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Abstract

We develop a new test for threshold-type regime changes in the risk exposures in port-

folios with a large number of �nancial assets whose returns exhibit an approximate factor

structure. Unlike existing procedures to detect discrete shifts in factor models, our test is

robust to regime-speci�c second moment of the common factors. We rely on an auxiliary

threshold regression: we take a weighted cross-sectional average of the cross-sectional units;

we estimate the factors from the original model under the null hypothesis of no regime

changes; we construct a Lagrange multiplier statistic to test for threshold e¤ect in the aux-

iliary regression. Numerical results show the good �nite sample properties of our procedure.

The empirical analysis uncovers the dynamics of portfolio weights and diversi�cation bene-

�ts in factor mimicking portfolios across di¤erent regimes.
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1 Introduction

Are risk exposures in large dimensional factor models for �nancial returns constant over time?

We answer this question by proposing a novel test for recurring regime changes in large di-

mensional factor models estimated by asymptotic principal components.1 The test is robust

to regime-speci�c second moment of the factors: it is thus suitable to detect recurring regime

changes in risk exposures in portfolios with a large number of �nancial assets.

Large dimensional factor models describe the sources of common variations in vast datasets

of �nancial variables: as stressed in Giglio and Xiu (2019), they allow to uncover the true drivers

of asset returns. Seminal contributions such as Connor and Korajczyk (1986; 1988; 1993), Bai

and Ng (2002), Stock and Watson (2002), and Bai (2003), assume that risk exposures are

constant over time. However, as argued in Ang and Timmermann (2012), the maintained

assumption of linearity is likely to be violated in �nancial markets due to structural breaks

or recurring regime shifts: the former are induced by speci�c low frequency episodes such as

regulatory changes and generate nonrecurring regimes; the latter relate to higher frequency

recurring �uctuations.

A well established literature addresses structural instability in large dimensional factor mod-

els: Bates et al. (2013) study the robustness properties of the asymptotic principal components

estimator in the presence of structural instability; Breitung and Eickmeier (2011), Chen et al.

(2014), Corradi and Swanson (2014), Han and Inoue (2015), Yamamoto and Tanaka (2015),

and Barigozzi and Trapani (2020), propose inferential procedures to detect breaks; Cheng et al.

(2016), Baltagi et al. (2017; 2020), Su and Wang (2017), Barigozzi et al. (2018), Ma and Su

(2018), and Massacci (2019), address the estimation problem.

Ang and Timmermann (2012) argue that recurring regime shifts arise in situations where

"history repeats". An established literature considers small dimensional Markov switching factor

models: see Kim (1994) for a seminal methodological contribution; Diebold and Rudebusch

(1996), and Kim and Nelson (1998), for applications to business cycle analysis; and Baele et al.

(2010), and more recently Guidolin and Pedio (2019) and references therein, for studies related

to �nancial markets. As discussed in Chan et al. (2017), a strategy to account for recurring

regimes involves threshold models. To the very best of our knowledge, Massacci (2017) is the

�rst study allowing for regime changes in large dimensional factor models through the threshold

1We consider static factor models, where the dependent variables are static functions of the factors. For
generalized dynamic factor models see Forni et al. (2017) and Barigozzi et al. (2019), and references therein.
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principle. Further related contributions are Liu and Chen (2019), and Liu and Chen (2020).

Regime changes in risk exposures are important for portfolios choice: Lehmann and Modest

(2005) show that risk exposures can be mapped into weights of factor-mimicking portfolios;

regime changes in risk exposures therefore lead to regime-speci�c investment opportunities.

Despite the high number of contributions on large dimensional factors models with structural

breaks, to the very best of our knowledge factor models with recurring regime changes are at a

very early stage and vast scope for further research is available: we make a step in this direction.

We study testing for regime changes: this problem su¤ers from the course of dimensionality.

Following Chen et al. (2014), and Han and Inoue (2015), Massacci (2017) tests for discrete shifts

in the risk exposures by testing for threshold e¤ect in the covariance matrix of the estimated

factors. This strategy su¤ers from a main drawback: the covariance matrix of the true factors has

to be independent of the regimes. This maintained assumption is unlikely to hold in �nancial

markets: Fama and French (1993), and Lustig et al. (2011), show that the common factors

driving the cross section of returns in equity and currency markets, respectively, are returns

themselves; for example, it is violated if the factor volatility process follows the threshold

GARCH model of Glosten et al. (1993), and recently studied in Cai and Stander (2020). Should

the covariance matrix of the factors depend upon the regimes, the test would su¤er from size

distortions, which may have severe consequences for portfolio choice: since risk exposures can

be mapped into weights of factor-mimicking portfolios, erroneous detection of regime changes

in risk exposures may lead to sub-optimal asset allocation decisions.

We consider a portfolio of assets and assume that returns follow a factor structure: under

the null hypothesis, returns allow for a linear factor representation; risk exposures experience

threshold-type recurring regime changes under the alternative. We propose a Lagrange multi-

plier test for linearity in the risk exposures that is robust to regime-speci�c second moment of

the factors. Our procedure follows three steps. First, we estimate number of factors and factors

under the null hypothesis. Second, in the unconstrained model we replace the unknown factors

with their estimates and take a weighted cross-sectional average of the returns: this results

in an auxiliary threshold regression where the slope coe¢ cients are weighted averages of the

corresponding risk exposures. Finally, we test for a threshold e¤ect in the auxiliary regression.

Taking a weighted cross-sectional average of the returns transforms the in�nite-dimensional

problem of comparing two matrices of risk exposures into a �nite-dimensional one. We show

that our procedure results in a valid test in terms of size and power: in particular, the test does
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not su¤er from size distortions when the second moment of the factors is regime-speci�c.

Finally, we apply our test to large portfolios of �nancial assets and show that risk exposures

depend on recurring regimes. We map the regime-speci�c exposures to the weights of factor-

mimicking portfolios and derive implications for risk management. We thus contribute to the

literature on portfolio allocation under regime changes, which so far has involved a limited

number of assets: on this respect, see Ang and Bekaert (2002), and Guidolin and Timmermann

(2008). More generally, our paper relates to the growing literature on high dimensional factor

analysis as applied to �nancial markets: see Giglio and Xiu (2019), and references therein.

The rest of the paper is organized as follows. Section 2 de�nes the set-up. Section 3 details

the testing procedure. Section 4 links the test to portfolio choice and diversi�cation. Section 5

performs a set of Monte Carlo experiments. Section 6 provides the empirical analysis. Section

7 concludes. The Appendix collects the technical proofs.

Notation. I (�) is the indicator function. Given a square matrix A, tr (A) denotes the trace

of A. The norm of a matrix A is kAk = [tr (A0A)]1/2 . Given a scalar A, jAj, �A, IA and

0A are the absolute value of A, the A � 1 vector of ones, the A � A identity matrix and

the A � A zero matrix, respectively.
p! and d! denote convergence in probability and

in distribution, respectively. ) denotes weak convergence with respect to the uniform

metric. 
 denotes the Kronecker product. � (�) is the cumulative distribution function

of the standard normal distribution and ��1 (�) is the associated quantile function. b�c is

the integer part of the argument.

2 Set-up

We describe the multi-factor model in Section 2.1, make assumptions on the model in Section

2.2, and discuss in details time-variation in the second moment of the factors in Section 2.3.

2.1 Multi-factor model with regime changes

2.1.1 Model

We consider the model

Rt = I (zt � �)B1ft + I (zt > �)B2ft + et; t = 1; : : : ; T; (1)
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where T denotes the time series dimension; Rt = (R1t; : : : ; RNt)
0 is an N � 1 vector of asset

(excess) returns; ft = (f1t; : : : ; fPt)
0 is the P � 1 vector of latent factors; zt is an observable

variable; � is the potentially unknown threshold value; et = (e1t; : : : ; eNt)
0 is an N � 1 vector

of idiosyncratic errors; Bj =
�
�j1; : : : ;�jN

�0 is the N � P matrix of risk exposures, with i� th
row de�ned as �0ji =

�
�ji1; : : : ; �jiP

�
, for j = 1; 2, and i = 1; : : : ; N .

The speci�cation in (1) belongs to the general class of large dimensional threshold factor

models: see Massacci (2017), Liu and Chen (2019), and Liu and Chen (2020). According to the

threshold principle of Pearson (1900), the regime prevailing at time t depends on the position

of zt with respect to �. For j = 1; 2, the risk exposures Bj and the factors ft are identi�ed up to

a rotation as they both are latent. The model allows for changes in the risk exposures: our test

has power against the alternative hypothesis that the number of factors or the risk exposures

(or both) are regime-speci�c. In the empirical analysis in Section 6 we investigate whether

the number of common factors driving the comovement of equity returns changes between the

regimes identi�ed by the model: the common factors are the sources of systematic risk; a change

in the number of factors implies that the sources of systematic risk depend upon the regime.

Finally, the model in (1) allows for two regimes: this is consistent with Ang and Timmermann

(2012), who focus on two-regime low dimensional models for �nancial markets. Our test has

power against the alternative hypothesis of multiple regimes: however, to the very best of our

knowledge, estimation and inference on multiple regimes in large dimensional factor models has

not been studied and represents an interesting line of future research.

The observable threshold variable zt in (1) drives the recurring regimes. Notice that if

zt = t /T and � 2 (0; 1), then (1) becomes a multi-factor model with a single structural break:

our procedure can be applied also to detect structural instability, although we plan to investigate

this possibility in future work.

2.1.2 Interpreting regime changes

Ang and Timmermann (2012) study recurring regime changes in �nancial markets in low di-

mensional settings. We extend their arguments to a high dimensional framework: in particular,

we consider the e¤ect of regime changes in risk exposures on comovement among asset returns.

Given (1), let ct = I (zt � �)B1ft+I (zt > �)B2ft be the P�1 vector of common components

driving the comovement among the N � 1 elements of Rt. For ease of exposition, let fftgTt=1
be an independently and identically distributed sequence: it follows that E (ctc0t jzt � � ) =

5



B1E (ftf
0
t)B

0
1 and E (ctc

0
t jzt > � ) = B2E (ftf 0t)B02. Therefore, regime changes in risk exposures

lead to a shift in the covariance structure of the common components. The model in (1) matches

the asymmetric cross-sectional dependence in asset returns: this extends Ang and Timmermann

(2012), who focus on the low dimensional case through the analysis of pairwise correlation.

2.2 Assumptions

We now introduce the assumptions on the model in (1): these are valid both under the null and

under the alternative hypothesis, which are stated and discussed in details in Section 3.1. Let

I1t (�) = I (zt � �) and I2t (�) = I (zt > �). For j = 1; 2, denote P 0, B0j =
�
�0j1; : : : ;�

0
jN

�0
, �0

and f0t the true values of P , Bj , � and ft, respectively. De�ne f
0
jt

�
�0
�
= Ijt

�
�0
�
f0t , for j = 1; 2.

Assumption A1 - Factors. E


f0t 

4 <1; for j = 1; 2, T�1PT

t=1 f
0
jt

�
�0
�
f0jt
�
�0
�0 p! �0fjj

�
�0; �0

�
as T !1, for some P 0 � P 0 positive de�nite matrix �0fjj

�
�0; �0

�
.

Assumption A2 - Risk Exposures. For j = 1; 2, and i = 1; : : : ; N ,


�0ji

 � �� < 1, and


B00j B0j /N �D0

Bjj




! 0 as N !1, for some P 0 � P 0 positive de�nite matrix D0
Bjj .

Assumption A3 - Time and Cross Section Dependence and Heteroskedasticity. There

exists a positive M <1 such that for j = 1; 2, and for all (N;T ),

(a) E (eit) = 0 and E jeitj8 �M for all i;

(b) E
�
Ijt
�
�0
�
Ijv
�
�0
�
eiteiv

�
= � jitv

�
�0
�
with

��� jitv ��0��� � j� jtvj for some � jtv and for

all i, and T�1
PT
t=1

PT
v=1 j� jtvj �M ;

(c) E
h
T�1

PT
t=1 Ijt

�
�0
�
eitelt

i
= �jil

�
�0
�
,
���jll ��0��� �M for all l, and

N�1PN
i=1

PN
l=1

���jil ��0��� �M ;
(d) E

���T�1/2 PT
t=1 Ijt

�
�0
�
eitelt � E

�
Ijt
�
�0
�
eitelt

����4 �M for every (i; l).

