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Abstract

In this paper, we analyse persistent and possibly non-stationary pro-

cesses that have the potential to characterise volatility better than station-

ary alternatives. We discuss in detail both the conditions needed for their

consistent estimation and conditions that enable the use of standard ARCH

tests to detect presence of stationary volatility after persistent volatility

is taken into account. We provide Monte Carlo evidence that supports

our testing strategy in small samples and present extensive empirical evi-

dence clearly supporting the persistent volatility paradigm, suggesting that

stationary time–varying conditional volatility is less pronounced than pre-

viously thought. Finally, results from an out-of-sample forecasting exercise

are presented, that support our proposed persistent volatility paradigm.
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1 Introduction

Two important issues widely discussed in empirical econometric analysis for

macroeconomics and finance, over the last 25 years, are structural change and

volatility modelling. Starting with the seminal work of Engle (1982), volatility

modelling has developed into a large topic of study - perhaps the major pre-

occupation of financial econometrics. Most work has produced models that are

stationary but, crucially, allow for time variation in conditional variances. There

are two important groups of parametric models used to model volatility. Firstly,

the generalised ARCH class, where specific models contain a single innovation

process and, secondly, Stochastic Volatility (SV ) models, where the conditional

variance is treated as a latent variable and more than one innovation processes

enter the model.

Empirical work though, has repeatedly concluded that variation in volatility

can be extremely persistent. Such a finding is not easily accommodated within the

above stationary model classes. The challenge is revealed in observed parameter

estimates that are close to the boundary of stationarity. This integrated GARCH

effect, see e.g. Mikosch and Stărică (2004), can be caused by structural change

in the unconditional variance, where it changes either smoothly or abruptly over

time. So it is possible that once allowed for, volatility can be best characterised

by persistent, and possibly nonstationary processes. There is a growing literature

that tries to characterise volatility using processes that allow for gradual change

in the unconditional variance. First, we succinctly summarise the main ways this

is addressed in the literature, and then present our main contributions.

The first line of research, following recent work on structural change, has fo-

cused on paradigms coming from the statistical literature, such as the work of

Priestley (1965) and Dahlhaus (2000), where processes are smooth deterministic

functions of time. Dahlhaus, Rao, et al. (2006) proposed the locally stationary

time-varying ARCH model, where stationarity is assumed locally, but the process

is globally nonstationary. Along the same lines Van Bellegem and Von Sachs (2004)

proposed another smooth deterministic model, where they assumed that volatil-
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ity is multiplicatively decomposed into a stationary and nonstationary part. The

assumption that there is a nonstationary part that could at least partially drive

the volatility, has recently permeated in standard ARCH (stationary) models as

well. Specifically, Engle and Rangel (2008), used exponential splines to specify the

nonstationary part. Brownlees and Gallo (2009) followed closely using a different

version of splines. Mazur and Pipień (2012), used the Fourier Flexible form of

Gallant (1984), and finally, in a series of papers Amado and Teräsvirta (2013) and

Amado and Teräsvirta (2017), suggested the use of a linear combination of logistic

functions and their generalisations.

While the above characterisations provide an avenue to describe and estimate

nonstationary processes for the volatility process, either with kernel type methods

or semi-parametrically, there is no clear way to separate the two kinds. Further,

the above characterisations are tied to either parametric forms for the nonstation-

ary component or are subject to be smooth deterministic functions of time, which

disallows the use of stochastic components.

It is in this context that this paper makes a number of contributions. First,

we discuss possible setups for processes that are persistent and can potentially

account for the persistence of volatility observed in data. Then, we use ideas

from recent work in the structural change literature to discuss how persistence,

perhaps surprisingly, allows estimation of the unobserved volatility process without

strong parametric assumptions and the requirement that they are smooth and

deterministic functions of time1. While such a focus on smooth deterministic

functions of time allows estimation using kernel methods, it is not satisfactory as

it does not allow for stochastic elements that can provide a richer representation.

Recent work by Giraitis, Kapetanios, and Yates (2014) address this by showing

that as long as a process satisfies a smoothness and boundedness (or moment)

condition, then it can be stochastic but still estimable using kernel estimation.

This opens up the possibility that such processes may adequately fit the observed

behaviour of time-varying volatility, being clearly more persistent than stationary

1see e.g. Priestley (1965), Dahlhaus (2000), Kapetanios and Yates (2008) and Van Bellegem

and Von Sachs (2004), among others.

3



processes. In fact this persistence is their most distinctive characteristic. To

appreciate this, it is important to focus on the estimation strategy considered

by Giraitis, Kapetanios, and Yates (2018). They essentially ask the following

question: Assuming a decomposition of the form yt = htut, for some observed

process yt, what properties should ht have, so that h2t can be consistently estimated

by, essentially, a rolling window type mean estimation of y2t , with an expanding

window size? It follows that the answer cannot lie within the class of stationary

processes whose squares satisfy a law of large numbers. As a result, the vast

majority of stationary models do not qualify. Instead, the answer seems to be

that a process has to change slowly, in the sense that |ht − hs| has to be small.

Further, and for obvious reasons, it has to be bounded, a condition that disallows

the use of random walks, which would otherwise be of great relevance due to their

persistence. However, a normalised, and therefore bounded, random walk provides

a canonical example for the sort of processes we have in mind.

The ability to consistently estimate ht if it is persistent but not otherwise,

provides a clear avenue for a strategy to separate stationary from persistent pro-

cesses, that is clearly missing from the literature. If the unobserved volatility of a

process yt is persistent then it can be estimated and then the rescaled series yt/ĥt

can be tested for the presence of time varying stationary volatility using exist-

ing standard ARCH tests. If there is only persistent volatility, the tests will not

reject. If there is only stationary volatility, normalisation by the estimate of h2t

will not remove it, since the estimate will simply converge to E(h2t ), and the tests

will reject. Finally, the possibility exists that both the persistent and stationary

volatility components co-exist. Estimation of the persistent part can proceed in

the presence of the stationary part and then again the test will reject. In a second

step, a stationary volatility model can be fitted and estimated. This case is not

covered in this paper and we leave it for future work.

In this paper, we discuss in detail conditions needed for consistent estimation

of persistent volatility scaling factor ht and further, conditions that enable the use

of standard ARCH tests to separate persistent volatility from stationary volatil-
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ity. We provide illustrative Monte Carlo results that support our approach in

small samples. We proceed and present extensive empirical evidence clearly sup-

porting the persistent volatility paradigm, suggesting that stationary time varying

volatility is less pronounced than previously thought and that further conditional

second moments of asset returns change slowly. Finally, results from an out-of-

sample recursive forecasting exercise are presented and found to support the use

of persistent volatility modelling

The remainder of this paper is organised as follows. Section 2 presents our

econometric procedure and theoretical results. Section 3 contains the Monte Carlo

exercise. Section 4 presents the empirical results from implementing our testing

strategy to the data, and from the forecasting exercise. Section 5 concludes. Proofs

are relegated to the appendix.

2 Theoretical considerations

We consider the following white noise model:2

yt = htut, t = 1, . . . , T, (2.1)

where ut is a stationary sequence of uncorrelated random variables with Eut = 0,

Eu2t = 1, and ht is a persistent scale factor (stochastic or deterministic). We

assume that sequences {ut} and {ht} are mutually independent. Then

cov(yt, ys) = E[hths]E[utus] = 0 for t 6= s.

Given observations y1, ..., yT , our objective is to test for the presence of conditional

heteroscedasticity (ARCH effect) in u2t , i.e. to determine whether ut is an i.i.d

noise or dependent random variables which in addition to ht contributes in (2.1)

a stationary conditional e.g. GARCH type volatility E[u2t |ut−1, ut−2, ...]. Since

2This model abstracts from the general case of a model with a specified conditional mean

and time varying volatility of the form yt = E (yt|Ft−1) + htut, t = 1, . . . , T, where Ft−1 is a

sigma field: Ft−1 = σ {ht−1, . . . , h0, ut−1, . . . , u1}, by setting E (yt|Ft−1) to zero for simplicity.

The general case can be handled straightforwardly.
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ut is not observed, we will estimate ht by an estimate ĥt and base testing for

ARCH effects on residuals ût = ĥ−1t yt. Such testing requires uniform consistency

in estimation of u2t by û2t and thus, stronger conditions on (ht, ut) than in point

estimation of ht at time t. This is reflected in Assumptions M and H we make on

ut and ht, in particular the assumption of mutual independence of {h2t} and {u2t}

we impose. The latter clearly holds for a deterministic scaling factor ht.

Assumption M (α-mixing)

1. {ut} is a stationary ergodic sequence with Eut = 0, Eu2t = 1, Eutus = 0 for

t 6= s, and E|u1|θ <∞ for some θ > 6.

2. {ut} is α-mixing with mixing coefficients αk ≤ cφk, k ≥ 1, for some 0 < φ < 1

and c > 0.

Assumption H (Smoothness)

1. Variables h1, ..., hT satisfy the following smoothness condition. For some γ ∈

(1/2, 1],

|ht − hj| ≤ (|t− j|/T )γξtj, t, j = 1, ...., T (2.2)

and for some 0 < α ≤ ∞, c > 0

max
t,j≥1

E[exp(c|ξtj|α] <∞, max
t,j≥1

E[exp(c|ht|α)] <∞. (2.3)

2. There exists a > 0 such that for all t ≥ 1, ht ≥ a > 0 a.s.

3. Variables {ht} and {ut} are mutually independent.

Remark 2.1. 1. Condition (2.2) in Assumption H implies that the volatility

process ht drifts slowly in time, which essentially rules out explosive behaviour.

This is a widely used assumption in the literature. It allows the use of both

deterministic varying process of the form ht = g(t/T ), where g(·) is a Lipschitz

smooth function with parameter 1/2 < γ ≤ 1, i.e. |g(x) − g(y)| ≤ C|x − y|γ, as

well as a stochastic process ht.

2. The deterministic specification ht = g(t/T ), t = 1, ..., T is a standard

assumption in the work of Dahlhaus on locally stationary processes (see, e.g.

Dahlhaus (2000) or Dahlhaus and Polonik (2006)). The stochastic time-variation
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of ht was proposed by Giraitis et al. (2014, 2016, 2018), to allow for stochastic pro-

cesses that can be presented as non-stationary random walks. The combinations

between the two, satisfying (2.2) can be summarised as

ht = |T−γ(v1 + ...+ vt) + g(t/T )|+ a, t = 1, ..., T, (2.4)

where a > 0 and vt is a stationary zero mean sequence, see Example 2.1.

3. Our testing procedures will still work for the case of yt with a non-zero

conditional mean; in this case a first step estimator for the mean will be required,

see e.g. Chronopoulos, Kapetanios, and Petrova (2019).

Example 2.1. Let vj be a stationary zero mean sequence of Gaussian

ARFIMA(p, d, q) variables with parameter d ∈ (0, 1/2)3. Set γ = 1/2 + d. If

|g(x)−g(y)| ≤ C|x−y|ν for x, y ∈ (0, 1) where γ ≤ ν ≤ 1 then h2t in (2.4) satisfies

Assumption H with γ = 1/2 + d and α = 2. Indeed, for t > s,

|ht − hs| =
∣∣T−γ∑t

j=1 vj + g(t/T )| −
∣∣T−γ∑s

j=1 vj + g(s/T )
∣∣

≤ |T−γ
∑t

j=s+1 vj|+ |g(t/T )− g(s/T )| ≤ (|t− s|/T )γ|ξts|+ C(|t− s|/T )γ

where ξtj = (t−s)−γ
∑t

j=s+1 vj is a Gaussian r.v. Since var(ξtj) = var(ξt−j,0)→ v2d

as t− j →∞4, ξtj satisfies (2.2) with γ = 1/2 + d and α = 2. Recall that
∑t

j=1 vj

is ARFIMA(p, 1 + d, q) process.

