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Factor Models with Downside Risk

We propose a conditional model of asset returns in the presence of common factors and

downside risk. Specifically, we generalize existing latent factor models in three ways: we show

how to estimate the threshold which identifies the ‘disappointment’ event triggering the bad state

of the world; we permit different factor structures for asset returns in good and bad states; we

show how to recover the observable factors’ risk premia from the estimated latent ones in different

states. The usefulness of the model is illustrated through two applications to cross-sections of

asset returns in equity markets and other major asset classes.



1 Introduction

A growing body of research argues that the cross-section of asset returns should and does

reflect a premium for bearing downside risk. This risk premium compensates investors for holding

assets that covary strongly with the market when the market declines or is abnormally low: such

assets are undesirable precisely because they offer particularly low returns in bad times. For

example, Ang, Chen, and Xing (2006) show that there is a downsize risk premium in the cross-

section of US stock returns, a result confirmed by Farago and Tédongap (2018) using a five-factor

conditional model. Lettau, Maggiori, and Weber (2014) show that a conditional capital asset

pricing model that allows for downside risk can explain not only US stocks, but also the cross

section of returns in currency and other major asset classes. These results are consistent with

the original conceptual framework of Markovitz (1959), who advocated using semivariance as a

measure of risk, rather than variance, because semivariance measures downside losses rather than

upside gains.

In a parallel development in the context of asset pricing models, the literature has also sought

to tackle the vexing issue of potentially biased estimation of unconditional (i.e., linear, and hence

free from downside risk) asset pricing models arising from omitting pricing factors. Since it is

not at all clear which pricing factors should be used (the true factors), virtually any model which

uses observable factors is at risk of omitting a relevant pricing factor, thereby suffering from

omitted variable bias. This misspecification problem is addressed rigorously in a recent, seminal

contribution by Giglio and Xiu (2021), who propose a three-pass procedure to conduct inference

on the risk premia of any observable factor. The procedure solves both the omitted variable bias

problem, and the much debated “factor zoo” issue (see Cochrane (2011); and Harvey and Liu

(2020)), by considering a latent factor model which allows to span the underlying true factor

space.

The two research areas summarized above indicate that an unconditional, linear asset pricing

model based on observable factors, which constitutes the workhorse model of empirical asset

pricing, can suffer from at least two possible misspecification issues: the omission of relevant

pricing factors, and the presence of a downside regime. Both these issues can be resolved by using
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a conditional, latent factor model which allows for the presence of downside risk. However, despite

the intuitive appeal of such a setup, inference for asset pricing models with downside risk and latent

factors is a challenging task. In addition to the nonlinearity of the model, allowing for different

regimes means that the number of common latent factors may be different between good and bad

states of the world; the loadings on the factors may also change across states; the “disappointment

event” that triggers the downside state is, in general, unknown; and, finally, the estimation of risk

premia in this context, taking downside risk into account, needs to be fully developed. Our paper

offers a methodological contribution, addressing all these issues, and presenting a nonlinear model

of asset returns in the presence of common factors and downside risk; further, we consider a latent

factor model approach, which allows to span the entire factor space as advocated in Giglio and

Xiu (2021). This setup is general enough to encompass previous models with downside risk, while

allowing for different common factors across states and estimation of the threshold determining

the downside state.1

We make at least three contributions to the literature on factor models of asset returns. First,

while we follow the literature in determining the disappointment event in terms of the relative

position of the market return with respect to a threshold value, unlike previous studies we estimate

the value of the threshold rather than setting it a priori equal to a prespecified value; we also

offer a methodology to test whether the threshold value is equal to a prespecified value such as

the ones used in the literature. This is achieved by generalizing the inferential theory for panel

threshold models proposed by Massacci (2017) to the case where the number of common factors

and their loadings are allowed to differ across states; and we also derive the relevant inferential

theory for the estimated threshold. Second, we develop a procedure to estimate the number of

common factors in a model with downside risk, by explicitly allowing for the case where such

number may differ across regimes. This is done in a similar fashion to Trapani (2018), although

it is not a trivial extension since it requires a preliminary round of estimation where the full

1The motivation for a downside risk premium arises from various theoretical perspectives. In some cases, the
rationale is behavioral and linked to theories of loss aversion, as in the setups of Ang, Chen, and Xing (2006) and
Farago and Tédongap (2018), whereas in other cases it is based on rational asset pricing models, as in Lettau,
Maggiori, and Weber (2014). The specific nature of the mechanism capable of generating the downside risk premium
is not a focus of this paper. We simply take seriously the finding that such premium can exist in equilibrium and
ask how it should be identified in an empirical asset pricing model.
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factor model is estimated (thereby including the threshold, and the spaces spanned by factors

and loadings), and the strong consistency of all estimates is required. Finally, we complete the

inferential theory by developing a further step, to allow for the mapping of the estimated latent

factors in each stage onto economically relevant observable ones. This step can be viewed as an

extension of Giglio and Xiu (2021) to a nonlinear setting. Overall, the distilled essence of these

results is a general conditional model of asset returns with downside risk that can be estimated

and tested without imposing arbitrary restrictions on the stochastic process of returns. In our

view, this setup constitutes at least a workhorse model for conducting empirical asset pricing in

a downside risk framework.