Assumption A4 - Weak Dependence between f0t , zt and eit. There exists some positive

constant M <1 such that for all (N;T ),

E

(
N�1

NP
i=1





T�1/2 � TP
t=1
Ijt
�
�0
�
f0t eit

�



2
)
�M; j = 1; 2:

Assumptions A1 to A4 are the natural extensions of Assumptions A to D imposed on linear

factor models in Bai and Ng (2002) and accommodate the threshold e¤ect: they are analogous
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to Assumptions C1 to C4, respectively, in Massacci (2017), to which we refer to for further

comments; notice that we set � = �0 as we are not interested in estimating �0. According

to Assumption A1, factors can have regime-speci�c second moment: Assumption A1 plays a

central role in this paper and we discuss it in details in Section 2.3 below. Assumption A2 implies

that risk exposures are nonstochastic and in each state factors have a nonnegligible e¤ect on

the variance of Rt. Assumption A3 follows Chamberlain and Rothschild (1983) and allows for

some degree of cross-sectional correlation in the idiosyncratic components within each regime:

in particular, it is less restrictive than Assumption 2 in Breitung and Eickmeier (2011), which

requires that eit and elt are independent for all i 6= l to build the suggested pooled Lagrange

multiplier test. Assumption A4 puts an upper bound on the degree of dependence among latent

factors, threshold variable and idiosyncratic components: if f0t , zt and eit are independent of

each other, Assumption A4 is implied by Assumptions A1 and A3(a).

2.3 Regime-dependent factor covariance matrix

Aligned to Assumption A in Bai and Ng (2002), Assumption A1 allows for regime-dependent

second moment of the factors. This contrasts with the literature that tests for discrete shifts in

high dimensional factor models by testing for changes in the covariance matrix of the estimated

factors. Let T�1
PT
t=1 f

0
t f
00
t

p! �0f , where �
0
f is a P

0�P 0 positive de�nite matrix: the existence

of �0f is guaranteed by Assumption A1. De�ne �
0 = E

�
I1t
�
�0
��
. Monitoring the covariance

matrix of the estimated factors requires T�1
PT
t=1 I1t

�
�0
�
f0t f

00
t

p! �0�0f , as stated in Assump-

tion LT2 in Massacci (2017). If zt = t /T , it is su¢ cient to assume that E
�
f0t f

00
t

�
= �0f (i.e., the

second moment of the factors is time-invariant), as imposed in Assumption 2 and Assumption

1 in Chen et al. (2014), and Han and Inoue (2015), respectively. Allowing for heteroskedastic

factors is important when modelling comovement among �nancial asset returns: on this, see for

example Section 1:2:5 in Baele et al. (2010). In particular, Forbes and Rigobon (2002) argue

that regime-dependent second moments play a key role in testing for changes in comovement

among �nancial returns.

3 Testing for regime changes

Section 3.1 carefully explains the null and the alternative hypotheses. Section 3.2 deals with

principal components estimation. Section 3.3 introduces the testing strategy. Sections 3.4 and
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3.5 derive the limiting distributions of the test statistics under the null hypotheses. Section 3.6

looks at the power properties. Section 3.7 outlines the procedure to obtain the critical values.

Section 3.8 analyzes the robustness of the test statistics to misspeci�cation in the number of

factors. Section 3.9 compares the size properties of our statistics with those of existing tests

when the factor covariance matrix is regime-dependent.

3.1 Null and alternative hypotheses

We now state the null and the alternative hypotheses H0 and H1, respectively. De�ne

�0i = �
0
2i � L0�01i; i = 1; : : : ; N;

where L is a P 0�P 0 full rank matrix: for i = 1; : : : ; N , �0i measures the deviation between the

risk exposures in B02 and those in the linear rotation B
0
1L of B

0
1.

H0 : �0i = 0 for some L, for i =
�
N0:5

�
+ 1; : : : ; N: (2)

H1 : For 0:5 < �0 � 1, �0i 6= 0 for any L, for i = 1; : : : ;
j
N�0

k
: (3)

The ordering of the cross-sectional units in (2) and (3) is for expositional convenience only

and it not required for the validity of our test. To interpretH0 andH1, the parameter �0 and the

rotation matrix L deserve further discussion. Let us start from �0, which depends on the number

of cross-sectional units subject to a regime change. Under H0, no more than a fraction O
�
N0:5

�
of the cross-sectional units undergoes a regime shift; under H1, at least a fraction O

�
N�0

�
of

the N cross-sectional units experiences a threshold e¤ect in the risk exposures, for 0:5 < �0 � 1.

The parameter �0 determines the convergence rate of the principal components estimator as

applied to a linear model. Bates et al. (2013) show that if at most a fraction O
�
N0:5

�
of the

series undergo a structural break in the risk exposures then the principal components estimator

as applied to the misspeci�ed linear model achieves the same Bai and Ng (2002) convergence

rate CNT = min
np
N;
p
T
o
. Massacci (2017) proves that the convergence rate of the principal

components estimator as applied to the misspeci�ed linear model when the data are generated

according to (1) is C�
0

NT = min
np
N;
p
T ;N1��0

o
: C�

0

NT = CNT under H0; the convergence

rate is slower than CNT under H1 for 0:5 < �0 < 1; the estimator is inconsistent for �0 = 1.

The rotation matrix L is due to the rotational indeterminacy issue typical of large di-
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mensional factor models. Under H0, a model with a regime change in the risk exposures is

observationally equivalent to a linear model with a regime change in the covariance matrix of

the factors, the latter scenario being covered by Assumption A in Bai and Ng (2002). Under

H1, a model with a regime change in the risk exposures no longer is observationally equivalent

to a linear model. Notice that H1 includes a regime change in the risk exposures, in the number

of factors, or both: our test thus has power against a more general scenario than the one we

consider for ease of exposition in Assumption A2.

We now link H0 and H1 in (2) and (3), respectively, to the literature on testing for structural

instability in large dimensional factor models. Breitung and Eickmeier (2011) test for the null

hypothesis �0i = 0 for given i by directly testing for equality in the estimated risk exposures:

their test cannot be applied to H0 in (2) as it would reject H0 with probability approaching one

as N !1 because it involves an increasing number of estimated risk exposures. Breitung and

Eickmeier (2011) also propose a pooled LM test for H0 in (2): the test requires independence

in the idiosyncratic errors eit and ejt for all i 6= j; we allow for the more empirically realistic

approximate factor structure. Chen et al. (2014), and Han and Inoue (2015), indirectly test

for H0 in (2) by testing for structural change in the second moment of the factors estimated

from the equivalent linear representation: Chen et al. (2014) follow a regression-based approach

and test for structural stability in a model in which one estimated factor is regressed upon the

remaining estimated factors; Han and Inoue (2015) work directly with the covariance matrix of

the estimated factors. Massacci (2017) adapts the test of Chen et al. (2014) to the threshold

factor model. As pointed out in Section 2.3, looking at estimated factors rather than estimated

risk exposures requires the covariance matrix of the true factors to be regime independent.

Regime changes in the covariance matrix of the true factors are observationally equivalent to a

rotation in the risk exposures. Recall �0f and �
0 as de�ned in Section 2.3: formally, the test in

Massacci (2017) tests for H0 in (2) with L = IP 0 under T�1
PT
t=1 I1t

�
�0
�
f0t f

00
t

p! �0�0f , which

is more stringent than Assumption A1.

The second moment of the common factors in asset returns is unlikely to be independent of

the regime: the Fama and French (1993) three factor model for equity returns includes three

factors, which are returns from investment strategies; Lustig et al. (2011) document a similar

factor structure in exchange rates. In Section 3.9 below we show that tests based on the second

moment of the estimated factors su¤er from size distortion when the covariance matrix of the

true factors depends on the regime. We propose a test aligned to the empirically more plausible
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Assumption A1 in this paper and Assumption A in Bai and Ng (2002).

3.2 Principal components estimation

Based on the considerations about H0 and H1 made in Section 3.1, we estimate the misspec-

i�ed linear model Rt = B1ft + et when regime changes are neglected. Following Bai and Ng

(2002), Stock and Watson (2002), and Bai (2003), we estimate factors and loadings by prin-

cipal components: this is a least squares estimator; as discussed in Bai and Li (2012), it is a

quasi-maximum likelihood estimator when both factors and loadings are treated as parameters.

De�ne F = (f1; : : : ; fT ), and let F0 =
�
f01 ; : : : ; f

0
T

�
be the true value of F. For a given number of

factors P � 1, the objective function in terms of BP1 =
�
�P11; : : : ;�

P
1N

�0
and FP =

�
fP1 ; : : : ; f

P
T

�
is the sum of squared residuals (divided by NT )

S
�
BP1 ;F

P
�
= (NT )�1

TP
t=1

�
Rt �BP1 fPt

�0 �
Rt �BP1 fPt

�
; (4)

where the superscript P on BP1 and F
P denotes dependence on the number of factors. The

estimators for B01 and F
0 are obtained by minimizing S

�
BP1 ;F

P
�
with respect to BP1 and

FP : as discussed in Bai and Ng (2002), for identi�cation purposes this requires concentrating

out either BP1 or FP . As in Massacci (2017), we follow the second route. The estimators

~BP1 =
�
~�
P
11; : : : ; ~�

P
1N

�0
and ~FP =

�
~fP1 ; : : : ;

~fPT

�
for B01 and F

0, respectively, solve

~BP1 ; ~F
P = arg min

BP1 ;F
P
S
�
BP1 ;F

P
�
;

subject to the normalization BP 01 B
P
1 /N = IP . The estimator ~BP1 is equal to

p
N times the

N � P matrix of eigenvectors of the sample covariance matrix �̂R = (NT )
�1PT

t=1RtR
0
t cor-

responding to its largest P eigenvalues. The normalization BP 01 B
P
1 /N = IP implies ~fPt =�

~BP 01 ~B
P
1

��1
~BP 01 Rt = N

�1~BP 01 Rt, for t = 1; : : : ; T .

The estimators ~BP1 and ~FP depend on the number of factors P � 1. The null and the

alternative hypothesis H0 and H1, respectively, a¤ect existing model selection criteria. Given

the loss function S
�
BP1 ;F

P
�
, let ~P be the number of factors estimated by any of the information

criteria of Bai and Ng (2002). Recall �0i = �
0
2i � L0�01i =

�
�0i1; : : : ; �

0
iP 0

�0
, for i = 1; : : : ; N . Let

P 0� be the number of factors p = 1; : : : ; P
0 such that

PN
i=1

���0ip�� = O �N�0
�
, for 0:5 < �0 � 1:

P 0� is the number of factors whose loadings experience an identi�able regime change.

10



Proposition 3.1 Let Assumptions A1 - A4 hold. Then: (i) limN;T!1 Pr
�
~P = P 0

�
= 1 under

H0; and (ii) limN;T!1 Pr
�
~P = P 0 + P 0�

�
= 1 under H1.

Under H0, the true number of factors P 0 is consistently estimated as N;T !1; under H1,

Bai and Ng (2002) information criteria overestimate the number of factors by P 0� . We conjecture

that analogous results hold for other existing criteria applicable to the static factor model: see

Trapani (2018) and references therein. Proposition 3.1 implies that the estimated number of

factors in the linear model ~P depends only on the dynamics of the risk exposures and not on

the structure of the factor covariance matrix: this provides further justi�cation for developing

a test for regime changes that is robust to factor heteroskedasticity.

3.3 Testing strategy

From Section 3.2, ~P � 1 is the estimated number of factors in the linear model Rt = B1ft+ et:
~P is the true number of factors under H0, namely ~P = P 0; ~P =

�
P 0 + P 0�

�
due to neglected

regime shifts under H1. If ~P = 1, a regime shift is ruled out. If ~P > 1, we proceed as follows.

3.3.1 Weighting scheme

Assumption B1 - Weights. There exists a sequence of weights fwigNi=1 such that wi =

O
�
N�1� for i = 1; : : : ; N , and PN

i=1wi = 1.