2.1 Volatility estimation

For the estimation of ht, we follow Giraitis, Kapetanios, and Yates (2018). They

considered estimation of ht in the context of VAR(1) model. We show that in the

model described in (2.1) and under Assumptions H and M, h2t can be consistently

estimated as

ĥ2t = K−1t

T∑
j=1

b|t−j|y
2
j , Kt =

T∑
j=1

b|t−j|, t = 1, ..., T, (2.5)

where b|t−j| = K((t − j)/H) are kernel weights. K(·) is assumed to be a non-

negative and bounded function, with piecewise bounded derivative, and H is a

3see Chapter 7 in Giraitis, Koul, and Surgailis (2012)
4see Proposition 3.3.1 in Giraitis, Koul, and Surgailis (2012)
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bandwidth parameter that satisfies H = o(T ), as T → ∞. Commonly used

examples of K(x) include:

K(x) = (1/2)I(|x| ≤ 1), flat kernel,

K(x) = (3/4)(1− x2)I(|x| ≤ 1), Epanechnikov kernel,

K(x) = (1/
√

2π)e−x
2/2, Gaussian kernel.

The first two kernel functions have finite support, whereas the Gaussian kernel

has infinite support. We further assume that on its support,

K(x) ≤ C(1 + xν)−1, |(d/dx)K(x)| ≤ C(1 + xν)−1, x ≥ 0 for some ν > 3, C > 0.(2.6)

Under this setup, in Lemma B2 we show that

|ĥ2t − h2t | = Op

(
(H/T )γ +H−1/2

)
, (2.7)

and in Lemma A3 using Dendramis, Giraitis, and Kapetanios (2021) results we

show uniform convergence

max
t=1,...,T

|ĥ2t − h2t | = oP (1). (2.8)

The uniform convergence result on the asymptotic consistency in the estimation

of ĥt, at a non-parametric rate, will prove useful in our testing procedure for

distinguishing between persistent and stationary volatility that follows.

2.2 Testing

In this subsection we consider how our strategy for discriminating between persis-

tent and stationary volatility works. First, let us briefly summarise the most basic

tests used in testing for the presence of ARCH effects for a stationary sequence

of uncorrelated variables yt = htut with ht = const.

To test for ARCH effect in u2t , we use the test Lagrange Multiplier (LM) test

by Engle (1982) which is similar to the LM test for autocorrelation. We fit to u2t

an AR(p), p ≥ 1 model

u2t = β0 + β1u
2
t−1 + ...+ βpu

2
t−p + ηt (2.9)
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where β0 > 0 and test the following null hypothesis:

H0 : β1 = β2 = . . . = βp = 0

against the alternative

H1 : βj 6= 0 for some j = 1, ..., p.

Engle (1982) derived a Lagrange Multiplier (LM) statistic for testing H0, based

on TR2, where T is the sample size and R-squared is obtained from the auxiliary

regression of u2t on a constant and u2t−1, . . . , u
2
t−p. Under H0 (ut ∼ i.i.d.), the LM

statistic follows asymptotically a χ2
p distribution. Further tests, such as the Wald

and Likelihood ratio, have been shown to be asymptotically equivalent to the LM

test. Through testing, the literature mainly tries to address two distinct prob-

lems: i) the misspecification of the conditional mean, see e.g. the discussion in

Bera and Higgins (1993) and ii) the correct specification of the volatility process.

Our work naturally falls in the second class, and in essence testing is useful to ad-

dress whether persistent processes, defined as the ones that follow the smoothness

condition (2.2) in Assumption H, provide a better specification for the volatility

process.

Consider the model for yt in (2.1) where ut’s are not observed, and let the

standardised residuals be

ût =
yt

ĥt
, t = 1, . . . , T, (2.10)

where ĥt is defined as

√
ĥ2t of the kernel estimate of the persistent volatility

using the estimator described in (2.5). Our aim is to show that asymptoti-

cally, it is equivalent to test for ARCH effects using the standardised residuals,

û = [û1, û2, . . . , ûT ]′, instead of u = [u1, u2, . . . , uT ]′. Such an equivalence implies

that if a process ht, that follows Assumption H, drives the conditional second mo-

ment, then, under consistent estimation of ht using the estimator ĥt in (2.5), the

standardised residuals, ût = ĥ−1t ut, should behave as white noise. In Theorem 2.4

we show that ût can be used to compute the correlogram of ut and test for absence

of correlation in ut.

Testing for ARCH effects using regression (2.9) for squares û2t , note, that if

stationary processes (co-)drive the volatility via ut, then the normalisation by ĥt
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will not corrupt the properties of testing. In our setup and for p ≥ 1, consider

TS (u) = TR2, the test statistic based on u and TS (û) = TR2 based on the

standardised residuals, û, as described above. The formulas of S (u) and S (û)

are given in (A.1) and (A.2) of the proof. The following Theorem, that is proven

in the Appendix, gives the sufficient condition for LM test for ARCH effects in

squares u2t to be asymptotically valid when applied to û, instead of u.

Denote γk ≡ γu2,k = cov(u2k, u
2
0), k ≥ 0 and set Γp =

(
γ|j−k|

)
j,k=1,...,p

and γp =(
γ1, ..., γp)

′. Denote βp = (β1, ..., βp)
′ = Γ−1p γp, σ

2
p = var(u2p+1− β1u2p− ...− βpu21).

Recall notation γ of the smoothness parameter of ht in (2.2). Notation an << bn

means an = o(bn). Notice that Γ−1p exists5.

Theorem 2.1. (a) Let yt follow (2.1) where ht and ut satisfy Assumptions H and

M. Suppose that H satisfies

T 1/2 << H << T 1−(1/4γ). (2.11)

Then, for any p ≥ 1, the test statistics TS(u) and TS(û) corresponding to regres-

sion (2.9) on squares u2t , have the following property

S(û) = S(u) + oP (1) = σ−2p β
′
pΓpβp + oP (1). (2.12)

(b) If {ut} is also an i.i.d. sequence, then for any p ≥ 1, βp = 0, and

TS(û) = TS(u) + oP (1)→D χ2
p. (2.13)

This theorem shows, that the alternative H1 : βp 6= 0, is equivalent to γp 6= 0 and

detected with the rate T . Indeed, β′pΓpβp = γ ′pΓ
−1
p γp, and

β′pΓpβp ≥ ||βp||2λmin, γ ′pΓ
−1
p γp ≥ ||γp||2λ−1max,

where 0 < λmin ≤ λmax < ∞ are the smallest and largest eigenvalues of Γp and

||βp|| denotes the Euclidean norm of βp. It also shows that βp = Γ−1p γp in the

”true” value of βp estimated by OLS in regression (2.9).

5The existence of Γ−1
p follows from Lemma 3.1(i) in Dalla, Giraitis, and Phillips (2020)

because the stationary sequence {u2t} has spectral density. The latter follows from the absolute

sumability of the covariance function γk, see (B.8).
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Recall that Assumption H is satisfied with γ = 1 by deterministic weights ht =

g(t/T ) where g is a continuous piecewise differentiable function with a bounded

derivative. Then assumption (2.11) on bandwidth H becomes

T 1/2 << H << T 3/4. (2.14)

Test statistic TS(û) for ARCH effects in ut is based on regression (2.9) on

squares u2t and requires 6 finite moment of ut, see Assumption M. The same test

based on the regression

|ut| = β0 + β1|ut−1|+ ...+ βp|ut−p|+ ηt (2.15)

allows to reduce the number of moments to E|ut|θ < ∞, θ > 3. The following

theorem shows that the results of Theorem 2.1 remain valid with obvious correc-

tions: TS(u) and TS(û) are computed using |ut| and |ût| instead of u2t and û2t ,

and in (2.12) σp, βp, Γp are defined setting

γk = cov(|uk|, |u0|), σ2
p = var(|up+1| − β1|up| − ...− βp|u1|). (2.16)

Theorem 2.2. The results of Theorem 2.2 remain valid for test statistics TS(u)

and TS(û) obtained from regression (2.15) on |ut| with σp, βp, Γp in (2.12) defined

using (2.16).

In Assumption M, it suffices to assume E|ut|θ <∞, θ > 3 instead of θ > 6.

Similarly, testing for ARCH effects based on regression

ut = β0 + β1ut−1 + ...+ βput−p + ηt (2.17)

results in testing for the presence of correlation of ut at lags 1, ..., p. In such case,

the statistics TS(u) and TS(û) computed using ut and ût instead of u2t and û2t

satisfy the results of Theorem 2.1 with σp, βp, Γp in (2.12) defined correspondingly

setting

γk = cov(uk, u0), σ2
p = var(up+1 − β1up − ...− βpu1). (2.18)

Theorem 2.3. The results of Theorem 2.2 remain valid for test statistics TS(u)

and TS(û) obtained from regression (2.17) on ut with σp, βp, Γp in (2.12) defined

using (2.18).

In Assumption M, it suffices to assume E|ut|θ <∞, θ > 3 instead of θ > 6.
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Next we show that we can can test for absence of correlation in ut using the

correlogram of ût. This is an important step in data analysis where we do not know

in advance whether the series yt = htut we observe is a sequence of uncorrelated

random variables. In particular, before proceeding to testing for ARCH effects in

ut, we may wish first to test for absence of correlation in ut. Next theorem shows

that such testing can be based on ût .

Denote for k = 0, 1, ...

r̂û,k = T−1
∑T

t=k+1(ût − û)(ût−k − û), (2.19)

r̃u,k = T−1
∑T

t=k+1(ut − Eut)(ut−k − Eut−k).

Theorem 2.4. Suppose that assumptions of Theorem 2.1 are satisfied. Then

r̂û,k = r̃u,k + oP (1) = cov(uk, u0) + oP (1), k ≥ 0. (2.20)

(b) In addition, if {ut} is an i.i.d. sequence then

T 1/2r̂û,k = T 1/2r̃u,k + oP (1)→ N (0, (Eu21)
2) k ≥ 1. (2.21)

Moreover, in Assumption M it suffices to assume E|ut|θ < ∞, θ > 3 instead of

θ > 6.

Denote ρ̂û,k = r̂û,k/r̂û,0, k = 0, 1, 2, .... If {ut} is an i.i.d. sequence then (2.21) of

Theorem 2.4 implies that for any m = 1, 2, ...

T 1/2(ρ̂û,1, ..., ρ̂û,m)→D N (0, Im). (2.22)

This shows that using ût we can perform standard tests for absence of correlation

at individual lag k and cumulative Ljung-Box test at lag m as if i.i.d. variables ut

were observed.

Similarly, it can be show that approximation |ût| ∼ |ut| and û2t ∼ u2t allows to

use |ût| and û2t to test for absence of correlation in |ut| and u2t as if |ut| and u2t

were observed. Testing for correlation in |ut| requires E|ut|θ < ∞, θ > 3 while

testing for correlation in u2t requires E|ut|θ <∞, θ > 6.

Notice that no ARCH effects in ut means no correlation in ut and u2t . This is a

slightly weaker assumption than the assumption of the i.i.d. property of ut. The
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later lead to standard approximations (2.13) and (2.22), which are not guaranteed

for non i.i.d. noises ut.

3 Monte Carlo Analysis

In this section we present Monte Carlo findings on the finite sample performance

of the test for the presence of stationary volatility (ARCH effects) in artificially

generated uncorrelated data, given by

yt = htut, ut = σtεt, t = 1, ..., T. (3.1)

We evaluate the rejection frequency (in %) of the test statistics TS(û) for the

presence of a stationary non-constant volatility factor σt. We use sample sizes

T = 200, 400, 800, 1600 and report testing results for the lag order, p = 5. Testing

results for lags p = 1, 10 suggest similar patterns to those discussed below, and

are available upon request. Each experiment involves 5000 replications. After

estimating the persistent scale factor ht of volatility, the test is applied on squares

û2t = y2t /ĥ
2
t , y

2
t and for comparison on u2t . We expect similar empirical size and

power properties, when testing is based on either û2t or unobserved u2t , while the

presence of ht in yt = htεt testing based on y2t leads to detection of spurious ARCH

effects. We report results for four kernel estimates ĥ2t computed with bandwidth

parameters H = T 0.5, T 0.6, T 0.7, T 0.8.

