14 56 1 1.018 1.020 0.998 1.140 1.056 5.031 1.025 1.154

Notes: Same as for Table A1.

Table A3: Simulation Results h = 1, ρ = 0.8, θ = 0.5

n T pmax Kmax MMA FPE MAL KLIC BIC EW p = 1 KLICOLS BICOLS

25 20 5 20 1 1.164 1.112 1.067 1.290 1.009 1.354 1.168 1.339
40 6 24 1 1.063 1.046 1.033 1.134 1.002 2.110 1.111 1.195
80 9 36 1 1.049 1.053 1.051 1.007 1.078 2.599 1.048 0.998
160 13 52 1 1.081 1.074 1.069 1.169 1.052 4.614 1.098 1.195

50 20 7 28 1 1.145 1.072 1.044 1.419 1.084 1.590 1.195 1.529
40 7 28 1 1.053 1.051 1.029 1.020 1.034 2.254 1.107 1.084
80 9 36 1 1.037 1.034 1.075 1.141 1.046 4.149 1.118 1.161
160 13 52 1 0.999 1.002 1.004 1.221 1.070 4.687 1.021 1.234

100 20 10 40 1 1.155 1.078 1.301 1.622 1.220 1.739 1.425 1.706
40 10 40 1 1.039 1.032 1.015 1.014 1.066 2.259 1.065 1.060
80 10 40 1 1.024 1.019 1.016 1.155 1.033 4.193 1.075 1.204
160 13 52 1 1.049 1.056 1.035 1.112 1.165 14.711 1.112 1.178

200 20 10 40 1 1.114 1.059 1.249 1.534 1.178 1.728 1.388 1.635
40 14 56 1 1.042 1.032 1.051 1.051 1.101 2.770 1.145 1.142
80 14 56 1 1.013 1.012 0.999 1.138 1.082 4.887 1.035 1.175
160 14 56 1 1.009 1.010 1.007 1.000 1.060 6.868 1.037 1.025

Notes: Same as for Table A1.
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Table A4: Simulation Results h = 2, ρ = 0.2, θ = 0.5

n T pmax Kmax MMA FPE MAL KLIC BIC EW p = 1 KLICOLS BICOLS

25 20 5 20 1 1.085 1.043 0.968 0.943 1.078 0.943 1.015 0.975
40 6 24 1 1.077 1.072 1.030 0.960 1.065 0.959 1.075 0.963
80 9 36 1 1.032 1.032 1.025 1.037 1.069 1.042 1.059 1.035
160 13 52 1 1.044 1.037 1.034 1.030 1.187 1.335 1.074 1.062

50 20 7 28 1 1.120 1.049 0.906 0.902 1.147 0.902 0.942 0.935
40 7 28 1 1.047 1.039 1.008 0.983 1.048 0.979 1.057 0.992
80 9 36 1 1.019 1.022 1.013 1.028 1.041 1.060 1.046 1.048
160 13 52 1 1.016 1.017 1.015 1.003 1.037 1.219 1.033 1.020

100 20 10 40 1 1.233 1.091 0.889 0.889 1.271 0.889 0.918 0.918
40 10 40 1 1.036 1.029 1.003 0.985 1.079 0.979 1.055 0.996
80 10 40 1 1.026 1.025 1.012 1.003 1.018 1.080 1.047 1.034
160 13 52 1 1.013 1.013 1.016 1.014 1.006 1.241 1.039 1.033

200 20 10 40 1 1.247 1.138 0.908 0.908 1.273 0.908 0.937 0.937
40 14 56 1 1.034 1.020 0.975 0.967 1.140 0.965 1.023 0.979
80 14 56 1 1.013 1.013 1.007 1.002 1.062 1.089 1.047 1.039
160 14 56 1 1.008 1.008 1.012 1.013 1.020 1.233 1.030 1.026

Notes: Same as for Table A1.