Assumption B2 - Power.
PN
i=bN0:5c+1wi�

0
i = 0 if and only if

PN
i=bN0:5c+1



�0i 

 = 0.
Assumption B1 draws from Assumption 5 in Pesaran (2006). For a sequence of weights

fwigNi=1 consistent with Assumption B1, Assumption B2 ensures that
PN
i=bN0:5c+1wi�

0
i = 0 if

and only if under H0. This rules out the scenario where the weighted cross-sectional average of

the sequence
�
�0i
	N
i=bN0:5c+1 (i.e.,

PN
i=bN0:5c+1wi�

0
i ) vanishes even if an identi�able regime shift

occurs, namely under H1: the proposed test would not have power in this case. For example,

this happens if the sequence
�
�0ip
	N
i=bN0:5c+1 is symmetric around zero and wi = 1/N , for

p = 1; : : : ; P 0, and i = 1; : : : ; N : in this case,
PN
i=bN0:5c+1wi�

0
ip = 0, for p = 1; : : : ; P

0. Violation

of Assumption B2 is extremely unlikely: the condition
PN
i=bN0:5c+1wi�

0
i = 0 is satis�ed if and

only if
PN
i=bN0:5c+1wi�

0
ip = 0, for p = 1; : : : ; P

0; the weighted averages for all factors thus have

to vanish under H1 for Assumption B2 to be violated. In the empirically relevant scenario in

which the sequence of weights is chosen from a continuum of values, the probability of violating

Assumption B2 is equal to zero. In practice, Assumption B2 thus is a regularity condition

11



that is trivially satis�ed. The weights tilt the distribution of
�
�0i
	N
i=1

and are not unique. The

weights are chosen a priori : an obvious option is wi = 1/N , for i = 1; : : : ; N (i.e., the equal-

weight scheme); if applicable (e.g., in the case of individual stocks), the weight assigned to

an asset may depend on its market capitalization. As shown in Theorems 3.1 and 3.2 below,

the asymptotic distribution of the test statistics under the null hypothesis is independent of

the weights. According to Theorem 3.3, the test is consistent for any weighting scheme that

satis�es Assumption B2.

3.3.2 Test statistics

Based on the weights in Assumption B1, de�ne the cross-sectional weighted averages

�Rwt =
NP
i=1
wiRit; ��wj =

NP
i=1
wi�ji; �ewt =

NP
i=1
wieit; j = 1; 2:

Taking the cross-sectional weighted average of left and right-hand side of (1) leads to

NP
i=1
wiRit = I1t (�)

�
NP
i=1
wi�1i

�0
ft + I2t (�)

�
NP
i=1
wi�2i

�0
ft +

NP
i=1
wieit;

or equivalently

�Rwt = I1t (�) ��
0
w1ft + I2t (�) ��

0
w2ft + �ewt : (5)

under Assumption B1, the null hypothesis H0 implies

NP
i=bN0:5c+1

wi�
0
2i = L

0
NP

i=bN0:5c+1
wi�

0
1i:

Let ~B1 = ~B
~P
1 =

�
~�11; : : : ; ~�1N

�0
and ~ft = ~f

~P
t be the N � ~P matrix of estimated risk

exposures and the ~P � 1 vector of estimated factors, respectively, from Rt = B1ft + et, for

t = 1; : : : ; T : ~BP1 , ~f
P
t and ~P are obtained as in Section 3.2. As in Hansen (1996), we build

a Lagrange multiplier statistic. De�ne ~ft (�) =
h
I1t (�)~f 0t ; I2t (�)~f 0t

i0
. From the auxiliary model

in (5) and for given �, consider the least squares estimator b��w (�) for ��0w =
�
��
00
w1; ��

00
w2

�0
=��PN

i=1wi�
0
1i

�0
;
�PN

i=1wi�
0
2i

�0�0
de�ned as

b��w (�) = hb��w1 (�)0 ; b��w2 (�)0i0 = � TP
t=1

~ft (�)~ft (�)
0
��1 � TP

t=1

~ft (�) �Rwt

�
:

12



For any (�1; �2), de�ne the matrix M̂ (�1; �2) = T
�1PT

t=1
~ft (�1)~ft (�2)

0. The regression scores

kt (�) = ~ft (�) �ewt are estimated under the null hypothesis as ~kt (�) = ~ft (�)e�ewt, where e�ewt =
�Rwt � e��0w1~ft and e��w1 = PN

i=1wi
~�1i. From Newey and West (1987), de�ne: K̂d (�1; �2) =

T�1
PT
t=d+1

~kt (�1) ~kt�d (�2), for d = 0; : : : ; DT , with DT = o
�
T 1/4

�
; 
̂ (�1; �2) = K̂0 (�1; �2) +PDT

d=1w (d;DT )
h
K̂d (�1; �2) + K̂d (�1; �2)

0
i
, where w (d;DT ) = [1� d /(DT + 1)] is the Bartlett

kernel. De�ne the ~P � 2 ~P matrix G =
�
I ~P ;�I ~P

�0. For given �, the heteroskedasticity and
autocorrelation robust Lagrange multiplier test statistic is

dLMHAC

w (�) = T b��w (�)0G hG0M̂ (�; �)�1 
̂ (�; �) M̂ (�; �)�1G
i�1

G0b��w (�) : (6)

For known �0 (i.e., for � = �0) and under the null hypothesis, dLMHAC

w

�
�0
�
has a �2 limiting

distribution with P 0 degrees of freedom as N;T !1 (see Theorem 3.1 in Section 3.4 below).

However, �0 is generally unknown and not identi�ed under the null hypothesis. Following

Hansen (1996), we propose the statistic

supdLMHAC

w = sup
�

dLMHAC

w (�) : (7)

When the idiosyncratic errors are time homoskedastic and do not exhibit serial correlation,

the dLMHAC

w (�) statistic in (6) simpli�es to

dLMw (�) = T
b��w (�)0G ��T�1 TP

t=1

e�e0wte�ewt�G0M̂ (�; �)�1G

��1
G0b��w (�) : (8)

when �0 is unknown, the relevant statistic thus is

supdLMw = sup
�

dLMw (�) :

3.4 Limiting distribution of dLMHAC

w

�
�0
�
under the null hypothesis

Recall D0
B11 in Assumption A2 and that T

�1PT
t=1 f

0
t f
00
t

p! �0f from Section 2.3. Notice that

T�1/2
TP
t=1
Ijt (�) f0t �ewt =

NP
i=1
wi

�
T�1/2

TP
t=1
Ijt (�) f0t eit

�
; j = 1; 2;

13



and de�ne


0jk (�1; �2) = lim
N;T!1

T�1
TP
t=1

TP
v=1

E
�
Ijt (�1) Ikv (�2) f0t f00v �ewt�ewv

�
= lim

N;T!1

NP
i=1

NP
l=1

wiwl

�
T�1

TP
t=1

TP
v=1

E
�
Ijt (�1) Ikv (�2) f0t f00v eitelv

��
;

j; k = 1; 2:

Assumption C1 - Eigenvalues under the Null Hypothesis. The eigenvalues of the P 0�

P 0 matrix
�
D0
B11 ��0f

�
are distinct.

Assumption C2 - Convergence Rates.
p
T /N ! 0 as N;T !1.

Assumption C3 - Central Limit Theorem. For j = 1; 2,

T�1/2
PT
t=1 Ijt

�
�0
�
f0t �ewt

d! N
h
0;
0jj

�
�0; �0

�i
as N;T ! 1, where 
0jj

�
�0; �0

�
is a

positive de�nite matrix.

Assumption C1 is analogous to Assumption G in Bai (2003): it guarantees a unique prob-

ability limit for
�
B00j

~Bj /N
�
, which enters the asymptotic distributions of the test statis-

tics dLMHAC

w

�
�0
�
and supdLMHAC

w de�ned according to (6) and (7), respectively. Assump-

tion C2 restricts the convergence rates to ensure that the inclusion of estimated factors does

not a¤ect the asymptotic distribution of the test statistic. Given Assumption B1, Assump-

tion C3 is a central limit theorem similar to Assumption F4 in Bai (2003) as applied to the

weighted average of T�1/2
PT
t=1 Ijt

�
�0
�
f0t eit, with weights given by wi, for i = 1; : : : ; N : the

covariance matrix 
0jj
�
�0; �0

�
is the weighted average of the asymptotic covariance matrix of

T�1/2
PT
t=1 Ijt

�
�0
�
f0t eit, with weights given by wiwl, for i; l = 1; : : : ; N , and the assumption

that 
0jj
�
�0; �0

�
is positive de�nite is thus not restrictive.

De�ne


0 (�1; �2) =

264 
011 (�1; �2) 
012 (�1; �2)


021 (�1; �2) 
022 (�1; �2)

375 :
by construction, 
012 (�1; �2) = 0P 0 and 


0
21 (�1; �2) = 0P 0 if �1 < �2 and �1 > �2, respectively,

and 
012 (�1; �2) = 

0
21 (�1; �2) = 0P 0 if �1 = �2. Let ~V1 be the ~P � ~P diagonal matrix of the

�rst ~P largest eigenvalues of �̂R = (NT )
�1PT

t=1RtR
0
t in decreasing order; de�ne the P

0 � ~P

rotation matrix ~H1 as

~H1 =
F0F00

T

B001 ~B1
N

~V�1
1 :

Theorem 3.1 Let Assumptions A1-A4, B1, C1-C3 hold. Then dLMHAC

w

�
�0
� d! �2

�
P 0
�
under

H0, provided that 
̂
�
�0; �0

� p!
�
I2 
H0

1

��1

0
�
�0; �0

� �
I2 
H00

1

��1, whereH0
1 = p limN;T!1 ~H1.

14



The asymptotic distribution of dLMHAC

w

�
�0
�
stated in Theorem 3.1 is valid for any weighting

scheme that satis�es Assumption B1. Theorem 3.1 holds under Assumption A1, which allows

for regime-dependent second moment of the true factors f0t . Chen et al. (2014), and Han and

Inoue (2015), test for structural break in the risk exposures by comparing the second moment

of the estimated factors before and after the break: this procedure requires time-invariant

second moment of the true factors, as imposed in Assumption 2 in Chen et al. (2014), and in

Assumption 1 in Han and Inoue (2015), and it implies L = IP 0 in H0 in (2); should the second

moment of f0t be time-varying, the test would erroneously reject the null hypothesis H0 when

in fact H0 is true, as discussed in Section 4.4 in Chen et al. (2014), and in note 4 in Han and

Inoue (2015). Massacci (2017) follows up on Chen et al. (2014), and Han and Inoue (2015), and

tests for a regime change in the risk exposures according to the model in (1) by comparing the

second moment of the estimated factors in the two regimes: the test requires regime-invariant

second moment of the true factors, as imposed in Assumption LT2. In line with the analytical

results in Section 3.9, the results from the Monte Carlo experiment in Section 5.1 show that

tests for linearity based on the second moment of the estimated factors are likely to su¤er from

severe size distortions if the second moment of the true factors is regime-dependent.

3.5 Limiting distribution of supdLMHAC

w under the null hypothesis

De�ne k̂ (�) = T�1/2
PT
t=1

~kt (�) = T
�1/2 PT

t=1
~ft (�)e�ewt. Let k0 (�) be a zero mean Gaussian

process with covariance kernel


0H0
1
(�1; �2) = E

�
k0 (�1)k

0 (�2)
0� = h�2�02 
 �H0

1

��1i

0 (�1; �2)

h
�2�

0
2 


�
H00
1

��1i
;

where H0
1 is as in Theorem 3.1. Further, de�ne

M0 (�1; �2) = lim
T!1

TP
t=1
E

8><>:
264 I1t (�1) f0t
I2t (�1) f0t

375
264 I1t (�2) f0t
I2t (�2) f0t

375
09>=>; =

264 �0f11 (�1; �2) �0f12 (�1; �2)

�0f21 (�1; �2) �0f22 (�1; �2)

375
and

M0
H0
1
(�1; �2) =

h
�2�

0
2 


�
H0
1

��1i
M0 (�1; �2)

h
�2�

0
2 


�
H00
1

��1i
:

Assumption D1 - Mixing Condition and Moment Bound.

(a)
�
�Rwt; f

0
t ; zt

	T
t=1

is strictly stationary and ��mixing, with ��mixing coe¢ cients sat-
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isfying �m = O (m
��) for some � > � /(� � 1) and k � � > 1;

(b) E
n��maxj=1;2 �sup� 

Ijt (�) f0t 

���4ko <1;

(c) E jeitj4k <1.

Assumption D2 - Bracketing. For all �, and for some M <1 and 
 > 0, there exists some

�� such that
n
E
��maxj=1;2 

�Ijt (�)� Ijt ����� f0t eit

��2�o1/(2�) �M ��� � ����
 .

Assumption D3 - Uniform Convergence under the Null Hypothesis. M̂ (�1; �2) and 
̂ (�1; �2)

converge in probability to M0
H0
1
(�1; �2) and 
0H0

1
(�1; �2), respectively, uniformly over

(�1; �2), where M0
H0
1
(�1; �2) and 
0H0

1
(�1; �2) are positive de�nite matrices.