Table 5.1 reports the size and power of the test for the ARCH model yt =

ut = σtεt where the persistent component ht is absent. This model allows to verify

whether estimation of ht introduces any distortions to the empirical size and power

of the standard test for ARCH effects. For σt, ARCH(1) and GARCH(1,1) models

are used:

σ2
t = 1 + βu2t−1, β = 0, 0.2, 0.4, (3.2)

σ2
t = 1 + 0.2u2t−1 + 0.7σ2

t−1. (3.3)

Except for the case of no ARCH effects, β = 0, such yt contains a stationary

volatility component σt which should result in detection of ARCH effects in the

data.
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From the table, it is clear that for β = 0 testing for ARCH effects based on

the residuals û2t achieves the nominal size of α = 5% as both T and H increase

and H meets the requirement T 0.5 << H << T 0.75 of (2.11), and power is good

throughout.

Table 5.2 reports the size and power of the test for yt as in (3.1) with a stochas-

tic persistent factor ht generated by a non-stationary ARFIMA(0, d, 0), d > 1

process I
(d)
t that is re-scaled and bounded away from zero:

ht = T−(d−1/2)|I(d)t |+ 1, d = 1.2, 1.4, 1.5, (3.4)

and σt follows an ARCH(1) model (3.2) with β = 0, 0.2, 0.4. The case β = 0

corresponds to yt = htεt satisfying the null hypothesis of no ARCH effect, i.e.

σt = const.

We assume that {ht} and {ut} are mutually independent. Such ht satisfies

Assumption H with γ = d − 1/2 > 1/2, see Example 2.1. Here the importance

and novelty of our new testing procedure becomes clear. Specifically, we find

that the standard ARCH test based on y2t , which a priory assumes a constant ht,

produces severe size distortions, under the null hypothesis on no ARCH effects

(β = 0). On the contrary, testing using the residuals û2t attains the nominal 5%

size, as T increases and H satisfies the requirement T 0.5 << H << T 1−(1/4γ) for

the range of H in (2.11). The test based on û2t tracks well the power of the test

based on u2t .

Table 5.3 reports testing results for yt as in (3.1) with a deterministic persistent

scale factor, given by

ht = sin(2πt/T ) + 2. (3.5)

σt follows either an ARCH(1) model (3.2) with β = 0, 0.2, 0.4 or a GARCH (1,1)

model given by (3.3). As before, the case β = 0 corresponds to yt = htεt satisfying

the null hypothesis of no ARCH effects which allows the evaluation of the size of

the test. Such ht satisfies Assumption H with γ = 1. This is the least favourable

case for satisfactory performance of the standard ARCH test. We find severe

size distortions when such test is applied directly on y2t . The test based on û2t
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approaches the nominal 5% size as long as H satisfies the range condition T 0.5 <<

H << T 0.75 given in (2.11). Overall, the results of the test based on the residuals

û2t and y2t are similar to those in Table 5.3.

The above simulations are a small part of a much more extensive set of sim-

ulations. These include considering tests for absence of ARCH effects based on

untransformed residuals ût and absolute values of the residuals |ût|, as well as con-

sidering a wide variety of deterministic and stochastic settings for the persistent

factor ht. All these results produce patterns that are similar to those presented

above and are available upon request.

Some general conclusions follow from the simulation study. First we find that

size and power of the test for ARCH effects are not distorted by the estimation of

ht, when ht is constant. Second, the standard ARCH test is severely affected by

the presence of a persistent time varying scaling factor ht; it may suffer severe size

distortions and produce spurious power even for small sample size T . Overall, the

new test on residuals û2t , produces adequate nominal size and power throughout

our experiments, illustrating the usefulness and novelty of the approach.

4 Empirical Analysis

In this section we illustrate how the proposed testing methodology in Section

2 can be applied to real data, to explore the presence or absence of stationary

volatility component σt, besides the persistent component, ht, in data yt presented

as in (3.1). We examine the difference in proportions (in %) of S&P 500 stock

returns that test positive for ARCH effects when: i) the random scale factor ht

is not assumed constant, estimated by a kernel estimate ĥt, and a scale robust

series ût = ĥ−1t yt is used in testing, and ii) ht is assumed constant (equal to 1),

i.e. the implicit assumption in regular ARCH testing. Further, we also explore

one-step-ahead volatility forecasting of var(yt|Ft−1) = h2tσ
2
t in order to assess

how, forecasting methods/models that that allow for the persistent non-stationary

scaling factor ht, compare to commonly used stationary alternatives for σ2
t .

Our data is a panel of T = 1434 weekly observations on N = 505 S&P 500 stock
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prices over the period 08/Jan/1993-27/Dec/20196. Following common practice

we trim non–working days, keep stocks that do not have missing values, and

convert stock prices into returns using log–differencing. After these operations,

we retain T = 1340 observations of N = 254 stocks. Further, we consider fitting

a conditional mean model for stock returns, and for that model we also require

data on the S&P index6, data on the three Fama and French (1993) factors and

the risk free rate, available in French’s website.7

4.1 Testing for ARCH effect in empirical data

Following the literature, we assume that stock returns can be specified by the

model

yit = µit + hituit, uit = σitε, µit = E[yit|Ft−1], var(yit|Ft−1) = h2itσ
2
it. (4.1)

Our aim is to discriminate between persistent, hit, and persistent and stationary

volatility, hitσit, by testing stock returns yit − µit for ARCH effects. Following

testing setup in Section 2, for p = 1, 5, 10, we consider TS (ui), the test statis-

tic based on u2it and TS (ûit) based on the squares û2it of the rescaled residuals,

ûit = ĥ−1it (yit − µ̂it), for every stock i, where µ̂it is an estimate of the conditional

mean, and ĥit is the kernel estimate defined in (2.5), for a range of pre-selected

bandwidths H. We consider the full dataset, from 28/Oct/1994 to 27/Dec/2019,

and the following three subsamples: i) 28/Oct/1994 – 28/Dec/2007, ii) 7/Jan/2000

- 30/Dec/2011 and iii) 7/Jan/2011–27/Dec/2019. We use these subsamples to ex-

amine how the exclusion of highly volatility periods, like the 2008 financial crisis

can affect our testing results. Further, we examine how potential misspecification

of the conditional mean, µit = E(yit|Ft−1) 6= 0 and the inclusion of the estimate µ̂it

of conditional mean build on covariates/factors that are known to proxy well for

sensitivity to common risk factors and capture strong common variation in stock

returns, affect our testing for ARCH effects results. The models we consider to

6Data are obtained from Bloomberg
7http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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estimate the conditional mean µt are the market factor model and the three fac-

tor Fama and French (1993) model8. We report percentage of stocks with ARCH

effects across N = 254 stocks for the baseline model for conditional mean, µt = 0

and the two estimates of the conditional mean, see footnote 7.

Our empirical testing results are presented in Table 5.4. We report the pro-

portion of stocks with ARCH effects across the i stocks, for different bandwidths

H, lags p and subsamples, for both the baseline model, µt = 0, where we do not

estimate the conditional mean µt and set it equal to 0, and where we use the

market factor model and Fama-French model to estimate it. Below, we provide

a discussion on testing in subsamples and an overall comment, for the baseline

model, µt = 0, and the three factor Fama French model for µt.

The 2007 (28/Oct/1994 – 28/Dec/2007) subsample was generally a moderate

period, with the small outlier being the dotcom bubble. During this period we

find that, in the case where we do not estimate the conditional mean, i.e. µt = 0,

the the proportion of stock returns with ARCH effects, detected in the rescaled

squared residuals û2t across stocks, is considerably smaller than in the squared

errors (yt − µt)2, i.e. a drop from 61.42% to 11.02%− 38.19 for different H’s.

The 2011–2019 (7/Jan/2011–27/Dec/2019) subsample, is the most moderate

period we consider. During this period, we still find a drop in proportion of stocks

with ARCH effects between the two tests, corresponding to the base line model,

µt = 0, and Fama French factor model for µt, from 33.86% to 1.57% − 18.50%

across H. It is evident from comparisons with other periods, that the proportion

of stocks with ARCH effects when we do not estimate the conditional mean is

considerably smaller.

The 2000 -2011 (7/Jan/2000 - 30/Dec/2011) subsample, is more turbulent

8The model with a conditional mean, can be written as yt = µt + htut with µt = rf,t +

β1(Rm,t − rf,t) for the market factor model, and µt = rf,t + β1(Rm,t − rf,t) + β2SMBt +

β3HMLt + htεt, for the three factor Fama French model. Rm,t is the market factor, rf,t is the

risk free rate and SMB, HML are the firm size (small-minus-big) and book-to-market (high-

minus-low) factors described in Fama and French (1993). ht can be estimated using the errors

ŷt = yt − µt of the two models, given estimates on βi, i = 1, 2, 3.
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since it contains the 2008 financial crisis. During this period, we find that for

the baseline model, µt = 0, the majority (83.47%) of the stocks test positive for

ARCH effects in squares y2it. Using the test on the rescaled residuals, we again, find

that the proportion of stocks with ARCH effects in squares û2it falls from 83.47%

to 18.11% − 74.02 for different values of H. Similar drops in the proportion of

returns with ARCH effects in squares û2it is observed for the case where a market

factor or the Fama French factors are used to model the conditional mean.

The sample starting on 28/Oct/1994 and ending 27/Dec/2019, is the longest

and most turbulent period we have considered. We abstract from the impact of

the CoViD-19 pandemic, since it is still not clear how it will affect the economy.

During this period we find for the baseline model, µt = 0, almost all (93.31%)

of the stocks test positive for ARCH effects in y2it, and similarly as above, the

proportion stock returns with ARCH effects in the squares û2t of rescaled residuals

drops to 25.98% − 84.65% for different H values. Similar pattern is observed for

two our models for the conditional mean.

Across lags and subsamples, we find that the proportion of returns with ARCH

effects generally falls when testing the squares of the rescaled residuals and in-

creases for the non-rescaled ones. Further, accounting for conditional mean via

the inclusion of covariates leads to a further decrease of this proportion across

sub-samples and lags, which is not an unexpected result, since misspecification

of the conditional mean, is known to affect ARCH testing resulting is spurious

ARCH effects. Overall, these empirical results are in line with our Monte Carlo

experiments. We treat these findings as evidence that stationary volatility factor

is overall considerably less pronounced in the data, than previously thought and

that further, the second moments of asset returns change slowly and persistently

over time.
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4.2 Volatility Forecasting

4.2.1 Forecasting Setup

Our in-sample empirical results suggest that stationary volatility is considerably

less pronounced in real data than what was previously thought. Specifically, we

find that non-stationary processes seem to co-drive the overall latent volatility.

This can naturally have implication for both the estimation and forecasting of

volatility. In this section we explore how this finding affects volatility forecasting,

and we leave the case of estimation for future work.

We assume that stock returns can be specified by the model

yt = htut, t = 1, . . . , T,

where ht is a persistent scale factor that satisfies Assumption H and ut is a sta-

tionary sequence of uncorrelated random variables with appropriate moments. We

re-write ut as

ut = σtεt (4.2)

to make explicit that σ2
t follows some general stationary volatility process. We

proceed to produce volatility forecasts for a variety of model choices for σ2
t . Specifi-

cally, we produce 1-step ahead forecasts of v2t = Et(y2t+1) via a recursive (expanding

window) y1, ...., yt and compare them with a volatility proxy r2t , discussed below.