We employ this methodology to study empirically the factor structure and estimate risk premia

in the presence of downside risk using two datasets previously employed in other studies - a dataset

composed of equity portfolios (the same as used by Farago and Tédongap (2018)) and a dataset

spanning multiple asset classes (based on a variety of sources similar to Lettau, Maggiori, and

Weber (2014)). In both cases, our approach produces superior goodness of fit relative to both

unconditional (linear) factor models and restricted conditional models that impose the number

of factors or the threshold. The empirical estimation of the proposed latent factor model with

downside risk proves illuminating when compared to an unconditional model of asset returns.

Indeed, the unconditional model performs poorly in both states of the world, with systematic

pricing errors that are positive in the downside state and negative in the satisfactory state - i.e.,

the unconditional model predicts much higher returns than the realized ones in the downside state,

and lower returns than the realized ones in the satisfactory state. Puzzingly, when analyzing the

full sample performance of the unconditional model, its performance can appear satisfactory, but

this is only because averaging across negative and positive pricing errors in different states gives

the false impression that the model can capture the average excess returns accurately. In other

words, assessing the performance of the unconditional factor model over the full sample can give

the illusion that it performs well when in fact it performs poorly in both regimes. In contrast,

the latent factor model with downside risk appears to have no systematic tendency to generate

positive or negative pricing errors in either regime, and therefore also unconditionally, fitting the

cross-sections of asset returns used here very well. The inadequacy of an unconditional model is
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well illustrated by Figure 1, which plots unconditional portfolio equity returns against average

portfolio equity returns conditional on either good or bad states (defined with a threshold of −3

and −6 percent on the left-hand-side and right-hand-side plots, respectively). The scatter plots

make clear how a linear approximation underestimates returns in good times and overestimates

returns in bad times. It is also clear that a linear relationship cannot possibly fit these returns

data in the downside state, making apparent the need for a nonlinear model that changes across

states.

Figure 1: Conditional and unconditional realised returns for equity portfolios
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Notes. The scatter plot shows realized average returns in upside and downside against unconditional average
returns for the 130 equity portfolios described in Section 6.1.1 for fixed and estimated threshold values, which are
discussed in Section 6.2.1.

Our empirical results highlight the importance of estimating the threshold (rather than im-

posing it a priori) and of allowing for different common factors across states. For example, with

respect to the estimation of the threshold, we find a remarkable similarity in its point estimate

across the two datasets employed, with the estimate being around −6 percent. This estimate is

twice as large in absolute value as the most common value imposed in estimation by researchers,

which is −3 percent (see Farago and Tédongap (2018); and also, albeit implicitly, Lettau, Mag-

giori, and Weber (2014)), thereby implying that the downside risk state is characterized by a
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smaller fraction of the return distribution with more extreme negative returns. We also find that,

while up to six common factors are needed in the satisfactory (or good) state of the world to

capture the factor structure of returns, only one common factor is needed in the downside risk

state. This is consistent with the widely held view, and much anecdotal evidence, that returns

display a far lower-dimensional factor structure in bad times than in good times, i.e. that diversi-

fication benefits diminish in bad times when they are needed most (see e.g. Cappiello, Engle, and

Sheppard (2006)). This result arises endogenously in the model, estimated using our procedure

that explicitly allows the factors to change across states. Finally, the model uncovers the existence

of highly asymmetric dynamics in risk premia, with several factors displaying quite different risk

premia estimates from those obtained from a linear asset pricing model. In short, the empirical

results provide a strong case for the full-blown, unconstrained estimation of latent factor models

with downside risk in the context of asset pricing.

Beyond the aforementioned contributions, our paper relates to (at least) two additional strands

of literature. The first one studies asset pricing with asymmetric pricing of “good” and “bad”

covolatility: in a continuous time framework, Bollerslev, Li, and Todorov (2016) show that con-

tinuous and jump CAPM betas are priced in a different way; Bollerslev, Patton, and Quaedvlieg

(2021) decompose the market beta into four semibetas, which depend on the covariation between

the return on the market and that on individual assets; Bollerslev (2020) provides a comprehen-

sive overview of contributions on pricing “good” and “bad” realized volatilities. Our paper is also

linked to the literature on consumption-based asset pricing with disappointment aversion: Delik-

ouras (2017) develops a model in which disappointment events take place when lifetime utility

falls below its certainty equivalent; Delikouras and Kostakis (2019) consider the more general set

up in which the disappointment threshold is a multiple of the certainty equivalent.

The remainder of the paper is organized as follows. Section 2 introduces the asset pricing

model. Section 3 deals with identification of risk premia. Section 4 presents the methodology to

determine the number of pricing factors. Section 5 discusses estimation and inference of pricing

factors, risk exposures and risk premia. Section 6 performs the empirical analysis. Section 7

concludes. In the paper, we only present the main results for the sake of a concise discussion;

assumptions, simulations, technical lemmas and proofs are all relegated to the Internet Appendix.
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2 Model

In this section, we first present, for convenience, the setup of the unconditional asset pricing

model that is most commonly used in the literature (Section 2.1). We then discuss the conditional

asset pricing model with downside risk, whose estimation is the main contribution of this paper

(Section 2.2).

At the outset, it is useful to establish some notation. We denote the ordinary limit as “→”.

I (·) denotes the indicator function. We use ιN to denote an N -dimensional vector of ones; Ik is

an identity matrix of dimension k; finally, we set CN,T = min
{
N1/2, T 1/2

}
.