Assumptions D1-D3 are analogous to Assumptions 1-3 in Hansen (1996): in particular, As-

sumption D1(a) applies to the auxiliary threshold regression in (5) and it imposes a stationarity

condition, which allows for regime-speci�c covariance matrix of the factors. The uniform con-

vergence of 
̂ (�1; �2) to 
0H0
1
(�1; �2) is not stringent: factors are consistently estimated from

a linear model under H0 in (2); 
̂ (�1; �2) is a HAC estimator for 
0H0
1
(�1; �2). In particular,


0 (�1; �2) is the weighted average of the covariance kernel of T�1/2
PT
t=1 [I1t (�) ; I2t (�)]

0 f0t eit,

with weights given by wiwl, for i; l = 1; : : : ; N : given the features of 
0 (�1; �2) discussed in

Section 3.4, it is not stringent to assume that 
0
H0
1
(�1; �2) is positive de�nite. Assumptions D1

and D3 jointly imply Assumption A1.

De�ne

LMHAC;0
w (�)

=
h
M0
H0
1
(�; �)�1 k0 (�)

i0
G
h
G0M0

H0
1
(�; �)�1
0

H0
1
(�; �)M0

H0
1
(�; �)�1G

i�1
G0
h
M0
H0
1
(�; �)�1 k0 (�)

i ;
where G0

h
M0
H0
1
(�; �)�1 k0 (�)

i
is a zero mean Gaussian process with covariance Kernel equal

to G0M0
H0
1
(�1; �1)

�1
0
H0
1
(�1; �2)M

0
H0
1
(�2; �2)

�1G.

Theorem 3.2 Let Assumptions A2-A4, B1, C1, C2 and D1-D3 hold. Then k̂H0 (�) ) k0 (�),dLMHAC

w (�)) LMHAC;0
w (�) and supdLMHAC

w
d! supLMHAC;0

w under H0.

The asymptotic distribution of supdLMHAC

w stated in Theorem 3.2 holds for any weighting

scheme described in Assumption B1. The distribution of supLMHAC;0
w is generally unknown;

however, the critical values can be obtained as detailed in Section 3.7.
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3.6 Power properties

Given Proposition 3.1, under H1 in (3) the model in (1) can be equivalently written as2

Rt = B
0
�f
0
�t

�
�0
�
+ et; t = 1; : : : ; T; (9)

where f0�t
�
�0
�
=
h
f00t ; f

0
�2t

�
�0
�0i0

and B0� =
�
B01;�

0
�2

�
, f0�2t

�
�0
�
= I2t

�
�0
�
f0�t and f

0
�t denotes the

factors in f0t with an identi�able regime change in the loadings, and �
0
�2 =

�
�0�21; : : : ; �

0
�2N

�0
is

the N � P 0� matrix of loadings of f0�t when I2t
�
�0
�
= 1. Assumptions A1 and A2 imply that

T�1
PT
t=1 f

0
�t

�
�0
�
f0�t
�
�0
�0 p! �0f�

�
�0; �0

�
as T ! 1 and



B00�B0� /N �D0
B�



 ! 0 as N ! 1,

respectively, where �0f�
�
�0; �0

�
and D0

B� are
�
P 0 + P 0�

�
�
�
P 0 + P 0�

�
positive de�nite matrices.

Let us de�ne: F0�
�
�0
�
=
�
f0�1
�
�0
�
; : : : ; f0�T

�
�0
��
; the principal components estimator ~B�

for B0� as
p
N times the N � ~P matrix of eigenvectors of the sample covariance matrix �̂R =

(NT )�1
PT
t=1RtR

0
t corresponding to its largest ~P eigenvalues; ~V� as the ~P � ~P diagonal matrix

containing the �rst ~P eigenvalues of �̂R in decreasing order. De�ne the
�
P 0 + P 0�

�
� ~P rotation

matrix

~H�

�
�0
�
=
F0�
�
�0
�
F0�
�
�0
�0

T

B00�
~B�
N

~V�1
� ;

and letH0
�

�
�0
�
be the

�
P 0 + P 0�

�
�
�
P 0 + P 0�

�
matrix such thatH0

�

�
�0
�
= p limN;T!1 ~H�

�
�0
�
.

De�ne


0H0
�
(�1; �2) =

n
�2�

0
2 


�
H0
�

�
�0
���1o


0� (�1; �2)

�
�2�

0
2 


h
H0
�

�
�0
�0i�1�

with


0� (�1; �2) =

264 
0�11 (�1; �2) 
0�12 (�1; �2)


0�21 (�1; �2) 
0�22 (�1; �2)

375 ;
where


0�jk (�1; �2) = lim
N;T!1

T�1
TP
t=1

TP
v=1

E
h
Ijt (�1) Ikv (�2) f0�t

�
�0
�
f0�v
�
�0
�0
�ewt�ewv

i
= lim

N;T!1

NP
i=1

NP
l=1

wiwl

�
T�1

TP
t=1

TP
v=1

E
h
Ijt (�1) Ikv (�2) f0�t

�
�0
�
f0�v
�
�0
�0
eitelv

i�
;

j; k = 1; 2 :

2Formally
Rt = I1t

�
�0
�
B0
1f
0
t + I2t

�
�0
�
B0
2f
0
t + et

= B0
1f
0
t +

�
B0
2 �B0

1

� �
I2t
�
�0
�
f0t
�
+ et

= B0
1f
0
t +�

0
�2

�
I2t
�
�0
�
f0�t
�
+ et

= B0
1f
0
t +�

0
�2f

0
�2t

�
�0
�
+ et

= B0
�f
0
�t

�
�0
�
+ et:
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the matrix 
0� (�1; �2) is such that 

0
�12 (�1; �2) = 0P 0+P 0�

if �1 < �2, 
0�21 (�1; �2) = 0P 0+P 0� if

�1 > �2, and 
0�12 (�1; �2) = 

0
�21 (�1; �2) = 0P 0+P 0�

if �1 = �2. Let

M0
� (�1; �2) = lim

T!1

TP
t=1
E

8><>:
264 I1t (�1) f0�t ��0�
I2t (�1) f0�t

�
�0
�
375
264 I1t (�2) f0�t ��0�
I2t (�2) f0�t

�
�0
�
375
09>=>;

and

M0
H0
�
(�1; �2) =

n
�2�

0
2 


�
H0
�

�
�0
���1o

M0
� (�1; �2)

�
�2�

0
2 


h
H0
�

�
�0
�0i�1�

:

Assumption E1 - Eigenvalues under the Alternative Hypothesis. The eigenvalues of the�
P 0 + P 0�

�
�
�
P 0 + P 0�

�
matrix

�
D0
B� ��0f�

�
�0; �0

��
are distinct.

Assumption E2 - Uniform Convergence under the Alternative Hypothesis. M̂ (�1; �2)

and 
̂ (�1; �2) converge in probability toM0
H0
�
(�1; �2) and 
0H0

�
(�1; �2), respectively, uni-

formly over (�1; �2), where M0
H0
�
(�1; �2) and 
0H0

�
(�1; �2) are positive de�nite matrices.

Assumption E1 is similar to Assumption C1 and the former reduces to the latter when

P 0� = 0. Assumption E2 generalizes Assumption D3 when P
0
� > 0. Notice that I1t (�) f

0
�t

�
�0
�
=�

I1t (�) f00t ; I1t (�) I2t
�
�0
�
f00�t
�0
: thus I1t (�) f0�t

�
�0
�
=
�
I1t (�) f00t ;00

�0 for � � �0, and 
0� (�1; �2)

and M0
� (�1; �2) are rank de�cient for some (�1; �2). However,

I1t (�)
�
H0
�

�
�0
���1

f0�t
�
�0
�
=

�
H0
�
�
�0
�
;H0

�2
�
�0
�� �
I1t (�) f00t ; I1t (�) I2t

�
�0
�
f00�t
�0

= I1t (�)H0
�
�
�0
�
f0t + I1t (�) I2t

�
�0
�
H0
�2
�
�0
�
f0�t;

with
�
H0
�

�
�0
���1

=
�
H0
�
�
�0
�
;H0

�2
�
�0
��
, where H0

�
�
�0
�
and H0

�2
�
�0
�
are

�
P 0 + P 0�

�
� P 0 and�

P 0 + P 0�
�
�P 0� matrices, respectively: I1t (�)

�
H0
�

�
�0
���1

f0�t
�
�0
�
= I1t (�)H0

�
�
�0
�
f0t for � � �0,

and positive de�niteness of M0
H0
�
(�1; �2) and 
0H0

�
(�1; �2) in Assumption E2 is not restrictive.

Theorem 3.3 Let Assumptions A1-A4, B1, B2, E1, E2 hold. Then under H1 and as N;T !

1: (a) there exists some
�
P 0 + P 0�

�
�1 nonrandom vector c 6= 0 such that

hb��w1 ��0�� b��w2 ��0�i p!

c; (b) P
hdLMHAC

w

�
�0
�
> c
i
! 1 and P

�
supdLMHAC

w > c
�
! 1 for any constant c 2 R.

Theorem 3.3 resembles Theorem 4 in Han and Inoue (2015). Theorem 3.3(a) shows that the

estimators for
�PN

i=1wi�
0
1i

�0
and

�PN
i=1wi�

0
2i

�0
converge to di¤erent probability limits: this is

why our test detects regime changes in the loadings. Theorem 3.3(b) implies that the probability

limit of
hb��w1 ��0�� b��w2 ��0�i transfers to the dLMHAC

w

�
�0
�
and supdLMHAC

w statistics and
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makes the tests consistent. Theorem 3.3 does not require a priori knowledge of the true number

of factors P 0. According to Remark B in Breitung and Eickmeier (2011), a test for structural

stability that compares estimated risk exposures may lack power when the number of factors

is determined from the entire sample: this is because a factor model with a structural break

admits an equivalent representation with a larger number of factors and constant risk exposures.

By Proposition 3.1, the estimator ~P for P 0 obtained from the entire sample overestimates P 0:

however, Theorem 3.3 shows that our test detects regime changes.

3.7 Fixed regressor bootstrap

The critical values of the asymptotic distribution of supdLMHAC

w cannot be tabulated. We

thus implement the �xed regressor bootstrap of Hansen (1996). For b = 1; : : : ; B: (i) gener-

ate u�bt � IIDN (0; 1), for t = 1; : : : ; T ; (ii) let k̂�b (�) = T�1/2
PT
t=1
~ft (�)e�ewtu�bt; (iii) de�ne

supdLMHAC;�
w;b = sup� dLMHAC;�

w;b (�), where

LMHAC;�
w;b (�)

=
h
M̂ (�; �)�1 k̂�b (�)

i0
G
h
G0M̂ (�; �)�1 
̂w (�; �) M̂ (�; �)�1G

i�1
G0
h
M̂ (�; �)�1 k̂�b (�)

i :

The empirical distribution of
n
supdLMHAC;�

w;b

oB
b=1

approximates the limiting distribution of

supdLMHAC

w under H0. Formally, let P� denote the bootstrap probability measure conditional

upon the original data: the following theorem states the validity of the �xed regressor bootstrap.

Theorem 3.4 (a) Let Assumptions A2-A4, B1, C1, C2, D1-D3 hold and N;T ! 1. Then

for any constant c 2 R+, under H0:

P

"
sup
q2R+

���P� �supdLMHAC;�
w;b � q

�
� P

�
supdLMHAC

w � q
���� > c#! 0:

(b) Let Assumptions A1-A4, B1, B2, E1, E2 hold and N;T ! 1. Then for any constant

c 2 R+, under H1:

P
�
supdLMHAC

w � supdLMHAC;�
w;b > c

�
! 1:

3.8 Robustness to unknown number of factors

Theorems 3.1 and 3.2 require consistent estimation of the number of factors under the null

hypothesis. Theorem 3.3 is valid provided that the dimension P 0+P 0� of the augmented factor
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space is consistently estimated. Proposition 3.1 relies on Bai and Ng (2002) information criteria,

which may overestimate the number of factors in the presence of cross-sectional dependence in

the idiosyncratic errors: on this, see Trapani (2018). We show that our procedure remains valid

when the number of factors is unknown.