In our forecasting exercise we consider three approaches to estimate and sub-

sequently forecast volatility. First, we set yt = σtεt, ht = 1, and fit the following

commonly used stationary models in the literature for σ2
t . The models we consider

are: ARCH(1), GARCH(1, 1), the Glosten, Jagannathan, and Runkle (1993)

GARCH, GJR(1, 1, 1), and the random walk stochastic volatility (RW − SV ) of

Ruiz (1994)9. Next, we set yt = htεt, σ
2
t = 1, and use the estimator ĥt described

in (2.5) to model volatility h2t non-parametrically. Because it can be the case that

both types of volatility can co-drive the overall latent volatility, we further use

9For the GJR-GARCH(1,1,1) which is an extension to GARCH(1, 1), σ2
t = ω + β1σ

2
t−1 +

β2I(ut−1 < 0)u2t−1 + β3u
2
t−1. For the RW-SV model, σ2

t = exp (κt/2), where κt = ω+ κt−1 + ηt,

ηt ∼ N(0, 1) and ω ∈ R.
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forecast combinations where at a first step we rescale the squared stock returns

y2s/ĥ
2
s, 1 ≤ s ≤ t using the non-parametric estimate of volatility, ĥs, and subse-

quently fit to them a parametric stationary model σ2
s and produce forecasts σ̂2

t for

σ2
t . Finally we use the latest value of the non-parametric estimate of volatility, ĥ2t ,

and σ̂2
t to produce the overall volatility forecasts, v̂2t = ĥ2t σ̂

2
t , v̂

2
t = σ̂2

t and v̂2t = ĥ2t

in the third, first and the second case.

Generally, we use the ARCH(1) model for performance check, since it is well

known that it does not give good forecasts especially for large T . Hence we also

refrain from doing any forecast combination with it, while we employ combinations

of ĥ2t with the rest of the models. We use the subsamples y1, ..., yt, t ∈ [0.2T, T−1]

to evaluate forecasting performance. Before we present our results there are two

important matters worthy of discussion.

First, because volatility is unobserved, the choice of a well-behaved proxy, to

compare with our forecast, is pertinent. Following Patton (2011), we use the

squared demeaned returns because they have been shown to be an unbiased proxy

for volatility. We acknowledge that while this is an unbiased proxy, it is noisy. This

requires attention when the exercise is about ranking different models in terms of

their performance. Because the results are subject to the proxy, this boils down

in the choice of a ”robust” loss function, that can be used in common tests, e.g.

Diebold and Mariano (1995) or West (1996). Patton (2011) has illustrated that the

MSE loss function (among others), is reasonably robust. We use the Diebold and

Mariano (1995) test to rank the forecasting performance of the different models

considered.

Second, the estimation period of the initial volatility model parameters, i.e.

the origin 0.2T where the recursive forecasting exercise starts can potentially be

important in the performance of the forecasting exercise, especially for the sta-

tionary models due to parameter instability. There are arguments both for and

against the importance of parameter instability in forecasting models. Clements

and Hendry (1996, 2000) among others, argue that ignoring parameter instability

is one of the main sources of forecast breakdowns, if not modelled explicitly. On
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the other hand, Stock and Watson (1996) argue that there is very little benefit

in modelling this and Kim and Swanson (2014) argue that forecasts estimated by

recursive estimation performed as well or better than rolling windows forecasts,

for a range of models estimated from a large panel of macroeconomic time series.

4.2.2 Results

In Table 5.5 we present the results from our main forecasting exercise where we

use the last decade of data as our sample, from 04/Jan/2008 to 27/Dec/2019. The

table evaluates forecasting performance of ARCH(1), GARCH(1), GJR(1, 1, 1),

and RW −SW models, kernel estimator ĥ2t (k-method) and some forecast combi-

nations. These are denoted as k−GARCH(1, 1), k−GJR(1, 1, 1) and k−RWSV ,

where we omit the order for the ARCH type models to save space in the table.

We consider four values of H. In table position (i, j) we report the proportion

of stocks, where according to Diebold and Mariano (1995) test, model i is signifi-

cantly better at forecasting volatility than model j10.

Every j-th row relates to a particular volatility forecasting method j and ele-

ments of the row report the proportion of stocks for which the method j signifi-

cantly outperforms the other methods according to the DM test. Similarly every

j-th column reports the proportion of stocks for which method j is significantly

outperformed by the other methods according to the DM test. Therefore, row and

column averages are metrics for the forecasting performance of the methods. Well

performing methods have small column and large row averages and vice versa.

The results from the forecasting exercise suggest that forecasts produced us-

ing the kernel estimator outperform forecasts obtained from the other stationary

model we considered. Furthermore, using the kernel estimator to produce forecast

combinations, in a two step fashion, ameliorates the forecasting performance of

10Specifically, if the Diebold and Mariano (2002) test statistic is below −1.96, we reject the

null hypothesis of equal forecasting performance of forecasting models at 5% significance level in

favour of the alternative that model i produces superior forecasts compared to model j. If test

statistic above 1.96 we reject the null in favour of the alternative that model j is significantly

better at forecasting volatility than model i.
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stationary models. We can see that across all models, k −GARCH produces the

best forecasts, then comes kernel and k − GJR that are followed by stationary

alternatives.

5 Conclusion

Volatility modelling is at the core of financial econometrics where the majority

of the literature, so far, focus on models that are stationary. Time variation

in the conditional variance comes from the use of either ARCH or SV types

of processes. However, parameter estimates near the boundary of stationarity

suggest that ARCH/SV types of models cannot easily accommodate the observed

persistent variation in volatility estimates of macro/finance datasets.

In this paper we contribute to the literature in three ways. Firstly, we provide a

possible setup for persistent processes, that can provide a superior approximation

of the volatility process. Secondly, we discuss how persistence allows the consistent

estimation of unobserved volatility, without strong parametric assumptions, and

finally we provide a novel testing strategy that enable standard ARCH tests to

separate persistent from stationary volatility and discuss the conditions needed

for this.

We provide Monte Carlo evidence, illustrating that the existence of a persistent

scale factor affects adversely standard ARCH tests, but not our newly proposed

test.

We use our new testing scheme on U.S. stock returns and find, in line with

our Monte Carlo results, extensive support for the persistent volatility paradigm,

suggesting that the role of stationary time–varying volatility is not as outstanding

in the data, as was previously thought and that further, the second moment of

asset returns varies slowly over time. Further, our forecasting exercise illustrates

that this strategy has merit also in volatility forecasting, either on its own or via

forecasting combinations.

Concluding, our results, suggest a new avenue for testing for the presence of

ARCH effects in practice. Without using our new testing scheme, a typical ARCH
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test is applied to some non-rescaled residuals, and then a researcher will proceed

by fitting an ARCH(p) or GARCH model, given a rejection of the null hypothesis.

Using our proposed testing strategy, the researcher needs to further run a second

ARCH test on rescaled residuals. If the new test cannot reject the null, then the

rejection from the first test is spurious, since it is the existence of a persistent

scale factor ht that drives the volatility and not some stationary process. In the

case that the second test also rejects the null hypothesis of no ARCH effects, then

we need to inspect the kernel estimate for the presence of persistent deterministic

or random scale factor. If this appears constant across time, an ARCH(p) or

GARCH model should be fitted, whereas if it varies considerably in time, then a

two-step estimation is required. There are a number of avenues for future work,

in particular, developing a stability test for the persistent volatility component ht,

similar to the work of Chen and Hong (2012).

23



p = 5

T H data β = 0 β = 0.2 β = 0.4 Garch

200 T 0.5 ût 12.98 19.04 48.82 7.22

T 0.6 4.90 23.30 60.82 28.66

T 0.7 3.72 30.14 69.60 52.42

T 0.8 3.60 34.64 74.32 65.52

ut 4.34 40.30 78.94 77.12

yt 4.34 40.30 78.94 77.12

400 T 0.5 ût 13.18 42.80 89.26 33.86

T 0.6 4.80 52.00 94.12 76.14

T 0.7 3.62 60.04 96.08 90.56

T 0.8 3.80 64.70 97.14 94.94

ut 4.68 69.06 97.60 97.22

yt 4.68 69.06 97.60 97.22

800 T 0.5 ût 15.32 80.58 99.92 89.00

T 0.6 5.60 87.42 100.00 99.38

T 0.7 4.38 91.38 100.00 99.88

T 0.8 4.18 92.96 100.00 99.92

ut 4.74 94.14 100.00 99.98

yt 4.74 94.14 100.00 99.98

1600 T 0.5 ût 16.44 99.04 100.00 99.96

T 0.6 6.20 99.72 100.00 100.00

T 0.7 5.08 99.82 100.00 100.00

T 0.8 5.16 99.84 100.00 100.00

ut 5.44 99.86 100.00 100.00

yt 5.44 99.86 100.00 100.00

Table 5.1: Test for ARCH effects. Rejection frequencies (in %) at the 5% signif-

icance level (β = 0 size, β > 0 power). Model: yt = σtεt where σ2
t = 1 + βu2t−1;

under GARCH σ2
t = 1 + 0.2u2t−1 + 0.7σ2

t−1; εt ∼ i.i.d.N (0, 1).
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p = 5

T H data β = 0 β = 0.2 β = 0.4

d = 1.2 d = 1.4 d = 1.5 d = 1.2 d = 1.4 d = 1.5 d = 1.2 d = 1.4 d = 1.5

200 T 0.5 ût 11.20 11.80 12.14 19.12 19.48 19.38 49.26 49.00 49.14

T 0.6 3.90 4.06 4.30 23.40 23.30 23.36 62.06 61.40 61.52

T 0.7 3.92 3.82 3.68 31.40 30.00 29.70 71.22 70.86 70.70

T 0.8 6.32 5.04 4.78 38.68 37.14 36.54 77.26 76.54 76.38

ut 4.52 4.52 4.52 39.76 39.76 39.76 79.92 79.92 79.92

yt 22.58 20.24 19.36 56.08 54.18 53.76 84.12 83.46 83.34

400 T 0.5 ût 12.24 13.02 13.10 43.94 43.90 43.86 89.96 90.02 89.88

T 0.6 4.08 4.58 4.68 54.08 53.34 53.50 94.64 94.54 94.42

T 0.7 4.52 4.20 4.04 63.70 62.56 62.22 96.80 96.60 96.56

T 0.8 8.34 6.62 6.00 71.02 69.42 68.80 97.92 97.70 97.68

ut 5.12 5.12 5.12 70.10 70.10 70.10 97.84 97.84 97.84

yt 36.40 32.48 30.64 83.80 81.96 81.70 98.78 98.68 98.52

800

T 0.5 ût 14.22 15.06 15.30 81.62 81.34 81.34 99.92 99.92 99.92

T 0.6 4.86 5.22 5.38 88.68 88.30 88.22 99.98 99.98 99.98

T 0.7 4.66 4.32 4.52 92.58 92.10 91.94 99.98 99.98 99.98

T 0.8 9.46 6.28 5.74 95.22 94.10 93.82 99.98 99.98 99.98

ut 5.34 5.34 5.34 94.46 94.46 94.46 99.98 99.98 99.98

yt 51.20 45.04 43.28 98.02 97.68 97.46 99.98 99.98 99.98

1600

T 0.5 ût 15.44 15.94 16.10 99.28 99.26 99.24 100.00 100.00 100.00

T 0.6 5.32 5.64 5.92 99.72 99.68 99.66 100.00 100.00 100.00

T 0.7 5.76 5.14 5.06 99.86 99.84 99.80 100.00 100.00 100.00

T 0.8 11.98 7.16 6.22 99.92 99.90 99.88 100.00 100.00 100.00

ut 5.28 5.28 5.28 99.88 99.88 99.88 100.00 100.00 100.00

yt 65.84 57.46 55.22 99.98 99.96 99.96 100.00 100.00 100.00

Table 5.2: Test for ARCH effects. Rejection frequencies (in %) at the 5% signifi-

cance level (β = 0 size, β > 0 power). Model: yt = htut, ht = |I(d)t |/T d−1/2 + 1,

I
(d)
t ∼ ARFIMA(0, d, 0), ut = σtεt where σ2

t = 1 + βu2t−1; εt ∼ i.i.d.N (0, 1).
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p = 5

T H data β = 0 β = 0.2 β = 0.4 Garch

200 T 0.5 ût 10.50 17.96 49.14 8.02

T 0.6 3.20 24.42 62.84 34.96

T 0.7 7.64 40.68 74.92 66.44

T 0.8 25.10 60.12 84.08 83.34

ut 4.34 40.30 78.96 77.12

yt 73.66 86.78 93.62 95.22

400 T 0.5 ût 12.10 42.62 89.30 35.12

T 0.6 3.58 53.36 94.34 79.00

T 0.7 7.90 68.78 96.86 95.10

T 0.8 40.86 86.58 98.64 98.60

ut 4.68 69.04 97.60 97.22

yt 95.40 99.14 99.80 99.92

800 T 0.5 ût 14.42 80.62 99.92 89.58

T 0.6 4.74 88.16 100.00 99.52

T 0.7 7.78 93.88 100.00 99.96

T 0.8 60.80 98.98 100.00 100.00

ut 4.74 94.14 100.00 99.98

yt 99.98 100.00 100.00 100.00

1600 T 0.5 ût 15.96 99.08 100.00 99.96

T 0.6 5.68 99.72 100.00 100.00

T 0.7 7.06 99.84 100.00 100.00

T 0.8 80.06 100.00 100.00 100.00

ut 5.44 99.86 100.00 100.00

yt 100.00 100.00 100.00 100.00

Table 5.3: Test for ARCH effects. Rejection frequencies (in %) at the 5% signif-

icance level (β = 0 size, β > 0 power). Model: yt = htut, ht = sin(2πt/T ) + 2,

ut = σtεt where σ2
t = 1 + βu2t−1; under GARCH σ2

t = 1 + 0.2u2t−1 + 0.7σ2
t−1;

εt ∼ i.i.d.N (0, 1).