Table A5: Simulation Results h = 2, ρ = 0.5, θ = 0.5

n T pmax Kmax MMA FPE MAL KLIC BIC EW p = 1 KLICOLS BICOLS

25 20 5 20 1 1.083 1.044 0.991 0.953 1.043 0.950 1.060 0.994
40 6 24 1 1.051 1.043 1.019 0.997 1.032 0.994 1.085 1.011
80 9 36 1 1.025 1.023 1.025 1.031 1.044 1.071 1.067 1.057
160 13 52 1 1.021 1.021 1.024 1.037 1.112 1.314 1.067 1.073

50 20 7 28 1 1.126 1.055 0.925 0.913 1.100 0.912 0.979 0.953
40 7 28 1 1.035 1.024 1.000 0.994 1.028 0.995 1.067 1.030
80 9 36 1 1.011 1.012 1.005 1.003 1.028 1.102 1.045 1.036
160 13 52 1 1.017 1.015 1.010 1.009 1.027 1.253 1.035 1.029

100 20 10 40 1 1.218 1.111 0.898 0.898 1.216 0.898 0.937 0.935
40 10 40 1 1.026 1.021 0.988 0.987 1.060 1.001 1.052 1.040
80 10 40 1 1.015 1.013 1.005 0.997 1.015 1.116 1.049 1.031
160 13 52 1 1.006 1.004 1.003 1.022 1.009 1.270 1.032 1.043

200 20 10 40 1 1.233 1.141 0.915 0.915 1.223 0.915 0.953 0.953
40 14 56 1 1.019 1.009 0.958 0.959 1.116 0.985 1.023 1.020
80 14 56 1 1.007 1.005 0.998 0.996 1.048 1.118 1.048 1.035
160 14 56 1 1.002 1.002 1.000 1.017 1.019 1.276 1.024 1.035

Notes: Same as for Table A1.
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Table A6: Simulation Results h = 2, ρ = 0.8, θ = 0.5

n T pmax Kmax MMA FPE MAL KLIC BIC EW p = 1 KLICOLS BICOLS

25 20 5 20 1 1.087 1.042 0.991 0.984 1.020 0.981 1.151 1.076
40 6 24 1 1.034 1.024 1.007 0.992 1.007 1.048 1.100 1.065
80 9 36 1 1.017 1.014 1.008 1.002 1.026 1.166 1.060 1.043
160 13 52 1 1.006 1.005 1.009 1.038 1.013 1.280 1.037 1.059

50 20 7 28 1 1.093 1.04 0.949 0.959 1.062 0.960 1.105 1.059
40 7 28 1 1.020 1.015 0.995 0.987 1.019 1.086 1.092 1.074
80 9 36 1 1.013 1.012 1.009 1.000 1.017 1.191 1.070 1.047
160 13 52 1 0.997 0.996 0.993 1.045 1.022 1.290 1.022 1.066

100 20 10 40 1 1.167 1.087 0.940 0.950 1.198 0.953 1.068 1.036
40 10 40 1 1.018 1.012 0.982 0.975 1.044 1.070 1.079 1.063
80 10 40 1 1.011 1.009 1.003 1.009 1.009 1.181 1.074 1.062
160 13 52 1 1.008 1.007 1.003 1.005 1.011 1.345 1.040 1.037

200 20 10 40 1 1.150 1.079 0.954 0.969 1.198 0.979 1.098 1.072
40 14 56 1 1.010 0.999 0.953 0.950 1.092 1.047 1.049 1.043
80 14 56 1 1.003 1.002 0.990 0.999 1.036 1.208 1.058 1.055
160 14 56 1 1.004 1.004 0.999 0.995 1.017 1.369 1.034 1.025

Notes: Same as for Table A1.