2.1 Unconditional asset pricing model

Let Ri,t be the return (in excess of the risk-free rate) on the test asset i at time t. The linear,

or unconditional, asset pricing model can be written as

Ri,t = γ0 + αi + β′iγ1 + β′iut + εi,t, (1)

with 1 ≤ i ≤ N , 1 ≤ t ≤ T , where N and T denote the cross-section and time series dimensions

of the available sample, respectively, and

ut = ft − µf . (2)

In (2), ft = (f1,t, . . . , fP,t)′ is a P × 1 vector of latent factors with E (ft) = µf , so that ut in (1)

represents the P×1 zero mean vector of factor innovations; further, in (1), γ0 is the zero-beta rate;

γ1 = (γ1,1, . . . , γ1,P )′ is the P × 1 vector of risk premia; βi = (βi,1, . . . , βi,P )′ is the P × 1 vector

of risk exposures; αi is the pricing error; εi,t is the idiosyncratic component such that E (εi,t) = 0

and E (utεi,t) = 0. In matrix notation, the model becomes

Rt = γ0ιN + α + Bγ1 + But + εt, (3)

where Rt = (R1t, . . . , RNt)′, α = (α1, . . . , αN)′, and B = (β1, . . . ,βN)′.
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Following Giglio and Xiu (2021), we let some of the true factors be omitted or measured with

error (or both). In particular, the K observable factors gt can be either tradable or nontradable

(or both), and have the structure

gt = a + Λut + et. (4)

As shown in Giglio and Xiu (2021), given γ1, the K × 1 vector of risk premia of gt is γg = Λγ1.

2.2 Conditional asset pricing model with downside risk

The conditional factor model of interest is:

Ri,t = I (Dt)
(
γD,0 + αD,i + β′D,iγD,1 + β′D,iuD,t

)
+I (St)

(
γS,0 + αS,i + β′S,iγS,1 + β′S,iuS,t

)
+ εi,t,

(5)

where

uj,t = fj,t − µj,f , j = D,S. (6)

The model in (5) generalizes (1) to allow for downside risk, as captured by the disappointment

event Dt, which is defined formally below. The satisfactory event St occurs whenever Dt does

not take place, i.e. I (Dt) + I (St) = 1 and I (Dt) I (St) = 0. Section 2.3 below discusses Dt
and St in detail. In (6), fj,t =

(
fj,1,t, . . . , fj,Pj ,t

)′
is the Pj × 1 vector of latent factors satisfying

E [fj,t |I (jt) = 1] = µj,f ; uj,t is the Pj×1 vector of factor innovations such that E [ujt |I (jt) = 1] =

0. As for (5): γj,0 is the zero-beta rate and γj,1 =
(
γj,1,1, . . . , γj,1,Pj

)′
is the Pj × 1 vector of risk

premia; βj,i =
(
βj,i,1, . . . , βj,i,Pj

)′
is the Pj × 1 vector of risk exposures; αj,i is the pricing error;

the idiosyncratic components εi,t satisfy E [uj,tεi,t |I (jt) = 1] = 0. The model in matrix form is

Rt = I (Dt) (γD,0ιN + αD + BDγD,1 + BDuD,t)

+I (St) (γS,0ιN + αS + BSγS,1 + BSuS,t) + εt,
(7)
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where αj = (αj,1, . . . , αj,N)′, and B = (βj,1, . . . ,βj,N)′. We generalize the mapping between the

true K latent factors, and observable factors as

gt = I (Dt) (aD+ΛDuD,t) + I (St) (aS+ΛSuS,t) + et. (8)

The K × 1 vector of risk premia of gt becomes

γg = I (Dt) γD,g + I (St) γS,g, γj,g = Λjγj,1, j = D,S. (9)

When the disappointment event occurs, we thus have γg = γD,g = ΛDγD,1.

2.3 Disappointment event

Following, inter alia, Farago and Tédongap (2018), we define the disappointment event as

Dt = {rW,t ≤ θ}, where rW,t is the log-return on the market and θ is the corresponding threshold

value that determines the occurrence of Dt. The satisfactory event then is St = {rW,t > θ}. Both

Dt and St depend on θ: to stress this dependence, we write dj,t(θ) = I (jt), for j = D,S.2

3 Identification

3.1 Identification of risk premia

In the conditional factor model in (7), there are two kinds of identification issues: (i) the

rotational indeterminacy typical of statistical factor models; and (ii) the unobserved heterogeneity

problem induced by the pricing errors.

Consider (i): risk exposures, pricing factors and risk premia in the linear model in (3) are

2The conditional asset pricing model in (7) allows for unrestricted zero-beta rates γD,0 and γS,0, and for non-
zero pricing errors αD and αS . None of these invalidates our methodology. In particular, non-zero pricing errors,
which for instance may arise from failing no arbitrage conditions, do not affect estimation and inference on the risk
premia.
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identified up to a rotation. Indeed, for any P × P positive definite matrix L we have

Rt = γ0ιN + α + Bγ1 + But + εt

= γ0ιN + α + BLL−1γ1 + BLL−1ut + εt.

Hence, B, γ1 and ut are only identified up to L, as they are all unobservable. However, as shown

in Giglio and Xiu (2021), the risk premia for the observable factors gt in (4) are identified, since

it holds that γg = Λγ1 = ΛLL−1γ1.