For ease of exposition, we generalize Theorem 3.1: Theorems 3.2 and 3.3 can be dealt with

in a similar way. Recall ~fPt from Section 3.2. De�ne ~fPt
�
�0
�
=
h
I1t
�
�0
�
~fP 0t ; I2t

�
�0
�
~fP 0t

i0
and

b��Pw ��0� = �b��Pw1 ��0�0 ; b��Pw2 ��0�0�0 = � TP
t=1

~fPt
�
�0
�
~fPt
�
�0
�0��1 � TP

t=1

~fPt
�
�0
�
�Rwt

�
:

Let M̂P
�
�0; �0

�
= T�1

PT
t=1
~fPt
�
�0
�
~fPt
�
�0
�0
and ~kPt

�
�0
�
= ~fPt

�
�0
�e�ePwt, where e�ePwt = �Rwt �e��P 0w1~fPt and e��Pw1 = PN

i=1wi
~�
P
1i. De�ne K̂

P
d

�
�0; �0

�
= T�1

PT
t=d+1

~kPt
�
�0
�
~kPt�d

�
�0
�
, for d =

0; : : : ; DT , and 
̂Pw
�
�0; �0

�
= K̂P

0

�
�0; �0

�
+
PDT
d=1w (d;DT )

h
K̂P
d

�
�0; �0

�
+ K̂P

d

�
�0; �0

�0i
, with

DT and w (d;DT ) as in Section 3.3. De�ne GP = (IP ;�IP )0. The relevant test statistic is

dLMHAC;P

w

�
�0
�
= T b��Pw ��0�0GP

h
GP 0M̂P

�
�0; �0

��1

̂Pw

�
�0; �0

�
M̂P

�
�0; �0

��1
GP

i�1
GP 0b��Pw ��0�

and it is such that dLMHAC; ~P

w

�
�0
�
= dLMHAC

w

�
�0
�
. De�ne the P 0 � P rotation matrix

~HP
1 =

F0F00

T

B001 ~B
P
1

N

�
~VP
1

��1
;

where ~VP
1 is the P�P diagonal matrix of the �rst P largest eigenvalues of �̂R = (NT )

�1PT
t=1RtR

0
t

in decreasing order: ~HP
1 is such that ~H

~P
1 =

~H1.

Theorem 3.5 Let Assumptions A1-A4, B1, C1-C3 hold. Then dLMHAC; �P

w

�
�0
� d! �2

�
�P
�
un-

der H0 for any a priori chosen number of factors P = �P such that �P � P 0, provided that


̂
�P
w

�
�0; �0

� p!
�
I2 
H0; �P

1

��1

0w

�
�0; �0

� �
I2 
H0; �P 0

1

��1
, where H0; �P

1 = p limN;T!1 ~H
�P
1 .

Theorem 3.5 shows that the dLMHAC; �R

w

�
�0
�
statistic can still give a correctly sized test even

when the true number of factors is neither known nor consistently estimated: when �P > P 0,

the asymptotic distribution �2
�
�P
�
has more degrees of freedom than �2

�
P 0
�
in Theorem 3.1,

and the test may su¤er from a power loss.
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3.9 Discussion of size properties

Chen et al. (2014), Han and Inoue (2015), and Massacci (2017), test for discrete changes in

the factor loadings by testing for a change in the covariance matrix of the estimated factors.

We now explain why this strategy produces size distortions if the covariance matrix of the

true factors is regime-dependent. For ease of exposition, set � = �0 and ~P = P 0. De�ne

�̂fjj
�
�0; �0

�
= T�1

PT
t=1 Ijt

�
�0
�
~ft~f

0
t , for j = 1; 2. Following Han and Inoue (2015), consider

PT
t=1 I1t

�
�0
�
~ft~f

0
tPT

t=1 I1t
�
�0
� �

PT
t=1 I2t

�
�0
�
~ft~f

0
tPT

t=1 I2t
�
�0
�

=
TPT

t=1 I1t
�
�0
��̂f11 ��0; �0�� TPT

t=1 I2t
�
�0
��̂f22 ��0; �0� :

Recall the P 0 � P 0 matrix H0
1 in Theorem 3.1. Given Assumption A1, and under H0 in (2),

T�1
PT
t=1 Ijt

�
�0
�
~ft~f

0
t
p!
�
H0
1

��1
�0fjj

�
�0; �0

� �
H00
1

��1, for j = 1; 2. It follows that
TPT

t=1 I1t
�
�0
��̂f11 ��0; �0�� TPT

t=1 I2t
�
�0
��̂f22 ��0; �0�

p! 1

�0

�
H0
1

��1
�0f11

�
�0; �0

� �
H00
1

��1 � 1

1� �0
�
H0
1

��1
�0f22

�
�0; �0

� �
H00
1

��1
= C;

where �0 = E
�
I1t
�
�0
��
and C is a P 0 � P 0 matrix. Recall T�1

PT
t=1 ftf

0
t

p! �0f as de�ned

in Section 2.3. Unless �0f11
�
�0; �0

�
= �0�

0
f and �

0
f22

�
�0; �0

�
= (1� �0)�0f (namely, the

covariance matrix of the true factors is constant across regimes), C 6= 0P 0 because �0f11
�
�0; �0

�
and �0f22

�
�0; �0

�
are positive de�nite by Assumption A1: under H0, a regime change in the

covariance matrix of the estimated factors would falsely detect a regime change in the loadings

when the covariance structure of the true factors is regime-speci�c. This is aligned to Remark

3 in Baltagi et al. (2017), which emphasizes that the tests for structural stability of Chen et al.

(2014), and Han and Inoue (2015), are not robust to heteroskedasticity of the factors.

Chen et al. (2014), Han and Inoue (2015), and Massacci (2017), rule out size distortions

by imposing that the covariance matrix of the true factors remains constant across states:

this is stated in Assumption 2, Assumption 1 and Assumption LT2, respectively. In line with

Assumption A in Bai and Ng (2002), our test allows for regime-dependent covariance structure

in the true factors: the dimensionality problem is solved by taking cross-sectional averages

according to the weighting scheme in Assumption B1.
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4 Link to portfolio choice and diversi�cation

In (1) the common components I1t (�)B1ft + I2t (�)B2ft and the errors et are sources of sys-

tematic and idiosyncratic risk, respectively. Assumption B1 has implications for portfolio con-

struction: the weights of order 1 /N and Assumption A3(c) guarantee that Var (�ewt) ! 0 as

N ! 1; together with Assumption A3(a), this ensures that idiosyncratic risk is diversi�ed

away in the limit (see Proof of Lemma A.1 in the Appendix). Recall �Rwt as de�ned in (5): as

N !1,
�
�Rwt

	T
t=1

is the sequence of returns from a portfolio that only bears systematic risk;

under H0 in (2) the regime shifts in the loadings are negligible and do not a¤ect the risk pro�le

of this portfolio.

Under H1 in (3) the risk exposures are regime-speci�c and we estimate number of factors,

risk exposures and factors as in Massacci (2017). Let B̂j be the N � P̂ matrix of estimated

regime-speci�c risk exposures, where P̂ is the estimated number of factors, for j = 1; 2. Due

to rotational indeterminacy, without further restrictions B̂j does not allow to identify the sign

of the true risk exposures. In �nancial markets the �rst factor is likely to be a level factor,

as documented in Fama and French (1993), and Lustig et al. (2011), for equity and foreign

exchange markets, respectively. To match the sign of the true risk exposures, we multiply B̂j

by +1 or �1 depending on whether the correlation between the �rst estimated factor and the

return on the market within the corresponding regime is positive or negative, respectively.

We construct portfolio weights from the estimated risk exposures by extending the approach

of Lehmann and Modest (2005) to allow for the presence of regimes: the resulting portfolios

bear no idiosyncratic risk as N !1. Since B̂0jB̂j /N = IP̂ , from Lehmann and Modest (2005)

the N � P̂ matrix of portfolio weights is B̂j
�
B̂0jB̂j

��1
= B̂j /N . The weights B̂j /N do not

necessarily add up to unity: as in Lehmann and Modest (2005), we normalize them to ensure

such a condition is met.

We then study the dynamics of portfolio diversi�cation across the two regimes. We follow

Pukthuanthong and Roll (2009) and measure diversi�cation through the R� squared from the

multifactor model: the higher the R � squared, the lower the bene�ts from diversi�cation as

factors capture a higher degree of comovement across assets.
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5 Monte Carlo analysis

We conduct six experiments to evaluate the �nite sample properties of our test. In line with

Section 3.9, Experiment 1 in Section 5.1 provides a size comparison with the test proposed

in Massacci (2017) when the covariance matrix of the factors depends upon the regimes. We

then turn to a deep analysis of the test we propose in this paper. Experiment 2 in Section

5.2 assesses size and power. Experiment 3 in Section 5.3 focuses on �0, which determines the

number of cross-sectional units subject to threshold e¤ect. Experiment 4 in Section 5.4 studies

how the test performs when the number of factors is unknown. Experiment 5 in Section 5.5

investigates how idiosyncratic components with heavy-tailed distribution a¤ect the �nite sample

properties of the test: this is important in light of Assumption A3(a), according to which the

idiosyncratic components have eight �nite moments. Experiment 6 in Section 5.6 studies how

the dimension of the factor space shapes size and power of the test. Finally, Section 5.7 provides

a discussion of the whole set of results. In all experiments we consider 95% statistical coverage,

which corresponds to 5% size. Let s = 1; : : : ; S refer to the replication; for the generic test

statistic T̂ s, for s = 1; : : : ; S, we report the frequency of violations

v̂ =
1

S

SP
s=1

I
�
T̂ s > q0:95

�
; (10)

where q0:95 is the 0:95 quantile of the distribution of T̂ s under the null hypothesis. We �x

S = 2000 in all experiments.

5.1 Experiment 1: size comparison

5.1.1 Data generating process

The data generating process (DGP) for the observable dependent variables is the linear two-

factor model

Rsit = �
0
1i1f

0s
1t + �

0
1i2f

0s
2t + e

s
it; i = 1; : : : ; N; t = 1; : : : ; T: (11)

We �x the risk exposures �01ip � N (1; 1) in repeated samples, for p = 1; 2. We generate the

factors as

f0spt =
I
�
zst � �0

�
�0f1f

s
ft + I

�
zst > �

0
�
�0f2f

s
ft + �

s
fpth

�0
�
�0f1
�2
+ (1� �0)

�
�0f2
�2
+ 1

i1/2 ; p = 1; 2; t = 1; : : : ; T;
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with fsft � IIDN (0; 1) and �sfpt � IIDN (0; 1), and �0 = 2 �xed in repeated samples. We let

zst = �z+�
s
zt, with �

s
zt � IIDN (0; 1) and �z �xed in repeated samples. Given �

0 = P
�
zst � �0

�
=

P
�
zst � �z � �0 � �z

�
= �

�
�0 � �z

�
, we have �z = �

0 ���1
�
�0
�
: given �0, �z controls for �

0.

In this way,

Var
�
f0spt

��zst � �0 � = �2f1 + 1

�0�2f1 + (1� �0)�2f2 + 1
; Var

�
f0spt

��zst > �0 � = �2f2 + 1

�0�2f1 + (1� �0)�2f2 + 1
;

Corr
�
f0s1t ; f

0s
2t

��zst � �0 � = �2f1

�2f1 + 1
; Corr

�
f0s1t ; f

0s
2t

��zst > �0 � = �2f2

�2f2 + 1
:

we �x �f1 = 1 in repeated samples and de�ne �f = �f2 � �f1 to control for regime changes in

the covariance matrix of the factors: when �f = 0, the factors covariance matrix is independent

of the regimes. Finally, we generate the idiosyncratic components as esit = �
1/2
ii �

s
eit, with �

s
eit �

IIDN (0; 1) and �ii � �2 (1) �xed in repeated samples.

5.1.2 Results

Consistently with the DGP described in Section 5.1.1, we compute dLMw (�) in (8) with equal

weights wi = 1/N , for i = 1; : : : ; N . We set � = �0: under the null hypothesis, dLMw

�
�0
�

has a �2 limiting distribution with R0 degrees of freedom as N;T ! 1 . We also compute

the Lagrange multiplier statistic of Massacci (2017), which we denote dLM f

�
�0
�
: under the null

hypothesis, and provided that the covariance matrix of the factors is independent of the state,

this statistic has a �2 limiting distribution with
�
P 0 � 1

�
degrees of freedom as N;T !1. To

allow for a meaningful comparison, dLM f

�
�0
�
is robust neither to time heteroskedasticity nor

to serial correlation.