26



Testing for ARCH Effects Results

No conditional mean

H data p = 1 p = 5 p = 10

2007 2000-2011 2011-2019 2019 2007 2000-2011 2011-2019 2019 2007 2000-2011 2011-2019 2019

T 0.5 ût 11.02 18.11 1.57 25.98 6.30 6.69 1.57 13.39 5.91 5.12 3.54 11.02

T 0.55 16.54 28.35 3.54 42.52 8.27 14.96 2.36 36.61 7.09 11.42 2.36 30.32

T 0.6 18.90 37.80 7.48 61.02 14.17 29.92 4.72 64.57 12.21 24.41 5.51 59.45

T 0.7 29.92 66.54 16.54 81.50 31.89 72.05 18.90 87.80 31.50 70.47 18.90 90.16

T 0.75 38.19 74.02 18.50 84.65 46.85 81.89 27.17 91.73 46.85 83.07 29.92 94.49

yt 61.42 83.47 33.86 93.31 79.13 90.16 55.51 96.46 79.53 92.13 56.30 98.43

Market factor model for conditional mean

H data p = 1 p = 5 p = 10

2007 2000-2011 2011-2019 2019 2007 2000-2011 2011-2019 2019 2007 2000-2011 2011-2019 2019

T 0.5 ût 6.69 6.30 2.36 12.21 2.36 4.33 3.54 7.09 5.12 4.33 7.09 6.69

T 0.55 10.24 13.39 3.15 25.20 5.51 7.09 2.76 15.75 3.15 4.33 1.97 9.84

T 0.6 13.39 20.47 4.33 37.01 9.45 12.21 3.94 33.07 6.69 12.21 1.57 30.71

T 0.7 23.23 37.40 7.48 56.69 22.05 42.13 7.87 61.02 22.84 45.28 6.69 67.72

T 0.75 31.50 48.82 7.48 66.54 35.83 58.27 9.84 73.62 37.80 62.99 8.27 79.92

yt 60.63 74.02 21.65 84.25 77.95 83.07 19.69 93.70 79.13 88.98 22.84 94.09

Fama French model for conditional mean

H data p = 1 p = 5 p = 10

2007 2000-2011 2011-2019 2019 2007 2000-2011 2011-2019 2019 2007 2000-2011 2011-2019 2019

T 0.5 ût 9.45 16.14 0.79 23.23 5.12 5.51 3.15 11.02 5.91 4.33 2.36 9.84

T 0.55 14.57 26.77 3.15 38.58 7.87 13.39 1.97 33.86 5.12 9.45 1.18 29.92

T 0.6 18.50 36.61 6.69 57.87 10.63 29.53 3.94 62.21 9.06 22.84 4.72 58.27

T 0.7 27.17 62.60 13.39 79.53 29.92 68.11 15.75 85.83 28.74 68.50 16.54 88.58

T 0.75 35.04 72.05 16.54 82.68 43.70 78.35 24.02 90.16 44.09 79.53 24.02 93.70

yt 59.45 80.71 31.89 92.91 79.53 88.98 49.21 96.06 79.13 92.13 52.76 98.82

Table 5.4: Proportion of stock returns with ARCH effects in squares across the

i stocks, for different bandwidths H, lags p and subsamples defined in the main

text. Testing at the 5% significance level. Presented results are for baseline model,

µt = 0, and for the cases where the conditional mean µt is estimated using the

Market factor and Fama-French models.
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Method H ARCH GARCH k −GARCH kernel GJR k −GJR SV k − SV AV ERAGE (row)

ARCH T 0.50 - 0.04 0.00 0.01 0.05 0.02 0.01 0.05 0.02

T 0.55 0.00 0.01 0.01 0.02 0.02

T 0.60 0.00 0.02 0.02 0.02 0.02

T 0.65 0.00 0.03 0.02 0.02 0.02

T 0.70 0.00 0.03 0.04 0.02 0.02

GARCH T 0.50 0.54 - 0.02 0.04 0.09 0.02 0.10 0.14 0.12

T 0.55 0.02 0.05 0.05 0.12 0.12

T 0.60 0.02 0.07 0.07 0.11 0.13

T 0.65 0.03 0.14 0.09 0.10 0.14

T 0.70 0.04 0.22 0.15 0.10 0.15

k −GARCH T 0.50 0.72 0.46 - 0.14 0.33 0.11 0.32 0.43 0.31

T 0.55 0.71 0.47 0.19 0.33 0.15 0.34 0.34 0.32

T 0.60 0.69 0.43 0.27 0.31 0.19 0.30 0.29 0.31

T 0.65 0.69 0.36 0.36 0.25 0.23 0.23 0.23 0.29

T 0.70 0.63 0.31 0.50 0.23 0.28 0.18 0.18 0.29

Kernel T 0.50 0.67 0.37 0.00 - 0.30 0.04 0.30 0.37 0.26

T 0.55 0.63 0.39 0.00 0.28 0.07 0.29 0.27 0.24

T 0.60 0.57 0.31 0.00 0.25 0.08 0.23 0.18 0.20

T 0.65 0.48 0.22 0.00 0.18 0.07 0.13 0.10 0.15

T 0.70 0.37 0.19 0.01 0.16 0.07 0.07 0.07 0.12

GJR T 0.50 0.53 0.17 0.03 0.04 - 0.05 0.13 0.17 0.14

T 0.55 0.03 0.05 0.08 0.14 0.14

T 0.60 0.04 0.09 0.08 0.13 0.15

T 0.65 0.04 0.15 0.13 0.14 0.16

T 0.70 0.04 0.25 0.17 0.14 0.18

k −GJR T 0.50 0.59 0.32 0.00 0.04 0.24 - 0.21 0.26 0.21

T 0.55 0.57 0.30 0.00 0.06 0.25 0.20 0.20 0.20

T 0.60 0.53 0.25 0.00 0.09 0.18 0.17 0.14 0.17

T 0.65 0.43 0.20 0.00 0.13 0.15 0.09 0.09 0.14

T 0.70 0.35 0.17 0.02 0.15 0.12 0.07 0.06 0.12

SV T 0.50 0.46 0.21 0.03 0.05 0.17 0.03 - 0.23 0.15

T 0.55 0.03 0.05 0.04 0.18 0.14

T 0.60 0.04 0.07 0.06 0.17 0.15

T 0.65 0.05 0.13 0.09 0.17 0.16

T 0.70 0.07 0.24 0.13 0.13 0.18

k − SV T 0.50 0.46 0.22 0.02 0.04 0.18 0.02 0.10 - 0.13

T 0.55 0.50 0.22 0.02 0.05 0.17 0.05 0.15 0.15

T 0.60 0.50 0.21 0.04 0.09 0.17 0.07 0.14 0.15

T 0.65 0.47 0.22 0.05 0.17 0.16 0.09 0.13 0.16

T 0.70 0.46 0.21 0.06 0.28 0.15 0.14 0.11 0.18

AV ERAGE T 0.50 0.50 0.22 0.01 0.05 0.17 0.04 0.15 0.21

(column) T 0.55 0.49 0.22 0.01 0.06 0.17 0.06 0.15 0.16

T 0.60 0.48 0.20 0.02 0.09 0.15 0.07 0.14 0.13

T 0.65 0.45 0.18 0.02 0.14 0.13 0.09 0.10 0.11

T 0.70 0.42 0.16 0.03 0.21 0.12 0.12 0.08 0.09

Table 5.5: In table position (i, j) we report the proportion of stock returns, where

Diebold and Mariano (1995) test rejects at the 5% significance level the equal

performance of forecasting models i and j in favour of the alternative that the

model i is significantly better at forecasting volatility than model j. Row and col-

umn averages are metrics for the forecasting performance of the models. The best

performing model is the one with the smallest column and highest row average.
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Online Appendix to

”Choosing between persistent and stationary volatility”

Ilias Chronopoulos1, Liudas Giraitis2 and George Kapetanios1

1King’s Business School, King’s College London 2Queen Mary University of London

This Appendix provides proofs of the results given in the text of the main paper.

It is organised as follows: Section A provides proofs of the main theorems. Section

B contains auxiliary technical lemmas.

Formula numbering in this supplement includes the section number, e.g. (A.1),

and references to lemmas are signified as “Lemma A#”, “Lemma B#”, e.g.

Lemma A1. Equation, lemma and theorem references to the main paper include

section number and are signified, e.g. as (1.1), Theorem 2.1.

In the proofs, C stands for a generic positive constant which may assume

different values in different contexts.

A. Proof of Theorems 2.1, 2.2 and 2.4.

This section contains the proofs of the results of Section 2 of the main paper on

asymptotic properties of the test statistics TS(u) and TS(û).

In the proof of Theorem 2.1 we use the claim that h2t satisfies Assumption H

which is verified the next proposition.

Proposition A1. If ht, t = 1, ..., T satisfies Assumption H with parameters γ

and α then h2t , t = 1, ..., T satisfies Assumption H with parameters γ and α/2.

Proof of Proposition A1 By assumption, ht satisfies (2.2),

|ht − hj| ≤ (|t− j|/T )γξtj, t, j = 1, ...., T

and ξtj, ht satisfies (2.3). Therefore

|h2t − h2j | ≤ |ht − hj| |ht + hj| ≤ (|t− j|/T )γξ∗tj, ξ∗tj = ξtj(|ht|+ |hj|).
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Condition (2.3) implies that ξ∗tj and h2t satisfy (2.3) with parameter α/2. 2

Proof of Theorem 2.1. In Theorem 2.1 we analyse the Wald version of test for

H0 hypothesis for absence of ARCH effects ut. First we recall definitions of S(u)

and S(û). Given data u = [u1, u2, . . . , uT ], we define the test statistic for testing

H0 as follows:

S(u) = σ̃−2β̃
′
p(X

′X)β̃p, β̃p = (X ′X)−1X ′Y, σ̃2
p = (Y −Xβ̃p)′(Y −Xβ̃p)(A.1)

where u2 = T−1
∑T

t=1 u
2
t , Y is (T − p) × 1 vector and X is (T − p) × 1 design

matrix:

Y = (u2p+1 − u2, ..., u2T − u2)′,

X =


x1,1 x1,2 ... x1,p

x2,1 x2,2 ... x2,p

... ... ... ...

xT−p,1 xT−p,2 ... xT−p,p

 =


u2p − u2 u2p−1 − u2 ... u21 − u2

u2p+1 − u2 u2p − u2 ... u22 − u2

... ... ... ...

u2T−1 − u2 u2T−2 − u2 ... u2T−p − u2

.