The conditional pricing model in (5) faces essentially the same identification features. For any

Pj × Pj positive definite matrix Lj, with j = D,S, we have

Rt = dD,t(θ)
(
γD,0ιN + αD + BDLDL−1

D γD,1 + BDLDL−1
D uD,t

)
+dS,t(θ)

(
γS,0ιN + αS + BSLSL−1

S γS,1 + BSLSL−1
S uS,t

)
+ εt.

The risk premia γg defined in (9), however, are identified, since

γg = dD,t(θ)ΛDγD,1 + dS,t(θ)ΛSγS,1

= dS,t(θ)ΛDLDL−1
D γD,1 + dS,t(θ)ΛSLSL−1

S γS,1.

As far as the second identification issue is concerned, we solve the unobserved heterogeneity

problem induced by the pricing errors by expressing the model for Rt in terms of deviations from

the conditional means. Formally, let Tj(θ) = ∑T
t=1 dj,t(θ) be the number of times that the event

j occurs, for j = D,S. Define the conditional average returns Rj(θ) = Tj(θ)−1∑T
t=1 dj,t(θ)Rt:

Rj(θ) is the mean of Rt when j occurs. In order to estimate pricing factors and risk exposures,

we consider the model

R̃t(θ) = Rt − dD,t(θ)RD(θ)− dS,t(θ)RS(θ) = dD,t(θ)BDũD,t(θ) + dS,t(θ)BSũSt(θ) + ε̃t (10)

where ũj,t(θ) = ut−uj(θ) is the deviation of ut from the conditional mean uj(θ) = Tj(θ)−1∑T
t=1 dj,t(θ)ut;

and ε̃t = dD,t(θ)[εt − ε̄D(θ)] + dS,t(θ)[εt − ε̄S(θ), where ε̄j(θ) = Tj(θ)−1∑T
t=1 dj,t(θ)εj,t is the con-

9



ditional mean of εt when j occurs.

3.2 The disappointment threshold

As implicitly noted in Section 3.1, the identification of factors, exposures and risk premia

requires knowledge of the disappointment event Dt, and thus of the threshold θ. Typically, the

literature pre-specifies a value for θ, and the subsequent estimation of the asset pricing model is

then conditioned on that value being true.3 In general, however, θ is not a structural parameter

on which theory can provide guidance, which makes it difficult to assume a particular value of θ.

In this paper, we study the Least Squares estimator of θ (Section 4.1).

4 Inference

In this section, we study inference on (5): we begin by presenting the estimation and hypothesis

testing on θ (Section 4.1); we then discuss the estimation of the number of common factors in

each regime (Section 4.2); and, finally, we present the Principal Component estimation of βj,i and

γj,1 (Section 4.3).

We begin by introducing some further notation. The superscript “0” denotes the true value of a

parameter; when this is not used, we refer to a generic value. We also use the short-hand notation

Tj = Tj (θ0) and πj = πj (θ0); further, the true number of factors in each regime is denoted as P 0
D

and P 0
S respectively, also using, when needed, P 0 = P 0

D + P 0
S . Finally, here and throughout the

whole paper, P ∗ denotes the probability conditional on {Ri,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T}; we use “D
∗
→”

and “P
∗
→” to indicate convergence in distribution and in probability according to P ∗ respectively.

4.1 Estimating θ0

We begin by studying the estimation of θ0. In Section C in the Internet Appendix, we show

that the estimator is strongly consistent.

3For example, as mentioned in the introduction, Farago and Tédongap (2018) a priori set θ = −0.03 and run
robustness checks for θ ∈ {0,−0.015,−0.04}.
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Some further notation is required. Let the N × 1 vector of demeaned returns be R̃t =(
R̃1,t, . . . , R̃N,t

)′
, for 1 ≤ t ≤ T , defined as in (10). For generic numbers of factors PD, PS

and P = PD + PS , define the N × P matrix of loadings BP =
(
BPD
D ,BPS

S

)
, and the associated

PD × T and PS × T matrices of demeaned factor innovations UPD
D =

(
uPDD,1, . . . ,u

PD
D,T

)
and UPS

S =(
uPSS,1, . . . ,u

PS
S,T

)
, with UP =

(
UPD ′
D ,UPS ′

S

)′
.

The objective function in terms of BP , UP and θ, is given by the sum of squared residuals

(divided by NT ):

S
(
BP ,UP , θ

)
= 1
NT

T∑
t=1

∥∥∥R̃t − dD,t (θ) BPD
D uPDD,t − dS,t (θ) BPS

S uPSS,t
∥∥∥2
. (11)

For given P , the estimators B̂P =
(
B̂PD
D , B̂PS

S

)
- with B̂Pj

j =
(
β̂j,1, ..., β̂j,N

)′
for j = D,S, and ÛP

and θ̂P are defined as {
B̂P , ÛP , θ̂P

}
= arg min

BP ,UP ,θ
S
(
BP ,UP , θ

)
.

In order to solve this minimization, we begin by concentrating the objective function S
(
BP ,UP , θ

)
with respect to BP and θ, subject to the constraints N−1BPj ′

j BPj
j = IPj for j = D,S. It follows

that the estimator of UP is

ûPDD,t
(
BPD
D , θ

)
= N−1

(
dD,t (θ) BPD

D (θ)
)′

R̃t,

ûPSS,t
(
BPS
S , θ

)
= N−1

(
dS,t (θ) BPS

S (θ)
)′

R̃t.