Table 1 about here

Table 1 collects the results. We set N = 50; 100, and T = 100; 200; 400. We consider

�0 = 0:15; 0:30; 0:50; 0:70; 0:85 to control for a wide range of regime probabilities. We compute

the size for �f = 0:00; 0:25; 1:00; 1:75. The dLM f

�
�0
�
statistic has the correct size when �f =

0:00, namely when the covariance matrix of the factors is independent of the regimes; the size

distortion becomes more pronounced as �f increases for anyN , T and �0. On the other hand, thedLMw

�
�0
�
statistic always delivers the correct size regardless of the degree of regime-dependence

in the covariance matrix of the factors.
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5.2 Experiment 2: size and power

5.2.1 Data generating process

We compute the size of the test proposed in this paper using the DGP for xsit in (11), with

�01ip � N (1; 1) �xed in repeated samples, and f0spt as in Experiment 5.1, for p = 1; 2. The

threshold variable zst is as in Experiment 1. We let the idiosyncratic components e
s
it be time

and cross-sectionally dependent and heteroskedastic with DGP

esit = �ee
s
i;t�1 + �

1/2
ii

�
1� �2e

�1/2
$seit�

s
eit; esi;�50 = 0; i = 1; : : : ; N; t = �49; : : : ; 0; : : : ; T;

with �e = 0:50 and �ii � �2 (1) �xed in repeated samples. The conditional volatility $seit

follows the GARCH(1; 1) process

�
$seit

�2
= �e1 + �e2

�
$sei;t�1

�2
+ �e3

�
$sei;t�1�

s
ei;t�1

�2
;
�
$sei;�50

�2
= E

h�
$seit

�2i
= 1:

Let �set =
�
�se1t; : : : ; �

s
eN t

�0. We allow for cross-sectional dependence through the �rst order

spatial autoregressive process �set = �G%
s
et, where

�G = G

24 N

tr
�
�
1/2
e;diagGG

0�
1/2
e;diag

�
351/2 ; �

1/2
e;diag = diag

��
�
1/2
11 ; : : : ; �

1/2
NN

�0�
;

with %set � IIDN (0; IN ), G = (IN � gV)�1, where g regulates the degree of cross-sectional

dependence: V = (vil) is a rook-type matrix, namely all elements in V are zero except

vi+1;i = vl�1;l = 0:5, for i = 1; : : : ; N � 2 and l = 3; : : : ; N , with v12 = vN;N�1 = 1. It follows

that Var (esit) =
h
�ii

.�
N�1PN

i=1 �ll

�i
, limN!1Var (esit) = �ii and N�1PN

i=1Var (e
s
it) = 1.

We consider three scenarios: (i) time homoskedastic and cross-sectionally independent idiosyn-

cratic components (CSIe); (ii) time homoskedastic and cross-sectionally dependent idiosyncratic

components (CSDe); (iii) time heteroskedastic and cross-sectionally dependent idiosyncratic

components (CSDHe). Under CSIe we set �e1 = 1, �e2 = 0, �e3 = 0 and g = 0. We build

CSDe by imposing �e1 = 1, �e2 = 0, �e3 = 0 and g = 0:4. We parameterize CSDHe by setting

�e1 = 0:1, �e2 = 0:8, �e3 = 0:1 and g = 0:4. We reduce the e¤ect of the initial values esi;�50 = 0

and $sei;�50 = 1 by discarding the �rst 50 observations in the DGPs for e
s
it = 0 and $

s
eit = 1.
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We obtain the power of the test by simulating the data from the one-factor DGP

Rsit = I
�
zst � �0

�
�01i1f

0s
1t + I

�
zst > �

0
�
�02i1f

0s
1t + e

s
it; i = 1; : : : ; N; t = 1; : : : ; T;

where zst and �
0 are as in Experiment 1. We control for the shift in the risk exposures through

�0i = �02i1 � �01i1, with �01i1 � N (1; 1), and we set �0i = �0, for i = 1; : : : ; N : we obtain the

power for �0 > 0. We generate f0s1t as in Experiment 5.1. The idiosyncratic components e
s
it are

generated under the three scenarios CSIe, CSDe and CSDHe described above and the �rst 50

observations are again discarded.

5.2.2 Results

Table 2 displays size and power for dLMHAC

w (�) in (6) with � = �0, and for supdLMHAC

w in (7) (see

Panels A and B, respectively). In the latter case, in each replication we compute the maximum ofdLMHAC

w (�) by selecting 19 equally spaced quantiles of the empirical distribution of zst , namely

f5%; 10%; 15%; : : : ; 85%; 90%; 95%g, and the true value �0 = 2; we opt for B = 1000 �xed

regressor bootstrap replications. We �x N = 50; 100 in both cases. For dLMHAC

w

�
�0
�
, we set

T = 100; 200; 400 and �0 = 0:15; 0:30; 0:50; we consider T = 100; 200; 400; 1000 and �0 = 0:50

for supdLMHAC

w . Regime shifts in the DGP for f0spt are allowed through �f = 0:00; 1:75, for

p = 1; 2. In computing the power, the threshold e¤ect on the risk exposures is controlled for by

setting �0 = 0:25; 1:00.

Table 2 about here

The empirical size of dLMHAC

w

�
�0
�
matches the theoretical value for T = 400 regardless of N ,

�f , �0 and the DGP of the idiosyncratic components. The power increases in N , T and �0;

other conditions being equal, it is maximized at �0 = 0:50 and under the CSIe scenario. The

power decreases in �f as it becomes harder to identify regime shifts in the loadings from changes

in factor dynamics. The size of supdLMHAC

w improves as T increases; the power depends on �0

and �f in a similar way as that of dLMHAC

w

�
�0
�
. Our test thus has good size and power under

di¤erent scenarios.
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5.3 Experiment 3: �0 and power

5.3.1 Data generating process

We assess the e¤ect of �0 on the power of the test under time heteroskedasticity in the factors.

We take as a starting point Experiment 2 under the CSDHe scenario for the idiosyncratic

components as described in Section 5.2.1; to compute size and power, we depart from the linear

two-factor model and the threshold one-factor model, respectively, in two ways. We generate

the factors f0spt as

f0spt = $
s
fpt�

s
�pt; p = 1; 2; t = �49; : : : ; 0; : : : ; T;

with �s�pt � IIDN (0; 1); the conditional volatility $sfpt follows the GARCH(1; 1) process

�
$sfpt

�2
= �f1 + �f2

�
$sfp;t�1

�2
+ �f3

�
$sfp;t�1�

s
�p;t�1

�2
; p = 1; 2; t = �48; : : : ; 0; : : : ; T;

with �f1 = 0:1, �f2 = 0:8 and �f3 = 0:1, and with starting value
�
$sfp;�49

�2
= E

��
$sfpt

�2�
=

1. Given �0i = �
0
2i1��01i1, we set �0i > 0 for i = 1; : : : ;

j
N�0

k
, and �0i = 0 for i =

j
N�0

k
+1; : : : ; N .

To reduce the e¤ect induced by the initial values, we discard the �rst 50 observations in the

DGPs for esit and f
0s
pt .

5.3.2 Results

Table 3 displays size and power for dLMHAC

w (�) in (6) with � = �0, and for supdLMHAC

w in (7) (see

Panels A and B, respectively). In the latter case, the maximum of dLMHAC

w (�) is computed as in

Section 5.2.2. In both cases, we �x N = 50; 100 and �0 = 0:50. We consider T = 100; 200; 400

for dLMHAC

w

�
�0
�
, and T = 100; 200; 400; 1000 for supdLMHAC

w ; in the latter case, we stick to

B = 1000. In computing the power, we control for the threshold e¤ect through �0i = 0:25; 1:00,

for i = 1; : : : ;
j
N�0

k
, with �0 = 0:60; 0:80; 1:00.

Table 3 about here

For given values of N , T and �0i , the power of both dLMHAC

w

�
�0
�
and supdLMHAC

w monotonically

increases in �0. This result is intuitive: �0 regulates the number of cross-sectional units
j
N�0

k
subject to a regime shift; the higher �0, the higher

j
N�0

k
and, other conditions being equal,

the stronger the overall threshold e¤ect.
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5.4 Experiment 4: unknown number of factors

Table 4 about here

The DGPs to compute size and power are those described in Section 5.3.1: for the power, we

�x �0 = 1. In line with Theorem 3.5, Table 4 displays results for dLMHAC

w

�
�0
�
. In computing

the statistic, we augment the number of estimated factors that would be obtained according to

Proposition 3.1 by two and four units: this gives us �P = P 0 + 2 = 4 and �P = P 0 + 4 = 6 to

compute the size, and �P = 2P 0 + 2 = 4 and �P = 2P 0 + 4 = 6 for the power. The results are

highly encouraging. Regardless of the number of redundant factors, the dLMHAC

w

�
�0
�
statistic

is correctly sized for T = 200; 400, namely for large enough time series dimension. As for the

power, the test preserves its good �nite sample properties.

5.5 Experiment 5: heavy-tailed distribution of idiosyncratic components

Table 5 about here

We study how fat-tailness in the distribution of the idiosyncratic components impact size and

power. We take the DGP in Section 5.3.1 as a starting point and simulate the idiosyncratic

components esit under the CSDHe scenario with �
s
eit � IIDt (d:o:f:), with number of degrees of

freedom d:o:f: = 10; 15; 20: for d:o:f: = 10 the idiosyncratic components still satisfy Assumption

A3(a). As in Experiment 5.4, we report size and power for dLMHAC

w

�
�0
�
; in the case of the power,

we focus on �0 = 1. The results in Table 5 show that the test is correctly sized and has excellent

power properties for all values of the degrees of freedom under consideration: in particular, in

line with Assumption A3(a), the test performs well in �nite samples for d:o:f: = 10.

5.6 Experiment 6: dimension of factor space

Table 6 about here

We assess how the test performs depending on the dimension of the factor space: this is impor-

tant as the number of restrictions grows linearly with the number of factors P 0 both under the

null and under the alternative hypothesis. We employ the DGP described in Section 5.3.1 for

P 0 = 2; 4; 6; 8; 10. We compute the power for �0 = 1 and �0 = 0:25. Given the relatively high

number of factors involved, we conduct the experiment over N = 100; 200, and T = 200; 400.

The results displayed in Table 6 show that the test is correctly sized for (N;T ) = (200; 400),
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namely for su¢ ciently high values of N and T ; in the remaining cases the size slightly declines

in P 0. Regardless of N and T , the test always has excellent power properties.

5.7 Discussion

Our test displays remarkable �nite sample properties. Unlike existing procedures, it is robust

to regime changes in the covariance structure of the factors: this reinforces the contribution of

our paper in relation to the existing literature. The test displays additional highly desirable

features: it has good size and power; it is robust to the inclusion of redundant factors; it is not

a¤ected by idiosyncratic components with heavy-tailed distribution; it performs well regardless

of the true number of factors. Our test thus is a valid tool for empirical work.

6 Empirical analysis

We use our test to study portfolio choice and diversi�cation across regimes in a high dimensional

setting: to the very best of our knowledge, this issue has not been previously addressed in

the literature. Section 6.1 describes data and model speci�cation. Section 6.2 discusses the

estimation results. Section 6.3 addresses the implications for portfolio choice. Section 6.4

presents estimation results from a large dimensional factor model with structural instability:

this allows to highlight the bene�ts of our approach based on recurring regime changes.

6.1 Data and model speci�cation

The dependent variables are daily excess returns Rit from U.S. stock portfolios publicly available

from Kenneth French website.3 We study two groups of variables. We �rst look at 49 industry

portfolios: this choice is aligned to Smith and Timmermann (2020), who employ a set of 30

industry portfolios. We then consider a combined set of N = 255 portfolios: 25 portfolios sorted

by size and book-to-market ratio; 25 portfolios sorted by size and operating pro�tability; 25

portfolios sorted by size and investment; 25 portfolios sorted by book-to-market and operating

pro�tability; 25 portfolios sorted by book-to-market and investment; 25 portfolios sorted by

operating pro�tability and investment; 25 portfolios sorted by size and momentum; 25 portfolios

sorted by size and short-term reversal; 25 portfolios sorted by size and long-term reversal; 30

industry portfolios. These two groups of variables allow us to assess how highly di¤erent cross-

3The data are available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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sectional dimensions and sorting schemes a¤ect the empirical results. Our sample period is

de�ned as January 2, 1985, through February 28, 2020, which gives T = 8862 time series

observations.

We assess the empirical relevance of the threshold variable by monitoring two candidates,

namely the one-day lagged value of the economic policy uncertainty index for the U.S. of Baker et

al. (2016) (EPUt�1) and of the momentum factor (MOMt�1).4 With the former, we look at the

portfolio implications of uncertainty as a predictor of equity market regimes: this complements

Brogaard et al. (2020), who document the e¤ects of economic policy uncertainty on equity

returns. The momentum factor measures the recent performance of the underlying index and it

is replicable in markets for which the uncertainty index may not be available, such as emerging

markets: Asness et al. (2013) show evidence of momentum return premia on several markets

and asset classes; compared to one-period returns, momentum returns are more persistent and

therefore provide a more accurate predictive signal about the regimes. The empirical correlation

between EPUt�1 and MOMt�1 is �0:026: the two threshold variables are thus very mildly

negatively correlated; in this way, we can compare the results from two almost orthogonal

predictive signals. By construction, bad states are identi�ed by high values of EPUt�1 and low

values of MOMt�1, namely EPUt�1 � �̂ and MOMt�1 > �̂, respectively.