Here β̃p denotes the estimated regression coefficients of u2t−1, . . . , u
2
t−p in a regres-

sion of u2t on a constant and u2t−1, . . . , u
2
t−p. Similarly, let β̂p denote the estimated

regression coefficients of û2t−1, . . . , û
2
t−p in a regression of û2t on a constant and

û2t−1, . . . , û
2
t−p. Then

S(û) = σ̂−2p β̂
′
p(X̂

′X̂)β̂p, β̂p = (X̂ ′X̂)−1X̂ ′Ŷ , σ̂2
p = (Ŷ − X̂β̂p)′(Ŷ − X̂β̂p)(A.2)

where û2 = T−1
∑T

t=1 û
2
t ,

Ŷ = (û2p+1 − û2, ..., û2T − û2)′,

X̂ =


x̂1,1 x̂1,2 ... x̂1,p

x̂2,1 x̂2,2 ... x̂2,p

... ... ... ...

x̂T−p,1 x̂T−p,2 ... x̂T−p,p

 =


û2p − û2 û2p−1 − û2 ... û21 − û2

û2p+1 − û2 û2p − û2 ... û22 − û2

... ... ... ...

û2T−1 − û2 û2T−2 − û2 ... û2T−p − û2

.

Observe that we can write

T−1(X ′X) = (gij)i,j=1,...,p, T−1(X ′Y ) = (g0j)j=1,...,p, where (A.3)

2



gij = T−1
∑T

t=p+1(u
2
t−i − u2)(u2t−j − u2).

Similarly,

T−1(X̂ ′X̂) = (ĝij)i,j=1,...,p, T−1(X̂ ′Ŷ ) = (ĝ0j)j=1,...,p, where (A.4)

ĝij = T−1
∑T

t=p+1(û
2
t−i − û2)(û2t−j − û2).

Proof of Theorem 2.1 is based on the Lemmas A1 and A2 below. Auxiliary results

used to prove these lemmas are placed in Section 6. Denote

γ̃k = T−1
T∑

t=k+1

(
u2t − Eu2t

)(
u2t−k − Eu2t−k

)
(A.5)

the autocovariance function of squared residuals û2t and of u2t , respectively, where

û2 = T−1
∑T

t=1 û
2
t . Denote Γ̃p = (γ̃|i−j|)i,j=1,...,p, γ̃p = (γ̃1, ..., γ̃p)

′, β̃p = Γ̃
−1
p γ̃p.

To prove the theorem we will derive the following results:

T−1(X̂ ′X̂) = Γ̃p + oP (1), T−1(X̂ ′Ŷ ) = γ̃p + oP (1), (A.6)

T−1(X ′X) = Γ̃p + oP (1), T−1(X ′Y ) = γ̃p + oP (1), (A.7)

Γ̃p →p Γp, γ̃p →P γp, β̃p → βp, (A.8)

T−1σ̂2
p →P σ

2
p, T−1σ̃2

p →P σ
2
p, (A.9)

where βp = Γ−1p γp, Γp =
(
γ|j−k|

)
j,k=1,...,p

, γp =
(
γ1, ..., γp)

′, γk = cov(u2k, u
2
0),

k ≥ 0, and σ2
p = var(u2p+1 − β1u2p − ...− βpu21).

In addition, if {ut} is an i.i.d. sequence, then

T−1/2(X̂ ′Ŷ ) = T−1/2γ̃p + oP (1), (A.10)

T−1/2(X ′Y ) = T−1/2γ̃p + oP (1), (A.11)

T−1/2γ̃p → N (0, Ipγ0), γ0 = var(u21). (A.12)

In view of (A.3) and (A.4), relations (A.6), (A.7) and (A.8) follow from (A.13),

(A.14) and (A.15) of Lemma A1, respectively, while (A.10) and (A.11) follow from

(A.16) and (A.17) of Lemma A1. Convergence (A.12) for i.i.d. r.v. u2t −Eu2t is a

well known.
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Convergence (A.9) follows from the definitions of σ̂2
p and σ̃2

p, (A.6)-(A.9), noting

that T−1Ŷ ′Ŷ = ĝ00 →P γ0, T
−1Y ′Y = g00 →P γ0 and using the equality σ2

p =

γ0 − 2γ ′pβp + β′pΓpβp.

Applying in S(û) and S(u), given by (A.2) and (A.1), relations (A.6)-(A.9),

we obtain

β̂p →P βp = Γ−1p γp, β̃p →P βp,

S(û) = S(u) + oP (1) = σ−2p β
′
pΓpβp + oP (1)

which proves the claim (2.12) of the theorem.

In addition, if {ut} is an i.i.d. sequence, then it holds Γp = γ0Ip and σ2
p = γ0.

Then, using (A.10)–(A.12), we obtain

σ̂−2p (X̂ ′X̂) = γ−20 Ip(1 + oP (1)), σ̃−2p (X̃ ′X̃) = γ−20 Ip(1 + oP (1)),

T−1/2β̂p →D γ
1/2
0 N (0, Ip), T−1/2β̃p →D γ

1/2
0 N (0, Ip).

This together with definitions of S(û) and S(u) implies

TS(û) = TS(u) + oP (1)→D χ2
p,

which proves (2.13). This completes the proof of the theorem. 2

Proof of Theorems 2.2-2.3. It follows using the same arguments as in the proof

of Theorem 2.1. 2

Proof of Theorem 2.4. The claims (2.20) and (2.21) follow using the same ar-

gument as in the proof of (A.21) and (A.22) of Lemma A2 noting that convergence

T 1/2r̃u,k → N (0, (Eu21)
2) is well known for i.i.d. r.v.’s. 2

Lemma A1. (a) Suppose that (ht, ut) satisfy Assumptions M and H, and the band-

width H satisfies (2.11). Then for i, j = 0, 1, ..., p,

ĝij = γ̃|i−j| + oP (1), (A.13)

gij = γ̃|i−j| + oP (1), (A.14)

γ̃k →p γk, k ≥ 0. (A.15)
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(b) In addition, if {ut} is an i.i.d. sequence, then for j = 1, ..., p,

T 1/2ĝ0j = T 1/2γ̃j + oP (1), (A.16)

T 1/2g0j = T 1/2γ̃j + oP (1). (A.17)

Proof of Lemma A1.

Proof of (A.13). It suffices to verify (A.13) for i ≤ j. Denote

γ̂k = T−1
T∑

t=k+1

(
û2t − û2

)(
û2t−k − û2

)
, k = 0, 1, 2, .... (A.18)

Then setting k = j − i, we can write

ĝij = T−1
T−i∑

t=p+1−i

(û2t − û2)(û2t−k − û2) = T−1
T−i∑

t=k+1+(p−j)

(û2t − û2)(û2t−k − û2)

= γ̂|j−i| − δij, δij = T−1[

k+p−j∑
t=k+1

+
T∑

t=T−i+1

](û2t − û2)(û2t−k| − û2).

So,

ĝij = γ̃|i−j| + (γ̂|i−j| − γ̃|i−j|)− δij. (A.19)

By (A.21) of Lemma A2, γ̂|i−j|−γ̃|i−j| = oP (1). On the other hand, straightforward

use of (B.1) and (B.3) of Lemma B1 implies

δij = OP (T−1) (A.20)

which together with (A.19) proves (A.13): ĝij = γ̃|i−j| + oP (1).

Proof of (A.14). Property (A.14) follows from the proof of (A.13) setting ĥt = ht

which implies û2t = u2t .

Proof of (A.15). By assumption, ut is a stationary ergodic sequence and Eu6t <∞.

Then sequence zt =
(
u2t − Eu2t

)(
u2t−k − Eu2t−k

)
is stationary and ergodic with

E|zt| <∞ which implies γ̃k →P Ezk = cov(u2k, u
2
0) = γk.

Proof of (A.16). By (A.19), (A.20) and (A.22), for j = 1, ..., p,

T 1/2ĝ0j = T 1/2γ̃j + oP (1).

Proof of (A.17). Property (A.17) follows from (A.16) setting ĥt = ht. 2
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Lemma A2. (a) Suppose that (ht, ut) satisfy Assumptions M and H, and the band-

width H satisfies (2.11). Then

γ̂k − γ̃k = oP (1), k ≥ 0. (A.21)

(b) In addition, if {ut} is an i.i.d. sequence then

γ̂k − γ̃k = oP (T−1/2), k ≥ 1. (A.22)

Proof of Lemma A2. Denote

γ̂∗k = T−1
T∑

t=k+1

(
û2t − Eu2t

)(
û2t−k − Eu2t−k

)
, k = 0, 1, 2, .... (A.23)

Then

γ̂k − γ̃k = (γ̂∗k − γ̃k) + (γ̂k − γ̂∗k).

Thus, to prove (A.21), it suffices to show

γ̂∗k − γ̃k = oP (1), k ≥ 1, (A.24)

γ̂k − γ̂∗k = oP (1), k ≥ 0, (A.25)

γ̂∗0 − γ̃0 = oP (1). (A.26)

In turn, to prove (A.22), we show in addition that for an i.i.d. sequence {ut} it

holds

γ̂∗k − γ̃k = oP (T−1/2), k ≥ 1, (A.27)

γ̂k − γ̂∗k = oP (T−1/2), k ≥ 1. (A.28)

Proof of (A.24). Recall, that by assumption, Eu2t = 1. We have,

(û2t − Eu2t )(û2t−k − Eu2t−1)− (u2t − Eu2t )(u2t−k − Eu2t−k)

= {(û2t − u2t ) + (u2t − 1)}{(û2t−k − u2t−k) + (u2t−k − 1)} − (u2t − 1)(u2t−k − 1)

= (û2t − u2t )(û2t−k − u2t−k) + (û2t − u2t )(u2t−k − 1) + (u2t − 1)(û2t−k − u2t−k).

Hence,

γ̂∗k − γ̃k = ST,1 + ST,2 + ST,3, (A.29)
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where

ST,1 = T−1
∑T

t=k+1(û
2
t − u2t )(û2t−k − u2t−k), ST,2 = T−1

∑T
t=k+1(û

2
t − u2t )(u2t−k − 1),

ST,3 = T−1
∑T

t=k+1(u
2
t − 1)(û2t−k − u2t−k). (A.30)

To prove (A.24), it remains to show that ST,` in (A.30) satisfy

ST,` = oP (1), ` = 1, 2, 3. (A.31)

Notice that

û2t − u2t = (h2t ĥ
−2
t − 1)u2t . (A.32)

We have

|ST,1| ≤ T−1|
T∑

t=k+1

|(h2t ĥ−2t − 1)(h2t−kĥ
−2
t−k − 1)|u2tu2t−k

≤ ( max
t=1,...,T

|h2t/ĥ2t − 1|)2 sT , sT = T−1
T∑

t=k+1

u2tu
2
t−k.

By (A.39) of Lemma A3, maxt=1,...,T |h2t/ĥ2t − 1| = oP (1). By Assumption M,

{ut} is a stationary sequence, and EsT = E[u21u
2
1−k]] ≤ E[u41] < ∞. Therefore,

sT = OP (1). This implies

ST,1 = oP (1).

The proof of (A.31) for ST,2, ST,3 is similar to that for ST,1. This completes the

proof of (A.24).

Proof of (A.25). Recall, that by assumption, Eu2t = 1. We have,

(û2t − û2)(û2t−k − û2)− (û2t − 1)(û2t−k − 1)

= {(û2t − 1) + (1− û2)}{(û2t−k − 1) + (1− û2)} − (û2t − 1)(û2t−k − 1)

= (û2 − 1)2 + (1− û2)(û2t−k − 1) + (û2t − 1)(1− û2).

Notice that

T−1
∑T

t=k+1(û
2
t − 1) = (û2 − 1)− T−1

∑k
t=1(û

2
t − 1),

T−1
∑T

t=k+1(û
2
t−k − 1) = (û2 − 1)− T−1

∑T
t=T−k+1(û

2
t − 1).
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Hence,

γ̂k − γ̂∗k = T−1
∑T

t=k+1{(û2 − 1)2 − (û2 − 1)(û2t−k − 1)− (û2t − 1)(û2 − 1)}

= (û2 − 1)2{T−1(T − k)− 2)

+(û2 − 1){T−1
∑k

t=1(û
2
t − 1) + T−1

∑T
t=T−k+1(û

2
t − 1)}. (A.33)

By Assumption M, {ut} is a stationary α-mixing sequence. Applying in (A.33)

the bounds (B.1) and (B.2) of Lemma B1, we obtain (A.25):

γ̂k − γ̂∗k = oP (1), k ≥ 0.