Hence, we can define

S
(
BP , θ

)
= 1
NT

T∑
t=1

∥∥∥R̃t − dD,t (θ) BPD
D ûPDD,t

(
BPD
D , θ

)
− dS,t (θ) BPS

S ûPSS,t
(
BPS
S , θ

)∥∥∥2
.

Let

Σ̂
j,R̃ (θ) = 1

NT

T∑
t=1

dj,t (θ) R̃t (θ) R̃t (θ)′ , (12)

for j = D,S. It is well known (e.g. Bai (2003)) that the Principal Component estimator B̂Pj
j (θ)

for BPj
j given θ is

√
N times the N × Pj matrix of eigenvectors of Σ̂

j,R̃ (θ) corresponding to its
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largest Pj eigenvalues, under the orthonormalization restriction N−1
(
B̂Pj
j (θ)′ B̂Pj

j (θ)
)

= IPj , for

j = D,S.

We now define

S (θ) = 1
NT

T∑
t=1

∥∥∥R̃t − dD,t (θ) B̂PD
D (θ) ûPDD,t

(
B̂PD
D (θ) ; θ

)
− dS,t (θ) B̂PS

S (θ) ûPSS,t
(
B̂PS
S (θ) ; θ

)∥∥∥2
.

Let B̂P (θ) =
[
B̂PD
D (θ) , B̂PS

S (θ)
]

and ÛP (θ) =
[
ÛPD ′
D

(
B̂PD
D (θ) ; θ

)
, ÛPS ′
S

(
B̂PS
S (θ) ; θ

)]′
. For P =

PD + P S with PD ≥ P 0
D and P S ≥ P 0

S , we finally have the estimator

θ̂ = arg min
θ
S
[
B̂P (θ) , ÛP (θ) , θ

]
; (13)

θ̂ can be obtained e.g. through a grid search. In Section B of the Internet Appendix, we comple-

ment the theory with a small-scale simulation exercise, reporting bias and MSE for the estimated

θ0. We find that the estimator works well in general, especially when the factor structure of the

two regimes differs (more); the estimates tend to be biased towards zero as θ0 becomes more

and more negative (thus having fewer and fewer observations in the downside regime), but this

vanishes as the sample sizes increase.

In the Internet Appendix, we show that θ̂ is a strongly consistent estimator of θ0, deriving its

rate. In principle, the limiting distribution of θ̂ can be derived along similar steps as Chan (1993),

and can be employed to carry out inference on θ0. However, this is bound to depend on several

nuisance parameters, and therefore the asymptotic distribution of θ̂ would be only of theoretical

interest. Hence, in this paper we propose a different approach to test for null hypotheses of the

type

H0 : θ0 = c, (14)

where c is a value of interest; we note that being able to test for (14) also offers the possibility of

computing confidence intervals, by inverting the test. This procedure does not require the limiting

distribution of θ̂, and it relies only on the rate of convergence, using an approach similar to the one

in Horváth and Trapani (2019). In particular, our approach is very similar to the one proposed in
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Section 4.2, and therefore, in order to avoid repetitions, the details are relegated to Section A.2

of the Internet Appendix, to which we refer the interested reader.

4.2 Determining the number of common factors

We extend the procedure suggested by Trapani (2018) to estimate the number of factors in

each regime, P 0
D and P 0

S . As in the previous section, here we only report the relevant algorithm;

details and the theory are in Section A.3 of the Internet Appendix.

Let d̂D,t = I
(
D̂t
)

and d̂S,t = 1− d̂D,t, and define π̂S = T−1∑T
t=1 d̂D,t and π̂D = 1− π̂S . We use

the sample covariance matrices

Σ̂D = 1
T π̂D

T∑
t=1

R̃tR̃′td̂D,t, (15)

Σ̂S = 1
T π̂S

T∑
t=1

R̃tR̃′td̂S,t, (16)

and denote the i-th largest eigenvalue of Σ̂D and Σ̂S as ĝ(i)
j , with j = D or S.

Using Lemma A.1 and Theorem A.2 of Section A.3 in the Internet Appendix, we can determine

the number of common factors in each regime using the following algorithm, based on two separate

steps.

In the first step, we study a test for the individual eigenvalues, i.e.


H0 : g

(i)
j = c

(i)
j N

HA : g
(i)
j ≤ c

(i)
j

, (17)

for some 0 < c
(i)
j < ∞ and j = D,S. In essence, the null hypothesis is that the i-th largest

eigenvalue of the covariance matrix of the data - in each regime - diverges, thus suggesting that

there are at least i common factors. Conversely, upon rejecting the null hypothesis, the conclusion

can be drawn that there are fewer than i common factors in regime j. Thus, the second step of

the analysis is to determine P 0
D and P 0

S by carrying out a sequence of tests for i = 1, ..., Pmax, with

Pmax a user-defined upper bound.
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We begin with (17). Define

ψ
(
ĝ

(i)
j

)
= exp

N−%j ĝ(i)
j

gj (p)

 , (18)

where

gj (p) = 1
N − p

N∑
h=p+1

ĝ
(h)
j .

The purpose of gj (p) is to rescale ĝ(i)
j ; in Trapani (2018), it is suggested to set p = 0 (that is, to

use the trace to rescale ĝ(i)
j ); other choices are also possible, such as p = i, which is recommended

in Barigozzi and Trapani (2021). In (18), we have defined

%j =


ε when lnTj

lnN ≥
1
2

1− 1
2

lnTj
lnN + ε when lnTj

lnN < 1
2

, (19)

where ε > 0 is a (small) user-defined number.