The test is carried out using the heteroskedasticity and autocorrelation robust statistic

supdLMHAC

w in (6): due to the daily frequency of the data, the bound on the number of sample

autocovariances is DT = 5; the number of �xed regressor bootstrap replications is B = 1000.

We opt for the weights wi = 1/N , for i = 1; : : : ; N . As detailed in Section 3.3, we �t a linear

factor model to the portfolio returns. We obtain the estimate ~P for the number of factors P 0

using the ICp2 (P ) criterion of Bai and Ng (2002).

Under the alternative hypothesis we estimate the model in (1) and select the number of

factors as proposed in Massacci (2017): the estimator for the threshold parameter is consistent

for any a priori given number of factors greater than or equal to the true number; the ICp2 (P; P )

criterion consistently estimates the true number of factors provided that this does not depend

upon the regimes.5 If this last assumption does not hold, the ICp2 (P; P ) criterion gives an

upper bound on the true number of factors within each state, as the factor space cannot be

4The economic policy uncertainty index of Baker et al. (2016) is available at
http://www.policyuncertainty.com/. The momentum factor is available from Kenneth French website.

5Monte Carlo simulations carried out in Massacci (2017) show that the ICp2 (P; P ) criterion performs better
in �nite samples than the other proposed criteria.
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spanned with an insu¢ cient number of factors: we thus apply the ICp2 (P ) criterion of Bai and

Ng (2002) within each state and set the estimate obtained from ICp2 (P; P ) as an upper bound.

6.2 Results

6.2.1 Industry portfolios

In the case of the 49 industry portfolios, the realizations supdLMHAC

w = 37:598 and supdLMHAC

w =

25:432 for EPUt�1 and MOMt�1, respectively, correspond to p-values equal to 0:000 and 0:004,

respectively: these outcomes provide evidence against the null hypothesis of linearity at any

conventional signi�cance level for both threshold variables under consideration.

In the empirical speci�cation involving EPUt�1, the estimated threshold value is �̂ = 93:859:

the events EPUt�1 � �̂ and EPUt�1 > �̂ occur with sample frequencies approximately equal

to 0:60 and 0:40, respectively. The variable I
�
EPUt�1 > �̂

�
has positive correlation equal to

0:15 with the NBER U.S. recession indicator6: this �nding resembles the results of Henkel et al.

(2011), who show that regimes in stock return dynamics are related to the business cycle. When

we consider MOMt�1, the estimated threshold �̂ = �0:96% identi�es the regimes MOMt�1 � �̂

and MOMt�1 > �̂ with sample frequencies of 0:07 and 0:93, respectively. The correlation

between I
�
MOMt�1 � �̂

�
and the NBER U.S. recession indicator is 0:05: albeit positive, this

number is lower than the corresponding �gure obtained for EPUt�1. For both threshold variables

the estimated number of factors within each regime is equal to 2: we therefore do not �nd any

evidence of a change in the number of factors between the regimes.

Figure 1 about here

In order to provide further interpretation of the regimes identi�ed by EPUt�1 and MOMt�1,

we study the sequences of monthly averages of the dummy variables I
�
EPUt�1 > �̂

�
and

I
�
MOMt�1 � �̂

�
: these are interpretable as the monthly probabilities of being in the bad

state as identi�ed by the corresponding threshold variable and are displayed in Figure 1. The

correlation coe¢ cient between the two sequences is approximately equal to 0:23. Economic pol-

icy uncertainty captures the following noticeable episodes of market distress: the early 1990s;

the turmoil generated by the September 11, 2001, terrorist attack; the aftermath of Lehmann

Brothers collapse in September 2008. As compared to policy uncertainty, momentum misses

6The daily NBER recession indicator is publicly available at https://fred.stlouisfed.org/series/USRECDM .
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the early 1990s, but it generates a spike in October 1987.

Finally, we assess whether the assumptions imposed on the model and stated in Section 2.2

are empirically plausible. In particular, under Assumption A3(a) the idiosyncratic components

eit in (1) have eight �nite moments: this may be restrictive when dealing with heavy-tailed

equity market returns. Let êit be the estimator for eit, for i = 1; : : : ; N and t = 1; : : : ; T .

We assess the empirical validity of Assumption A3(a) in two ways: we study the sequence

(�N)�1
P�
t=1

PN
i=1 jêitj

8, for � = 1; : : : ; T ; we analyze the right tail of the distribution of the

N � T realizations of the positive random variable jêitj8. The original sample of daily excess

returns Rit exhibits outliers, which a¤ect the realizations of jêitj8 when both EPUt�1 and

MOMt�1 are used as threshold variables. In both cases, we winsorize the top 0:5% of the

empirical distribution of jêitj8: the sequence (�N)�1
P�
t=1

PN
i=1 jêitj

8, for � = 1; : : : ; T , does

not exhibit any sizeable structural break; the right-hand side of the empirical distribution of

jêitj8 does not display any noticeable mass concentration apart from the winsorization point.

Since we winsorised only the top 0:5% of the distribution of jêitj8, we interpret these two �ndings

as evidence that Assumption A3(a) is not restrictive for empirical purposes.

6.2.2 Combined portfolios

Evidence of regimes is also found when we consider the larger set of 255 combined portfo-

lios: the test statistics supdLMHAC

w = 155:700 and supdLMHAC

w = 113:920 for EPUt�1 and

MOMt�1, respectively, both have p-values equal to 0:000. In the former case, the threshold

value �̂ = 122:858 splits the sample into the events EPUt�1 � �̂ and EPUt�1 > �̂ with sample

frequencies approximately equal to 0:75 and 0:25, respectively: the event EPUt�1 > �̂ happens

less frequently than it does with industry portfolios; the correlation between I
�
EPUt�1 > �̂

�
and the NBER U.S. recession indicator is 0:16. As for MOMt�1, the estimated regimes are

perfectly synchronized with those from industry portfolios since the estimates for the threshold

value are the same.

Figure 2 about here

Figure 2 plots the monthly averages of I
�
EPUt�1 > �̂

�
and I

�
MOMt�1 � �̂

�
: they have cor-

relation approximately equal to 0:18; the former series signals episodes of distress that are

analogous to those identi�ed from industry portfolios. As for the estimated number of factors,

these remain stable across regimes and are equal to 6 and 7 when EPUt�1 and MOMt�1 are se-
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lected as threshold variable, respectively: as compared to industry portfolios, the higher number

of estimated factors is likely to be due to the additional sorting schemes involved. Finally, the

empirical properties of jêitj8 are analogous to those discussed in Section 6.2.1 for both threshold

variables, which con�rms that Assumption A3(a) is not restrictive.

6.3 Implications for portfolio choice

Regime-speci�c portfolio weights come from a switching strategy that mimics the estimated

factors (see Section 4). The average weight is 1 /N by construction and it is equal to 0:02 and

0:004 in the case of industry and combined portfolios, respectively.

Table 7 about here

Table 8 about here

Tables 7 and 8 provide summary statistics for the resulting portfolio weights, and the correlations

between the two sequences of weights for each factor. In the case of industry portfolios, Table

7 shows that, regardless of the threshold variable, the weights associated to f̂1t have the lowest

standard deviation and all are of positive sign: f̂1t is likely to be an estimated market factor. As

for f̂2t, the corresponding weights allow for long and short positions, since their maximum and

minimum values are positive and negative, respectively; these weights also tend to switch sign

between regimes, as evidenced by the negative correlation between the two sequences. Table 8

shows that analogous arguments hold for the set of combined portfolios: the weights related to

f̂1t are always positive and display very low standard deviation; all other factors lead to both

long and short positions.

Figure 3 about here

Figure 4 about here

As discussed in Section 4, we follow Pukthuanthong and Roll (2009) and study the diver-

si�cation bene�ts through the R� squared of the model. For each of the four combinations of

dependent variables (i.e., returns from industry and combined portfolios) and threshold vari-

ables (i.e., EPUt�1 and MOMt�1) as described in Section 6.1, we compute the R�squared from

the regime-speci�c regressions of each portfolio return on a given factor. We then compute the

average values of the R � squared associated to each factor within each regime. Finally, since
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the estimated factors are mutually orthogonal by construction, the sum of the individual aver-

age R � squared measures diversi�cation. Figures 3 and 4 display the results for industry and

combined portfolios, respectively. In the former case, when zt = EPUt�1 the averages for the

�rst and second factors are 0:48 and 0:04, respectively, for EPUt�1 � �̂, and 0:64 and 0:03 for

EPUt�1 > �̂ (see Panel A in Figure 3): this leads to an average R� squared equal to 0:52 and

0:67 for EPUt�1 � �̂ and EPUt�1 > �̂, respectively; the bene�ts from diversi�cation thus dimin-

ish when economic policy uncertainty is high, as factors become stronger during these periods.

For zt = MOMt�1 the average R� squared is 0:65 and 0:59 for MOMt�1 � �̂ and MOMt�1 > �̂,

respectively (see Panel B in Figure 3) and diversi�cation is less e¤ective when momentum is low.

Given the economic interpretation of the regimes EPUt�1 > �̂ and MOMt�1 � �̂, the results

imply that diversi�cation is weaker in bad times. These �ndings are con�rmed when we look at

the larger set of combined portfolios (see Figure 4): diversi�cation becomes less e¤ective when

EPUt�1 > �̂ or MOMt�1 � �̂, as compared to EPUt�1 � �̂ and MOMt�1 > �̂, respectively.

6.4 Comparison with structural break model

If zt = t /T and � 2 (0; 1) then (1) becomes a multi-factor model with a single structural break:

� and T� = b�T c are the break fraction and the break date, respectively. We conjecture that

our inferential procedure is applicable also in this case: Theorem 3.1 remains valid; Theorem

3.2 needs to be generalized since stationarity of the factors as imposed in Assumption D1(a)

is unlikely to hold in this set up. Our test is informative about the global stability of the

model; however, if the null hypothesis of stability is rejected, it cannot determine the exact

number of breaks. Using a panel of equity returns, Smith and Timmermann (2020) �nd two

and three breaks within the sample period we consider, depending on whether or not the breaks

are cross-sectionally restricted, respectively. Under the maintained assumption of three breaks,

we sequentially estimate their location by �rst estimating one break within the whole sample

period and then one additional break within each resulting subsample: this is an application of

the Bai and Perron (1998) procedure when the number of breaks is known.

Figure 5 about here

The estimated break dates are displayed in Figure 5. Using the set of industry portfolios

we �nd breaks in September 1997, November 2004 and April 2012. The larger set of combined
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portfolios is likely to be more accurate at locating the breaks as it employs the information

stemming from a higher cross-sectional dimension: the estimated break dates fall in June 1999,

August 2003 and July 2010. These three breaks can be related to as many possible sources.

The 1999 break may be due to the Gramm�Leach�Bliley Act of the same year, which repealed

parts of the Glass-Steagall Act of 1933. The 2003 break occurred after the introduction of the

Sarbanes-Oxley Act of 2002, which was enacted following major scandals such as Enron and

WorldCom. The 2010 break may be caused by the Dodd-Frank Act of the same year, which

followed the Great Recession. Structural breaks tend to capture major speci�c events such

as regulatory changes; however, they miss higher frequency �uctuations that may be relevant

to investors, such as those captured by EPUt�1 and MOMt�1. Therefore, recurring regime

changes and structural breaks should not be seen as mutually exclusive events, as they are

likely to coexist.

7 Conclusions

We propose a Lagrange multiplier test for threshold-type regime changes in high dimensional

factor models that is robust to regime-speci�c factor volatility. To reduce the dimensionality of

the problem we work with an auxiliary threshold regression obtained by taking a weighted cross-

sectional average of the returns: we obtain estimates for the factors from the large dimensional

model constrained by the null hypothesis of linearity and we input them into the auxiliary

regression; we then test for a threshold e¤ect in the auxiliary regression. An application to a

large set of equity portfolios illustrates the usefulness of our methodology for portfolio choice

and risk measurement from an ex-post (or in-sample) perspective.