Proof of (A.26) By Assumption M, {ut} is a stationary α-mixing sequence. Using

equality a2 − b2 = (a− b)2 + (a− b)2b with a = û2t − 1, b = u2t − 1 we obtain

γ̂∗0 − γ̃0 = T−1
∑T

t=1{(û2t − 1)2 − (u2t − 1)2}

= T−1
∑T

t=1{(û2t − u2t )2 + (û2t − u2t )2(u2t − 1)}.

Recall that û2t − u2t = (h2t/ĥ
2
t − 1)u2t , and by (A.39) of Lemma A3, iT :=

maxt=1,...,T |h2t/ĥ2t − 1| = oP (1). Therefore,

|γ̂∗0 − γ̃0| ≤ i2T
(
T−1

T∑
t=1

u4t
)

+ 2iT
(
T−1

T∑
t=1

u2t |u2t − 1|
)

= oP (1)qT , qT = T−1
T∑
t=1

(u4t + u2t ).

Since EqT = Eu41 + Eu21 < ∞ this implies qT = OP (1) which proves (A.26):

γ̂∗0 − γ̃0 = oP (1).

Proof of (A.27). By (A.29), γ̂∗k − γ̃k = ST,1 + ST,2 + ST,3. To prove (A.27), it

remains to show that

ST,` = oP (T−1/2), ` = 1, 2, 3. (A.34)

First we evaluate ST,1. Using (A.32), we can bound

|ST,1| ≤ T−1|
T∑

t=k+1

|(h2t ĥ−2t − 1)(h2t−kĥ
−2
t−k − 1)|u2tu2t−k

≤ ( max
t=1,...,T

ĥ−2t )2S ′T,1, S ′T,1 = T−1
T∑

t=k+1

∣∣(h2t − ĥ2t )(h2t−k − ĥ2t−k)∣∣u2tu2t−k.
8



By Lemma A3, maxt=1,...,T ĥ
−2
t = Op(1). Moreover, by (B.14) of Lemma B2,

E[
∣∣(h2t − ĥ2t )(h2t−k − ĥ2t−k)∣∣u2tu2t−k]
≤ (E[(h2t − ĥ2t )2u2tu2t−k])1/2(E[(h2t−k − ĥ2t−k)2u2tu2t−k])1/2

≤ C
(
(H/T )2γ +H−1

)
where C does not depend on t,H, T . Hence,

ES ′T,1 ≤ C
(
(H/T )2γ +H−1

)
= o(T−1/2)

under assumption (2.11) on H. So, S ′T,1 = oP (T−1/2). This proves (A.34) for ST,1.

Next we evaluate ST,2. Write,

ST,2 = T−1
T∑

t=k+1

(h2t ĥ
−2
t − 1)ζt, ζt = u2t (u

2
t−k − 1). (A.35)

Write

ĥ2t = h2t + (ĥ2t − h2t ) = h2t (1 + xt), xt =
ĥ2t − h2t
h2t

.

Then

h2t

ĥ2t
=

1

1 + xt
= 1− xt +

x2t
1 + xt

= 1− xt +
h2t

ĥ2t
x2t = 1− xt +

(ĥ2t − h2t )2

ĥ2th
2
t

.

Then, by (A.35),

ST,2 = −T−1
T∑

t=k+1

xtζt + T−1
T∑

t=k+1

(ĥ2t − h2t )2

ĥ2th
2
t

ζt

= : qT,1 + qT,2.

To prove (A.34) for ST,2, we verify that

qT,` = oP (T−1/2), ` = 1, 2. (A.36)

In (B.12) of Lemma B2 it is shown E|qT,1| = O
(
(H/T )2γ +H−1

)
= o(T−1/2) under

assumption (2.11) which proves (A.39) for qT,1.
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Next, we bound

|qT,2| ≤ ( max
t=1,...,T

h−2t )( max
t=1,...,T

ĥ−2t ) vT vT = T−1
T∑

t=k+1

(ĥ2t − h2t )2|ζt|.

By Assumption H, ht ≥ a > 0 a.s., and by (A.38) of Lemma A3, maxt=1,...,T ĥ
−2
t =

OP (1), whereas using (B.13) of Lemma B2, we obtain

EvT ≤ T−1
T∑

t=k+1

E[(ĥ2t − h2t )2|ζt|] = O
(
(H/T )2γ +H−1

)
.

This implies

qT,2 = OP

(
(H/T )2γ +H−1

)
= oP (T−1/2)

under assumption (2.11) which proves (A.39). This verifies (A.34) for ST,2. The

proof of (A.34) for ST,3 is similar to the proof for ST,2. This completes the proof

of (A.27).

Proof of (A.28) Using in (A.33) the bounds (B.4) and (B.2) of Lemma B1 we

obtain

γ̂k − γ̂∗k = Op

(
(H/T )γ +H−1/2)2

)
+Op

(
((H/T )γ +H−1/2)T−1

)
= oP (T−1/2)

under assumption (2.11) on H. This proves (A.28) and completes the proof of the

Lemma A2. 2.

Lemma A3. Suppose that (ht, ut) satisfy Assumptions M and H, and the bandwidth

H satisfies (2.11). Then there exists δ > 0 such that

max
t=1,...,T

|h2t − ĥ2t | = oP (T−δ), (A.37)

max
t=1,...,T

ĥ−2t = OP (1), (A.38)

max
t=1,...,T

|h2t/ĥ2t − 1| = oP (T−δ). (A.39)

Proof of Lemma A3. Proof of (A.37). We have

h2t − ĥ2t = K−1t
∑T

j=1 bH,|t−j|(h
2
t − h2ju2j) (A.40)

= K−1t
∑T

k=1 bH,|t−j|(h
2
t − h2j)u2j −K−1t h2t

∑T
j=1 bH,|t−j|(u

2
j − 1).
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Properties (2.6) of the kernel function K imply

max
t=1,...,T

K−1t ≤ CH−1 (A.41)

where C does not depend on T . By Assumption H and Proposition A1,

|h2t − h2j | ≤ (|t− j|/T )γξtj = (H/T )γ(|t− j|/H)γξtj

where {ξtj} and {h2t} satisfy the condition (2.3) of finite exponential moment with

parameter α/2 > 0. From (A.40) it follows

|h2t − h2t | ≤ (H/T )γ(maxj,t=1,...,T |ξtj|){maxt=1,...,T K
−1
t

∑T
j=1 bH,|t−j|(|t− j|/H)γu2j}

+(maxt=1,...,T h
2
t ){maxt=1,...,T

∣∣∑T
j=1 bH,|t−j|(u

2
j − 1)

∣∣}. (A.42)

By (v) of Lemma C1 in the online supplement of Dendramis, Giraitis and Kapetan-

ios (2021), under Assumption H h2t and ξtk satisfy

max
1≤t≤T

h2t = OP

(
(log T )2/α)

)
, max

1≤t,j≤T
|ξtj| = OP

(
(log T )2/α)

)
. (A.43)

By Assumption M, {uj} is a stationary α-mixing sequence, and E|u1|θ < ∞ for

some θ > 6. Then ξj = u2j−1 is also a stationary α-mixing sequence which satisfies

α-mixing Assumption M , see Theorem 14.1 in Davidson (1994), and E|ξ1|θ
′
<∞

where θ′ = θ/2 > 3. Under these assumptions, Corollary 6(b) of Dendramis,

Giraitis and Kapetanios (2021) implies that for any ε > 0,

max
1≤t≤T

∣∣H−1 T∑
j=1

bH,|t−j|(ξj − Eξj)
∣∣ = OP

(
H−1/2

√
log T + (HT )1/θ

′
Hε−1). (A.44)

For H ≥ T 1/2 and θ′ > 3, the r.h.s. of (A.44) is of order oP (T−δ) for some δ > 0

when ε is selected sufficiently small.

Setting b∗H,|t−j| = bH,|t−j|(|t− j|/H)γ, we have

K−1t
∑T

j=1 b
∗
H,|t−j|u

2
j = K−1t

∑T
j=1 b

∗
H,|t−j|(u

2
j − 1) +K−1t

∑T
j=1 b

∗
H,|t−j|,

where under assumption (2.6), maxt=1,...,T K
−1
t

∑T
j=1 b

∗
H,|t−j| = O(1). Then, using

similar argument as in the proof of (A.44), it follows that

maxt=1,...,T K
−1
t

∣∣∑T
j=1 b

∗
H,|t−j|(u

2
j − 1)

∣∣ = oP (T−δ).
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Applying these bound in (A.42) we obtain

max
t=1,...,T

|h2t − ĥ2t | = OP

(
(log T )1/α

)
{OP

(
(H/T )γ

)
+ oP (T−δ)} = oP (T−δ

′
)

for some δ′ > 0 under assumption (2.11) on H. This proves (A.37).

Finally, by Assumption H, ht ≥ a > 0 a.s. Thus,

min
t=1,...,T

ĥ2t = min
t=1,...,T

(
h2t − (h2t − ĥ2t )

)
≥ min

t=1,...,T
h2t − max

t=1,...,T
|h2t/ĥ2t − 1| ≥ a− oP (T−δ)

which proves (A.38. In turn, (A.38) and (A.37) imply (A.39):

max
t=1,...,T

|h2t/ĥ2t − 1| ≤ ( max
t=1,...,T

ĥ−2t )( max
t=1,...,T

|h2t − ĥ2t |) = oP (T−δ).

This completes the proof of the lemma. 2

B. Auxiliary results

This section contains auxiliary lemmas used on the proofs of Section A.

Lemma B1. (a) Under assumptions of Lemma A2(a), for any fixed k ≥ 1,

û2 − 1 = oP
(
1
)
, (B.1)∑k

t=1 |û2t − 1| = Op(1),
∑T

t=T−k+1 |û2t − 1| = Op(1). (B.2)∑k
t=1(û

2
t + û4t ) = Op(1),

∑T
t=T−k+1(û

2
t + û4t ) = Op(1). (B.3)

(b) In addition, if ut is an i.i.d. sequence, then

û2 − 1 = OP

(
(H/T )γ +H−1/2

)
. (B.4)

Proof of Lemma B1. Proof of (B.1). We have

û2 − 1 = T−1
T∑
t=1

(û2t − 1) = T−1
T∑
t=1

(û2t − u2t ) + T−1
T∑
t=1

(u2t − 1)

=: Q1,T +Q2,T . (B.5)

We will show

Q1,T = oP (1), Q2,T = OP (T−1/2) (B.6)
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which proves (B.1). We have,

|Q1,T | = T−1
∣∣∣ T∑
t=1

(h2t/ĥ
2
t − 1)u2t

∣∣∣ ≤ ( max
t=1,...,T

|h2t/ĥ2t − 1|)T−1
T∑
t=1

u2t (B.7)

= oP (1)T−1
T∑
t=1

u2t = oP (1),

by (A.39) of Lemma A3, noting that E(T−1
∑T

t=1 u
2
t ) = Eu21 implies

T−1
∑T

t=1 u
2
t = OP (1).

Under Assumption M, by Conclusion 2.2 in Davydov (1968) (for more details

see (A.11) in Dendramis et al. (2021)), stationary α-mixing sequence zt = u2t − 1

has property

∞∑
k=0

|cov(zk, z0)| <∞. (B.8)

Therefore,

EQ2
2,T = E(T−1

T∑
t=1

(u2t − 1))2 = T−2
T∑

k,j=1

cov(zk, zj)

≤ T−1
∞∑

k=−∞

|cov(zk, z0)| ≤ CT−1

which proves the second claim in (B.6). This completes the proof of (B.1).

Proof of (B.2). We have

k∑
t=1

|û2t − 1| =
k∑
t=1

|h2t/ĥ2t − 1|u2t ≤ ( max
t=1,...,T

|h2t/ĥ2t − 1|)
k∑
t=1

u2t = oP (1)

by (A.39) of Lemma A3 noting that for any fixed k,
∑k

t=1 u
2
t = OP (1). This proves

the first claim in (B.2). The proof of the second claim is similar.