We now describe the test for (17).

Step 1 Generate an i.i.d., N (0, 1) sequence
{
ξ

(i)
j,m, 1 ≤ m ≤M

}
, where the ξ(i)

j,ms are independent

across i and j.

Step 2 Define the Bernoulli sequence ζ(i)
j,m (s) = I

(
ψ
(
ĝ

(i)
j

)
× ξ(j)

i,m ≤ s
)
.

Step 3 Compute

Υ(i)
j =

∫ +∞

−∞

(
υ

(i)
j (s)

)2 1√
2π

exp
(
−1

2s
2
)
ds,

where

υ
(i)
j (s) = 2

M1/2

M∑
m=1

(
ζ

(i)
j,m (s)− 1

2

)
.

We show that, under the null, Υ(i)
j

D∗→ χ2
1, thus providing a rule to decide between H0 and HA

in (17). On account of this, it is possible to propose a sequential procedure to determine P 0
D and

P 0
S .

This is based on the following two-step algorithm, for j = D,S.
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Step 1 Run the test for H0 : g(i)
j =∞ based on Υ(1)

j . If the null is rejected, set P̂j = 0 and stop,

otherwise go to the next step.

Step 2 Starting from i = 1, run the test for H0 : g(i+1)
j = ∞ based on Υ(i+1)

j . If the null is

rejected, set P̂j = i and stop; otherwise repeat the step until the null is rejected, or until the

pre-specified maximum number Pmax is reached.

Let α = α (N, T ) denote the level of the individual tests and cα = cα (N, T ) be the corre-

sponding critical value. We show that, as long as the level of the individual tests goes to zero, P̂j
is a consistent estimator.

Theorem 1. We assume that Assumptions 1-6 in Section A.1 of the Internet Appenendix are

satisfied. As min (N, Tj) → ∞ under (A.11), if cα (N, T ) → ∞ with cα (N, T ) = o (M), then it

holds that

P̂j = P 0
j + oP ∗ (1) ,

for almost all realizations of {Ri,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T}, and j = D,S.

In the implementation of the algorithm, it is necessary to have an upper bound Pmax; this is

chosen as

Pmax = O
(
C1−c
N,T

)
, (20)

for some user-defined c > 0. The selection rule in (20) is as an extension of the otherwise custom-

arily employed Schwert’s rule; see Schwert (1989), and also the comment in Bai and Ng (2002). In

our empirical analysis, and in the simulations, we use and recommend Pmax =
⌊
min

{
N1/3, T 1/3

}⌋
.

We note that, in Section B of the Internet Appendix, we report some evidence on the performance

of the estimator of the number of common factors; we have (also) tried some variants of (20) as

robustness checks, but results are virtually unaffected.

4.3 Estimating common factors and loadings

Once θ̂ and P̂j (for j = D,S) have been obtained, estimation of factors and loadings in each

regime follows by standard arguments, e.g. applying Principal Components (see e.g. Bai (2003)),
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as also implicitly mentioned in Section 4.1. In particular, let

Σ̂
j,R̃

(
θ̂
)

= 1
NT

T∑
t=1

dj,t
(
θ̂
)

R̃t

(
θ̂
)

R̃t

(
θ̂
)′
,

for j = D,S, be an estimator of Σ̂
j,R̃ (θ) defined in (12). The estimator B̂P̂j

j

(
θ̂
)

for BPj
j is given by

√
N times the N×P̂j matrix of eigenvectors of Σ̂

j,R̃

(
θ̂
)

corresponding to its largest P̂j eigenvalues,

under the orthonormalization restriction N−1
(
B̂P̂j
j

(
θ̂
)′

B̂P̂j
j

(
θ̂
))

= I
P̂j

, for j = D,S. We then

estimate {uj,t}Tt=1 by OLS regression, viz.

ûP̂jj,t
(
B̂P̂j
j

(
θ̂
)
, θ̂
)

= N−1
(
dD,t

(
θ̂
)

B̂P̂j
j

(
θ̂
))′

R̃t,

for j = D,S.

5 Three-pass estimation of risk premia

We now extend the Fama-MacBeth two-pass procedure (Fama and MacBeth (1973)) and

estimate downside risk premia for the observable factors gt as defined in (10) in the spirit of

Giglio and Xiu (2021). In particular, we propose the following three-pass procedure:

First-pass: Based on the results in Section 4, estimate θ0, P 0
j , {uj,t}Tt=1, and {βj,i}Ni=1 for j = D,S:

recall that the notation for the corresponding estimators is θ̂, P̂j,
{

ûP̂jj,t
}T
t=1

, and
{
β̂
P̂j
j,i

}N
i=1

for j = D,S, respectively.

Second-pass: Estimate the risk premia of fj,t by running regime-specific cross-sectional regres-

sions (equation (21) below).

Third-pass: Estimate Λj within each regime by running a regression of gt on ûP̂jj,t based on (8)

(equation (22) below) and rotate the risk premia of fj,t (equation (23) below).