Our work can be extended along several dimensions: two are worth mentioning. To the very

best of our knowledge, the literature on ex-ante (or out-of-sample) portfolio allocation under

regime changes has studied low dimensional problems: see for example Guidolin and Timmer-

mann (2007; 2008). In future work, we plan to implement our test within an out-of-sample asset

allocation exercise in a high dimensional setting: this would extend the in-sample analysis con-

ducted in this paper. Ours is a test for the null hypothesis of global linearity: however, should

the null hypothesis be rejected, the test would not be informative about the actual number of

recurrent regimes. The development of a recursive testing procedure to determine the number

of regimes is at the top of our research agenda.
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A Appendix

A.1 Proof of Proposition 3.1

Starting from (i), by Theorem 3:1 in Massacci (2017) the model in (1) is not identi�ed from the linear model

Rt = B1ft + et under H0. Assumptions A1 - A4 imply Assumptions A - D in Bai and Ng (2002), respectively,

with respect to B0
1 and f

0
t : the result in (i) follows from Theorem 2 in Bai and Ng (2002). As for (ii), Theorem

3:1 in Massacci (2017) implies that the model in (1) is identi�ed from a linear factor model under H1. Consider

Rt = I1t
�
�0
�
B0
1f
0
t + I2t

�
�0
�
B0
2f
0
t + et

=
�
1� I2t

�
�0
��
B0
1f
0
t + I2t

�
�0
�
B0
2f
0
t + et

= B0
1f
0
t + I2t

�
�0
� �
B0
2 �B0

1

�
f0t + et;

where
�
B0
2 �B0

1

�
is a N � 2P 0 matrix with column rank equal to P 0� as N ! 1: the proof of (ii) then follows

along similar steps as those in Theorem 4:1 in Massacci (2017).

A.2 Proofs of Theorems 3.1, 3.2, 3.3 and 3.5

Lemma A.1 Under Assumptions A3(a), A3(c) and B1, �ewt
p! 0.

Lemma A.2 Under H0 and Assumptions A1-A4, ~ft
p! ~H�1

1 f0t , for t = 1; : : : ; T , as N;T !1.

Lemma A.3 Under H0 and Assumptions A2 and B1,
�PN

i=1 wi�
0
2i

�
! L0

�PN
i=1 wi�

0
1i

�
as N !1.

Lemma A.4 Under H0 and Assumptions A1-A4,

(a) C2NT

�
1

T

TP
t=1

Ijt
�
�0
� �
~ft � ~H�1

1 f0t

�
�ewt

�
= Op (1), for j = 1; 2;

(b) C2NT

"
1

T

TP
t=1

Ijt
�
�0
�
~ft

�
NP
i=1

wi�
0
ji

�0 �
f0t � ~H1

~ft
�#
= Op (1), for j = 1; 2.
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Proof of Theorem 3.1. Consider

b��w ��0� =
hb��w1 ��0�0 ; b��w2 ��0�0i0
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By Lemma A.2, ~ft

p! ~H�1
1 f0t . Assumption A1 ensures that

�
F0F00 /T

� p! �0
f as T !1, where �0

f is a positive

de�nite matrix. Following arguments analogous to those in Proposition 1 in Bai (2003),
�
B00
1
~B
~P
1 /N

�
p! Q0

B11
,

where Q0
B11

is an invertible matrix and it is unique by Assumption C1. By Lemma A.3 in Bai (2003), ~V1
p! V0

1,

where V0
1 is a P

0 � P 0 positive de�nite matrix. It follows that ~H1
p! H0
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fQ

0
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�
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��1
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From Lemma A.3, we thus have
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Adding and subtracting terms,
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By Assumption C3, T�1/2
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Taking into account Lemma A.3, in a similar way it may be proved that
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which completes the proof of the theorem.

Proof of Theorem 3.2. The proof of the Theorem is analogous to the proof of Theorem 5:1 in Massacci

(2017) and we sketch the main steps. Similarly to Lemma A.11 in Massacci (2017), for each �
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To prove that k̂ (�)) k0 (�) we show that
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��mixing decay rate under Assumption D1(a). By Assumption B1,
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by Schwarz�s inequality and Assumptions D1(b) and D1(c)
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By Assumption D2,
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which implies that
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Taking into account Lemma A.1,
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Under Assumption B2, it follows that
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Proof of Theorem 3.4. Following the proof of Theorem 2 in Corradi and Swanson (2014), to prove (a) and
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value calculated with respect to the bootstrap probability measure conditional upon the original data.

Proof of Theorem 3.5. Consider the loss function in (4). From the proof of Lemma A.9 in Massacci (2017),
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Proof of Lemma A.1. Under Assumptions A3(a) and B1
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which implies that Var (�ewt) = o (1). Since E (�ewt) = 0 and Var (�ewt)! 0 as N !1, then �ewt
p! 0 as N !1:

this completes the proof of the lemma.

Proof of Lemma A.2. The result follows from Theorem 3.1 in Massacci (2017) and the proof is omitted.

Proof of Lemma A.3. Under H0 and Assumption B1,
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Assumptions A2 and B1 also imply that
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It thus follows that
�PN

i=1 wi�
0
2i

�
! L0
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as N !1, which completes the proof of the lemma.

Proof of Lemma A.4. The proofs of Lemmas A.4(a) and A.4(b) are similar to the proofs of Lemmas A.1(iv)

and A.1(iii) in Bai and Ng (2006), respectively, and they are omitted.
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Table 1: Experiment 1

Panel A: dLM f

�
�0
�
Statistic

N 50 100
�f 0.00 0.25 1.00 1.75 0.00 0.25 1.00 1.75

T �0

0.15 0.0485 0.0285 0.0030 0.0005 0.0530 0.0280 0.0065 0.0010
0.30 0.0535 0.0360 0.0135 0.0045 0.0450 0.0305 0.0090 0.0015

100 0.50 0.0475 0.0475 0.0305 0.0140 0.0555 0.0520 0.0300 0.0115
0.70 0.0540 0.0655 0.0955 0.0820 0.0465 0.0640 0.0830 0.0690
0.85 0.0540 0.0865 0.1750 0.2100 0.0485 0.0800 0.1515 0.1790
0.15 0.0545 0.0290 0.0020 0.0000 0.0545 0.0335 0.0015 0.0000
0.30 0.0500 0.0395 0.0085 0.0015 0.0505 0.0390 0.0080 0.0005

200 0.50 0.0490 0.0465 0.0350 0.0180 0.0515 0.0530 0.0225 0.0105
0.70 0.0635 0.0735 0.1025 0.0945 0.0555 0.0680 0.0850 0.0665
0.85 0.0485 0.0850 0.1815 0.2240 0.0480 0.0810 0.1495 0.1775
0.15 0.0490 0.0275 0.0040 0.0000 0.0490 0.0260 0.0035 0.0000
0.30 0.0570 0.0365 0.0105 0.0015 0.0505 0.0355 0.0085 0.0005

400 0.50 0.0510 0.0525 0.0435 0.0280 0.0585 0.0560 0.0330 0.0110
0.70 0.0560 0.0770 0.1170 0.1205 0.0485 0.0610 0.0765 0.0670
0.85 0.0460 0.0790 0.1760 0.2385 0.0515 0.0760 0.1535 0.1985

Panel B: dLMw

�
�0
�
Statistic

N 50 100
�f 0.00 0.25 1.00 1.75 0.00 0.25 1.00 1.75

T �0

0.15 0.0490 0.0475 0.0465 0.0405 0.0540 0.0545 0.0520 0.0500
0.30 0.0545 0.0545 0.0545 0.0500 0.0515 0.0505 0.0530 0.0500

100 0.50 0.0445 0.0470 0.0500 0.0490 0.0485 0.0460 0.0480 0.0485
0.70 0.0540 0.0525 0.0570 0.0545 0.0570 0.0520 0.0525 0.0530
0.85 0.0505 0.0475 0.0490 0.0450 0.0565 0.0535 0.0525 0.0500
0.15 0.0495 0.0520 0.0555 0.0520 0.0490 0.0500 0.0480 0.0480
0.30 0.0490 0.0495 0.0525 0.0510 0.0460 0.0455 0.0475 0.0475

200 0.50 0.0485 0.0475 0.0425 0.0500 0.0470 0.0455 0.0440 0.0460
0.70 0.0550 0.0550 0.0540 0.0575 0.0495 0.0480 0.0495 0.0505
0.85 0.0500 0.0495 0.0520 0.0540 0.0460 0.0460 0.0495 0.0490
0.15 0.0460 0.0460 0.0450 0.0435 0.0480 0.0475 0.0490 0.0480
0.30 0.0445 0.0440 0.0450 0.0420 0.0545 0.0555 0.0550 0.0580

400 0.50 0.0505 0.0505 0.0470 0.0440 0.0535 0.0530 0.0510 0.0555
0.70 0.0485 0.0485 0.0480 0.0520 0.0585 0.0555 0.0500 0.0505
0.85 0.0595 0.0565 0.0530 0.0535 0.0475 0.0460 0.0445 0.0500

This table presents size results for the dLM f

�
�0
�
statistic of Massacci (2017) and the dLMw (�) statistic as de�ned

in (8) for � = �0. The DGP is detailed in Section 5.1.1. The size is computed over S = 2000 replications according
to (10), with T̂ s = dLMs

f

�
�0
�
;dLMs

w

�
�0
�
.
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Table 7: Industry Portfolios, Portfolio Weights, Descriptive Statistics and Correlations,
January 1985 - February 2020

Panel A: Descriptive Statistics, EPUt�1
EPUt�1 � �̂ EPUt�1 > �̂

f̂1 f̂2 f̂1 f̂2
Std. dev 0.0047 0.9076 0.0048 1.1728
Median 0.0206 -0.2795 0.0205 0.3720
Maximum 0.0287 4.4201 0.0311 0.9663
Minimum 0.0070 -0.5778 0.0103 -5.8593
Skewness -0.3535 3.6119 -0.0181 -3.5119
Kurtosis 0.3210 14.1876 -0.3180 14.3721
Panel B: Descriptive Statistics, MOMt�1

MOMt�1 � �̂ MOMt�1 > �̂

f̂1 f̂2 f̂1 f̂2
Std. dev 0.0059 0.3012 0.0044 2.2883
Median 0.0204 0.1217 0.0204 -0.7432
Maximum 0.0319 0.2947 0.0298 11.9920
Minimum 0.0077 -1.2963 0.0095 -1.6747
Skewness -0.0942 -2.8913 -0.1972 3.8302
Kurtosis -0.5745 9.4633 -0.0833 16.8458

Panel C: Correlations
EPUt�1 MOMt�1

f̂1 f̂2 f̂1 f̂2
Correlations 0.8999 -0.9897 0.9601 -0.9213

For industry portfolios as described in Section 6.1 this table presents: descriptive statistics for the P̂ sequences
of N � 1 portfolio weights associated to the estimated factors f̂p, for p = 1; : : : ; P̂ , for the regimes zt � �̂ and
zt > �̂, with zt = EPUt�1 (Panel A) and zt = MOMt�1 (Panel B); the P̂ correlations between the sequences
of N � 1 portfolio weights associated to the estimated factor f̂p for zt � �̂ and zt > �̂, for p = 1; : : : ; P̂ and
zt = EPUt�1;MOMt�1 (Panel C).
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Figure 1: Industry Portfolios, Monthly Frequencies of Regimes, January 1985 - February 2020
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This �gure shows the monthly averages of the daily indicator functions I
�
EPUt�1 > �̂

�
and I

�
MOMt�1 � �̂

�
(see left and right panel, respectively) for the models with industry portfolios as described in Section 6.1. The
sample period is from January 1985 to February 2020, a total of 422 monthly observations.

Figure 2: Combined Portfolios, Monthly Frequencies of Regimes, January 1985 - February 2020
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This �gure shows the monthly averages of the daily indicator functions I
�
EPUt�1 > �̂

�
and I

�
MOMt�1 � �̂

�
(see left and right panel, respectively) for the models with combined portfolios as described in Section 6.1. The
sample period is from January 1985 to February 2020, a total of 422 monthly observations.
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Figure 3: Industry Portfolios, Average Cumulated R � squared
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Panel B: Threshold Variable MOMt�1
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For the models with industry portfolios as described in Section 6.1, this �gure shows the average cumulated
R � squared for the P̂ = 2 estimated factors for threshold variables zt = EPUt�1 (Panel A) and zt = MOMt�1

(Panel B), and regimes zt � �̂ and zt > �̂.
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Figure 4: Combined Portfolios, Average Cumulated R � squared
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For the models with combined portfolios as described in Section 6.1, this �gure shows the average cumulated
R � squared for the P̂ = 6 and P̂ = 7 estimated factors for threshold variables zt = EPUt�1 (Panel A) and
zt = MOMt�1 (Panel B), respectively, and regimes zt � �̂ and zt > �̂.
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Figure 5: Industry and Combined Portfolios, Estimated Break Dates, January 1985 - February 2020
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This �gure shows the estimated break dates for the models with industry and combined portfolios as described
in Section 6.1. The sample period is from January 1985 to February 2020.
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