Table A7: Simulation Results h = 3, ρ = 0.2, θ = 0.5

n T pmax Kmax MMA FPE MAL KLIC BIC EW p = 1 KLICOLS BICOLS

25 20 5 20 1 1.070 1.022 0.930 0.898 1.132 0.898 0.928 0.881
40 6 24 1 1.063 1.051 1.004 0.912 1.084 0.906 1.030 0.897
80 9 36 1 1.034 1.034 1.024 0.934 1.090 0.911 1.047 0.929
160 13 52 1 1.013 1.013 1.007 0.989 1.099 0.947 1.021 0.998

50 20 7 28 1 1.116 1.037 0.864 0.859 1.182 0.859 0.851 0.843
40 7 28 1 1.063 1.053 0.998 0.887 1.083 0.870 1.040 0.878
80 9 36 1 1.028 1.028 1.022 0.990 1.051 0.898 1.054 1.010
160 13 52 1 1.020 1.02 1.016 0.994 1.061 0.901 1.036 1.012

100 20 10 40 1 1.255 1.102 0.843 0.843 1.314 0.843 0.826 0.826
40 10 40 1 1.054 1.044 0.997 0.899 1.111 0.874 1.041 0.895
80 10 40 1 1.023 1.022 1.010 1.002 1.034 0.908 1.036 1.027
160 13 52 1 1.016 1.015 1.010 0.992 1.032 0.938 1.026 1.006

200 20 10 40 1 1.281 1.165 0.866 0.866 1.313 0.866 0.848 0.848
40 14 56 1 1.052 1.036 0.965 0.889 1.162 0.863 1.001 0.887
80 14 56 1 1.018 1.017 1.002 0.997 1.069 0.882 1.033 1.026
160 14 56 1 1.015 1.015 1.004 0.993 1.030 0.929 1.022 1.008

Notes: Same as for Table A1.
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Table A8: Simulation Results h = 3, ρ = 0.5, θ = 0.5

n T pmax Kmax MMA FPE MAL KLIC BIC EW p = 1 KLICOLS BICOLS

25 20 5 20 1 1.079 1.034 0.958 0.901 1.075 0.900 0.989 0.898
40 6 24 1 1.058 1.049 1.023 0.929 1.048 0.915 1.080 0.928
80 9 36 1 1.021 1.016 1.012 0.984 1.058 0.941 1.045 1.003
160 13 52 1 1.008 1.007 1.004 0.984 1.069 1.001 1.024 1.002

50 20 7 28 1 1.141 1.058 0.878 0.859 1.124 0.858 0.894 0.858
40 7 28 1 1.045 1.032 1.001 0.941 1.045 0.893 1.069 0.969
80 9 36 1 1.016 1.015 1.009 0.996 1.032 0.926 1.049 1.033
160 13 52 1 1.018 1.018 1.012 0.980 1.031 0.978 1.037 1.001

100 20 10 40 1 1.256 1.134 0.841 0.839 1.248 0.839 0.839 0.835
40 10 40 1 1.035 1.026 0.984 0.965 1.075 0.894 1.048 1.016
80 10 40 1 1.015 1.014 1.001 0.985 1.021 0.943 1.040 1.017
160 13 52 1 1.009 1.009 1.006 0.984 1.018 0.991 1.029 1.002

200 20 10 40 1 1.275 1.177 0.859 0.859 1.249 0.859 0.856 0.855
40 14 56 1 1.032 1.019 0.954 0.951 1.128 0.876 1.013 1.007
80 14 56 1 1.013 1.011 0.994 0.976 1.050 0.917 1.038 1.013
160 14 56 1 1.008 1.008 1.003 0.987 1.018 0.990 1.027 1.007

Notes: Same as for Table A1.