We have discussed the first pass in Section 4.2, where consistency of θ̂ and P̂j are derived. We

now turn to the second and third one. In this section, we report only the main results on the risk

premia; further results are in Section A.4 of the Internet Appendix.
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5.1 Regime-specific cross-sectional regression

Given the N × P̂j matrices of beta estimates B̂P̂j
j =

(
β̂
P̂j
j,1, . . . , β̂

P̂j
j,N

)′
, define the N ×

(
1 + P̂j

)
matrices X̂j =

(
ιN , B̂

P̂j
j

)
, for j = D,S. Let Γj =

(
γj,0, γ

′
j,1

)′
, for j = D,S, and Rt =

(R1,t, . . . , RN,t)′, for t = 1, . . . , T .

The regime specific cross-sectional regression of Rt on X̂j yields

Γ̂j,t =
(
X̂′jX̂j

)−1 (
X̂′jRt

)
d̂j,t, (21)

for j = D,S and 1 ≤ t ≤ T .

Further, let T̂j = T π̂j for j = D,S. Then, Γj is estimated as

Γ̂j =

 γ̂j,0

γ̂j,1

 = 1
T̂j

T∑
t=1

Γ̂j,t =
(
X̂′jX̂j

)−1 [
X̂′jRj

(
θ̂
)]
,

for j = D,S, where Rj

(
θ̂
)

= T̂−1
j

∑T
t=1 d̂j,tRt.

5.2 Estimation of regime-specific risk premia

Let g̃j,t = gtd̂j,t
(
θ̂
)
− gj, with gj = T̂−1

j

∑T
t=1 gtd̂j,t

(
θ̂
)
, for j = D,S.

The estimator for Λj within each regime is

Λ̂j =
[
T∑
t=1

d̂j,t
(
θ̂
)

g̃j,tû′j,t

] [
T∑
t=1

d̂j,t
(
θ̂
)

ûj,tû′j,t

]−1

, (22)

for j = D,S. Similarly, the estimator for γj,g is

γ̂j,g = Λ̂j γ̂j,1, (23)

for j = D,S.
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5.3 Asymptotics: consistency and limiting distribution of γ̂j,g

We report here the asymptotics for γ̂j,g; results for Γ̂j and Λ̂j are in Section A.4.3 of the

Internet Appendix.

We begin by showing the consistency of our estimators.

Theorem 2. We assume that Assumptions 1-8 in Section A.1 of the Internet Appendix are sat-

isfied. Then, as min (N, Tj)→∞, it holds that

γ̂j,g − γ0
j,g = oP (1) + oP ∗ (1) ,

for j = D,S, for almost all realizations of {Ri,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T}.

Theorem 2 states that γ̂j,g is consistent; no restrictions are required on the relative rate of

divergence of N and T as they pass to infinity.

Next, we present the limiting distribution of the estimation error.

Theorem 3. We assume that Assumptions 1-9 in Section A.1 are satisfied, and that min (N, Tj)→

∞, with

πj ∈ (0, 1) , (24)
T 1/2

N
→ 0. (25)

Then, it holds that ( 1
T

Σγ,j + 1
N

Σαγ,j

)−1/2 (
γ̂j,g − γ0

j,g

)
D∗→ N (0, IK) , (26)

for j = D,S, for almost all realizations of {Ri,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T}, where Σγ,j and Σαγ,j are

defined in Section A.4 of the Internet Appendix.

A comment on (25) may be in order. By Theorem 2, all estimators are consistent, irrespective

of the relative rate of divergence between N and T as they pass to infinity. Theorem 3, conversely,

requires a restriction, namely that T = o (N2). However, it can be envisaged that most datasets
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(unless T is very “short”, which is typically not the case in empirical work) should satisfy this

requirement.

Finally, we note that, when estimating Γj, we also obtain an estimator of the zero-beta rate

γj,0 for j = D,S. Based on equation (5), we note that the quantity

E (I (Dt) γD,0 + I (St) γS,0) = πDγD + πSγS ,

can be interpreted as an “unconditional” zero-beta rate. In Section A.4.4, we propose a test for

H0 : πDγD,0 + πSγS,0 = 0. (27)

Next, we apply the conditional factor model and the methods described above to two cross-

sections of asset returns.

6 Empirical analysis

6.1 Data

We apply our methodology to two sets of test assets: a cross-section of equity portfolios

(Section 6.1.1), and a set of returns for multiple asset classes (Section 6.1.2).

6.1.1 Equity panel

We use returns (in excess of the risk-free rate) from the following set of N = 130 US eq-

uity portfolios: 25 portfolios sorted by size and book-to-market; 25 portfolios sorted by size and

momentum; 10 size-sorted portfolios; 10 book-to-market portfolios; 10 momentum portfolios; 25

portfolios sorted by size and operating profitability; 25 portfolios sorted by size and investment.

The risk-free rate is the one-month US Treasury bill rate. The market return used to determine

the disappointment event (as explained in Section 2.3) is the value-weighted average log-return

computed with respect to all stocks available from CRSP.
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The data are taken from Kenneth French’s website.4 We consider the sample period from

July 1963 to December 2018, a total of T = 666 monthly observations. Farago and Tédongap

(2018) analyze each of these sets of portfolios individually.5 We consider the entire cross-section

of returns, which is aligned with Lewellen, Nagel, and Shanken (2010), who advocate the use of

sizable cross-sections of asset returns.