Proof of (B.3). We can bound

û2t + û4t = {(û2t − 1) + 1}+ {(û2t − 1) + 1}2 ≤ |û2t − 1|+ 1 + 2((û2t − 1)2 + 1).

Then (B.3) follows by the same argument as in the proof of (B.2).

Proof of (B.4). In view of (B.5) and (B.6), it suffices to show

Q1,T = Op

(
(H/T )γ +H−1/2

)
. (B.9)
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By (B.7),

|Q1,T | ≤ ( max
t=1,...,T

ĥ−2t )dT , dT = T−1
T∑
t=1

|h2t − ĥ2t |u2t . (B.10)

By Lemma A3, maxt=1,...,T ĥ
−2
t = OP (1). On the other hand, by (B.11) of Lemma

B2, E(h2t − ĥ2t )2 ≤ C((H/T )2γ +H−1) where C does not depend on t,H, T , which

implies

EdT ≤ T−1
T∑
t=1

(
E(h2t − ĥ2t )2

)1/2
(Eu4t )

1/2

≤ C((H/T )2γ +H−1)1/2T−1
T∑
t=1

(Eu41)
1/2 = C((H/T )2γ +H−1)1/2.

Hence dT = OP

(
(H/T )γ +H−1/2)

)
which together with (B.10) proves (B.9). This

completes the proof of the lemma. 2

Lemma B2. (a) Under assumptions of Lemma A2(a),

E(ĥ2t − h2t )2 ≤ C
(
(H/T )2γ +H−1

)
. (B.11)

where C does not depend on t,H, T .

(b) If in addition, ut is a sequence of i.i.d. random variables, then for any k ≥ 1,

E
∣∣∣T−1∑T

t=k+1 h
−2
t (ĥ2t − h2t )ζt

∣∣∣ = O
(
(H/T )2γ +H−1

)
, (B.12)

E[(h2t − ĥ2t )2|ζt|] ≤ C
(
(H/T )2γ +H−1

)
, (B.13)

E[(h2t−s − ĥ2t−s)2u2tu2t−k] ≤ C
(
(H/T )2γ +H−1

)
, for s = 0, k(B.14)

where ζt = u2t (u
2
t−k − 1) and C does not depend on t,H, T .

Proof of Lemma B2.

Proof of (B.11). Denote h̄2t = K−1t
∑T

j=1 b|t−j|h
2
j . Then

h2t − ĥ2t = (h2t − h̄2t ) + (h̄2t − ĥ2t ), (B.15)

(h2t − ĥ2t )2 ≤ 2(h2t − h̄2t )2 + 2(h̄2t − ĥ2t )2.

We will show that

E(h2t − h̄2t )2 ≤ C(H/T )2γ, (B.16)
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E(ĥ2t − h̄2t )2 ≤ CH−1, (B.17)

which together with (B.15) proves (B.11).

Proof of (B.16). We have

E(h2t − h̄2t )2 = E
(
K−1t

∑T
j=1 b|t−j|(h

2
t − h2j)

)2
≤ K−2t

∑T
j,k=1 b|t−j|b|t−k|E[(h2t − h2j)(h2t − h2k)]

≤ CK−2t
∑T

j,k=1 b|t−j|b|t−k|
(
E(h2t − h2j)2E(h2t − h2k)2

)1/2
.

By Assumption H and Proposition A1, E(h2t −h2j)2 ≤ C((t− j)/T )γ where C does

not depend on t, j, T . Properties (A.41) and (2.6) of Kt and bt imply

max
t=1,...,T

K−1t

T∑
j=1

b|t−j|(
|t− j|
H

)γ ≤ C. (B.18)

So,

E(h2t − h̄2t )2 ≤ C(H/T )2γ
(
K−1t

T∑
j=1

b|t−j|(|t− j|/H)γ
)2 ≤ C(H/T )2γ

where C does not depend on t,H. This proves (B.16).

Proof of (B.17). By Assumption M, {ht} and {ut} are mutually independent

sequences. Then

E(ĥ2t − h̄2t )2 = E
(
K−1t

T∑
j=1

b|t−j|h
2
j(u

2
j − 1)

)2
= K−2t

T∑
j,k=1

b|t−j|b|t−k|E[h2jh
2
k]cov(u2j , u

2
k)].

By Assumption H, E[h2jh
2
k] ≤ (E[h4j ][h

4
k])

1/2 ≤ maxj E[h4j ] <∞, and by definition

of bj, maxj |b|j|| ≤ C. Using stationarity of {u2j}, (B.8) and (A.41), we obtain

E[(ĥ2t − h̄2t )2] = CK−2t

T∑
j,k=1

b|t−j||cov(u2j , u
2
k)|

≤ CK−1t (K−1t

T∑
j=1

b|t−j|)
∞∑

k=−∞

|cov(u20, u
2
k)| ≤ CK−1t ≤ CH−1

which proves (B.17).
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Proof of (B.12). Using (B.15), write

T−1
∑T

t=k+1 h
−2
t (ĥ2t − h2t )ζt

= T−1
∑T

t=k+1 h
−2
t (h̄2t − h2t )ζt+T−1

∑T
t=k+1 h

−2
t (ĥ2t − h̄2t )ζt

= Q1,T +Q2,T .

We will show that

E|Q`,T | = O
(
(H/T )2γ +H−1

)
, ` = 1, 2 (B.19)

which proves (B.12)

Notice that the sequence {h−2t (h̄2t − h2t )} is independent of {ζt} while the i.i.d.

property of {ut} implies Eζtζs = 0 for t 6= s. Therefore,

EQ2
1,T = T−2

T∑
t,s=k+1

E[h−2t (h̄2t − h2t )h−2s (h̄2s − h2s)]E[ζtζs]

= T−2
T∑

t=k+1

E[h−4t (h̄2t − h2t )2]Eζ2t = E[ζ21 ]T−2
T∑

t=k+1

E[h−4t (h̄2t − h2t )2].

By Assumption M, Eζ21 = Eu41E(u21−k−1)2 <∞, and by Assumption H, mint h
2
t ≥

a > 0 a.s. Hence,

E[h−4t (h̄2t − h2t ))2] ≤ a−4E(h2t − h̄2t )2 ≤ C(H/T )2γ (B.20)

by (B.16). Hence

E|Q1,T | ≤ (EQ2
1,T )1/2 ≤ C(H/T )γT−1/2 ≤ 2C{(H/T )2γ + T−1} (B.21)

which proves (B.19) for Q1,T .

Next we prove (B.19) for Q2,T . Write

ĥ2t − h̄2t = K−1t
∑T

j=1 b|t−j|h
2
j(u

2
j − 1),

Q2,T = T−1
T∑

t=k+1

h−2t (ĥ2t − h̄2t )ζt = T−1K−1t

T∑
t=k+1

T∑
j=1

b|t−j|h
−2
t ζth

2
j(u

2
j − 1)

= T−1K−1t

T∑
t=k+1

T∑
j=1: j>t+3k

[...] + T−1K−1t

T∑
t=k+1

T∑
j=1: j<t−3k

[...]
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+T−1K−1t

T∑
t=k+1

T∑
j=1: |j−t|≤3k

[...]

= R1,T +R2,T +R3,T .

We will show

E|R`,T | = O(H−1), ` = 1, 2, 3 (B.22)

which implies E|Q2,T | ≤ CH−1 which proves (B.19) for Q2,T .

To evaluate ER2
1,T , recall that by assumption {ht} and {ut} are mutually

independent. Then, since ut are i.i.d. random variables, for any j > t + 3k, j′ >

t′ + 3k,

E[{h−2t ζth
2
j(u

2
j − 1)}{h−2t′ ζt′h

2
j′(u

2
j′ − 1)}]

= E[h−2t h2jh
−2
t′ h

2
j′ ]E[ζt′ζt]E[(u2j − 1)(u2j′ − 1)] = 0 if t 6= t′ or j 6= j′;

= E[h−4t h4j ]E[ζ2t ]E[(u2j − 1)2] if t = t′, j = j′.

Hence,

ER2
1,T = T−2K−2t

T∑
t=k+1

T∑
j=1

b2|t−j|E[h−4t h4j ]E[ζ2t ]E[(u2j − 1)2]

≤ E[ζ21 ]E[(u21 − 1)2](max
t,j

E[h−4t h4j ])T
−2K−2t

T∑
t=k+1

T∑
j=1

b2|t−j|.

Under Assumption M, E[ζ21 ] = E[u41(u
2
1−k−1)2] = E[u41]E[(u21−k−1)2] <∞, under

Assumption H, h−4t ≤ a−4 <∞ and maxj E[h4j ] <∞, and maxj |b|j|| <∞. Thus,

ER2
1,T ≤ CT−2K−1t

T∑
t=k+1

(K−1t

T∑
j=1

b|t−j|) ≤ CT−1K−1t ≤ CT−1H−1 ≤ CH−2

in view of (A.41). Then E|R1,T | ≤ (ER2
1,T )−1/2 ≤ CH−1 which proves (B.22).

The proof of (B.22) for R2,T is similar as the proof for R1,T .

Finally, using similar arguments as above, we obtain

E|R3,T | ≤ T−1K−1t

T∑
t=k+1

T∑
j=1:|j−t|≤3k

b|t−j|E[h−2t h2j ]E|ζt(u2t − 1)|

≤ (max
t,k

E[h−2t h2j ])E|ζ1(u21 − 1)|(max
j
b|j|)K

−1
t (6k + 1) ≤ CH−1
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which proves (B.22) for R3,T . This completes the proof of (B.12).

Proof of (B.13). Using (B.15), we can bound

E[(h2t − ĥ2t )2|ζt|] ≤ 2E[(h2t − h̄2t )2|ζt|] + 2E[(ĥ2t − h̄2t )2|ζt|]. (B.23)

From (B.16) and independence of {ht} and {ut} it follows

E[(h2t − h̄2t )2|ζt|] = E[|ζ1|]E[(h2t − h̄2t )2] ≤ C(H/T )2γ

where C does not depend on t,H, T . In addition, we will show that

E[(ĥ2t − h̄2t )2|ζt|] ≤ CH−1 (B.24)

which together with (B.23 ) proves (B.13).

It remains to prove (B.24). Write

ĥ2t − h̄2t = K−1t

T∑
j=1

b|t−j|h
2
j(u

2
j − 1) = vt +K−1t

(
b0h

2
t (u

2
t − 1) + bkh

2
t−k(u

2
t−k − 1)

)
,

where vt = K−1t
∑T

j=1:j 6=t,t−k b|t−j|h
2
j(u

2
j − 1). Then,

(ĥ2t − h̄2t )2 ≤ 2v2t + 4K−2t
(
b20h

4
t (u

2
t − 1)2 + b2kh

4
t−k(u

2
t−k − 1)2

)
.

By assumption {ht} and {ut} are mutually independent, and by construction, vt

is independent of ζt. Hence,

E[(ĥ2t − h̄2t )2|ζt|] ≤ 2E[v2t ]E[|ζt|]

+4K−2t
(
b20E[h4t ]E[(u2t − 1)2|ζt|] + b2kE[h4t−k]E[(u2t−k − 1)2|ζt|]

)
.

Using similar argument as in the proof of (B.17) it follows that

Ev2t ≤ CH−1

where C does not depend on t,H, T , and (A.41) implies K−1t ≤ CH−1. Under

Assumption M, Eu6t < ∞ which together with the i.i.d.property of variables ut

implies E|ζt| = E|ζ1| < ∞, E[(u2t − 1)2|ζt|] = E[(u21 − 1)2|ζ1|] < ∞, E[(u2t−k −

1)2|ζt|] = E[(u21−k − 1)2|ζ1|] <∞. Hence,

E[(ĥ2t − h̄2t )2|ζt|] ≤ CH−1

which proves (B.24). This completes the proof of (B.13).

Proof of (B.14). This bound can be verified using the same arguments as in the

proof of (B.13). 2
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