Table A9: Simulation Results h = 3, ρ = 0.8, θ = 0.5

n T pmax Kmax MMA FPE MAL KLIC BIC EW p = 1 KLICOLS BICOLS

25 20 5 20 1 1.105 1.054 0.983 0.904 1.03 0.884 1.139 0.965
40 6 24 1 1.039 1.031 1.009 0.972 1.015 0.916 1.112 1.053
80 9 36 1 1.013 1.010 1.001 0.988 1.017 0.954 1.054 1.034
160 13 52 1 1.000 1.000 1.000 1.001 1.021 0.985 1.032 1.027

50 20 7 28 1 1.112 1.052 0.939 0.888 1.075 0.861 1.090 0.958
40 7 28 1 1.025 1.018 0.992 0.978 1.016 0.927 1.095 1.073
80 9 36 1 1.016 1.015 1.003 0.981 1.009 0.952 1.067 1.033
160 13 52 1 1.006 1.005 1.000 0.996 1.018 1.002 1.034 1.024

100 20 10 40 1 1.203 1.113 0.894 0.861 1.208 0.846 1.008 0.917
40 10 40 1 1.021 1.014 0.972 0.962 1.048 0.911 1.076 1.059
80 10 40 1 1.013 1.011 0.998 0.978 1.007 0.952 1.068 1.034
160 13 52 1 1.006 1.005 1.000 0.994 1.007 1.009 1.037 1.025

200 20 10 40 1 1.184 1.107 0.916 0.889 1.212 0.869 1.047 0.965
40 14 56 1 1.018 1.004 0.935 0.931 1.096 0.881 1.032 1.026
80 14 56 1 1.006 1.005 0.990 0.981 1.032 0.952 1.058 1.039
160 14 56 1 1.007 1.007 0.998 0.989 1.009 1.014 1.035 1.021

Notes: Same as for Table A1.
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6.4 Additional Empirical Tables and Results

Figure A5: Forecast MSFE Distribution across States

Notes: The dashed vertical line represents the mean of the MSFE across states,
which corresponds to the result displayed in Table 2 for the case of R = 16, P = 33
in the “Forecast” column.
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Figure A6: Forecast MSFE Distribution across States, Relative to Panel AR(1)

Notes: Values less than one correspond to cases in which a given method improves
over the panel AR(1) method. The dashed vertical line represents the mean of
the relative MSFE across states.
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Figure A7: Nowcast MSFE Distribution across States

Notes: The dashed vertical line represents the mean of the MSFE across states,
which corresponds to the result displayed in Table 2 for the case of R = 16, P = 33
in the “Nowcast” column.
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Figure A8: Nowcast MSFE Distribution across States, Relative to Panel AR(1)

Notes: Values less than one correspond to cases in which a given method improves
over the panel AR(1) method. The dashed vertical line represents the mean of
the relative MSFE across states.
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Figure A9: Backcast MSFE Distribution across States

Notes: The dashed vertical line represents the mean of the MSFE across states,
which corresponds to the result displayed in Table 2 for the case of R = 16, P = 33
in the “Backcast” column.
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Figure A10: Backcast MSFE Distribution across States, Relative to Panel AR(1)

Notes: Values less than one correspond to cases in which a given method improves
over the panel AR(1) method. The dashed vertical line represents the mean of
the relative MSFE across states.
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Table A10: Subgroup Categories for States

Subgroups States

Rust Belt Illinois, Indiana, Michigan, Ohio, Pennsylvania, West Virginia,
Wisconsin

Energy-producing Alaska, Colorado, Louisiana, North Dakota, Oklahoma, Texas,
Wyoming

Northeast Connecticut, Maine, Massachusetts, New Hampshire, New Jersey,
New York, Pennsylvania, Rhode Island, Vermont

Midwest Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri,
Nebraska, North Dakota, Ohio, South Dakota, Wisconsin

South Alabama, Arkansas, Delaware, Florida, Georgia, Kentucky,
Louisiana, Maryland, Mississippi, North Carolina, Oklahoma,
South Carolina, Tennessee, Texas, Virginia, West Virginia

West Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana,
Nevada, New Mexico, Oregon, Utah, Washington, Wyoming
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