6.1.2 Data for multiple asset classes

We also consider a cross section that includes equity, government bond, corporate bond and

currency returns, with N = 57 portfolios in total. This allows us to analyze the effect of downside

risk on multiple asset classes; Cochrane (2011) suggests investigating the factor structure across

multiple asset classes to study the corresponding underlying discount factors.

The data for these test assets are obtained from He, Kelly, and Manela (2017).6 In particu-

lar, we employ 25 equity portfolios sorted by size and book-to-market ratio; 10 maturity-sorted

government bond portfolios from the CRSP “Fama Bond Portfolios” file with maturities in six

month intervals up to five years; 10 corporate bond portfolios sorted on yield spreads from Nozawa

(2017); 6 currency portfolios sorted on interest rate differential (carry) from Lettau, Maggiori, and

Weber (2014); 6 currency portfolios sorted on momentum from Menkhoff, Sarno, Schmeling, and

Schrimpf (2012b). As for the equity panel, the market return to determine the disappointment

event as detailed in Section 2.3 is the value-weighted average log-return computed with respect to

all stocks available from CRSP. The data sample runs from October 1983 to January 2010, with

T = 316 time series observations.

6.2 Estimation and inference

We begin by reporting results on estimation and inference on the threshold level θ (Section

6.2.1) and on the number of factors in each regime (Section 6.2.2).

4See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
5See Section 3.2 and Table 1 in Farago and Tédongap (2018).
6The data are kindly made available on Asaf Manela’s website at http://apps.olin.wustl.edu/faculty/

manela/data.html.
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6.2.1 Estimation and inference on θ

Results on estimation are in Panel A of Table 1.7 In the case of the equity sample, the estimated

disappointment threshold θ̂ is equal to −0.061: this generates T̂D = 45 downside observations,

with a relative frequency of approximately 6.8%. Notice that θ̂ is lower than the fixed threshold

θ = −0.03 used, e.g., by Farago and Tédongap (2018), which would generate 105 downside

periods with a relative frequency approximately equal to 15.8% in our data. An analogous result

is obtained in the case of the sample of multi-asset portfolios, where the estimated disappointment

threshold θ̂ = −0.062 and gives T̂D = 21 downside observations, with frequency approximately

equal to 15.5%. Therefore, for both sets of test assets, the estimated downside state is less frequent

but more severe than implied by the fixed threshold typically assumed in the literature on downside

risk.

To enhance our understanding of the downside regime, we evaluate the correlation between

the downside indicators, as resulting from using the estimated threshold θ̂ and the value θ = −0.03

in Farago and Tédongap (2018), and various measures of economic and financial conditions that

may be related to the downside regime. We consider the following set of variables: the NBER US

recession indicator (REC ); the log-difference of industrial production (∆IP ); the CBOE volatility

index based on S&P 500 index options (VIX); the CBOE volatility index based on S&P 100 index

options (VXO); the economic policy uncertainty index of Baker, Bloom, and Davis (2016) (EPU );

the Equity Market Volatility tracker of Baker, Bloom, and Davis (2016) (EMV ); the Policy-

Related Equity Market Volatility tracker of Baker, Bloom, Davis, and Kost (2019) (PREMV );

the Geopolitical Risk index of Caldara and Iacoviello (2018) (GPR); the TED spread (TED);

the disaster probability for the US of Barro and Liao (2021) (SPX); the spread for the T-bill

between 10 and 2 year maturities (T10Y2Y ). Broadly speaking, the correlations point towards a

connection between the downside indicator and the measures of economic and financial conditions

we consider. This finding is consistent with a vast literature on asset pricing, which shows that

volatility risk is a priced risk factor (see, inter alia, Ang, Hodrick, Xing, and Zhang (2006), Ang,

Hodrick, Xing, and Zhang (2009), and Menkhoff, Sarno, Schmeling, and Schrimpf (2012a)). Note,

7Estimation of θ is carried out as explained in Section 4.1.

21



however, that the bilateral correlations are far from perfect and they often revolve around 0.5; this

indicates that the determinants of the threshold go beyond volatility. Indeed, in the case of the

equity panel, the correlation with the NBER recession indicator is weakly significant and positive.

One interesting exception is the correlation with the term spread at different maturities, which is

statistically insignificantly different from zero in both panels.8

We then run inference on the threshold parameter, and the results are shown in Panel B of

Table 1. We first conduct a test, whose details are spelt out in Section A.2, for the null hypothesis

H0 : θ = θ: this allows us to formally assess whether the choice of the fixed threshold θ = −0.03

is supported by the data. As can be seen, the null is strongly rejected with a p-value of virtually

zero and hence the estimated threshold θ̂ is significantly different from θ: this provides evidence in

favor of our approach that allows to estimate the threshold for the downside regime. In addition

to testing for the significance of the difference between θ̂ and θ, we use the same testing approach

to test for the null that the estimated thresholds are the same across the two datasets of equity

and multi-asset portfolios (last row of Table 1): these results show that the estimated threshold

is the same across the two datasets we consider, as the null hypothesis that the threshold is the

same in the two samples cannot be rejected at conventional levels of significance.

6.2.2 Estimating the number of common factors

Results are in Table 2.9 We estimate the number of common factors for three cases: the

linear unconditional model described in Section 2.1 as applied to the whole available sample (this

case is denoted henceforth without using any subscripts); the satisfactory regime j = S and the

downside counterpart j = D, both estimated using the conditional model introduced in Section

2.2. In light of the results in Section 6.2.2, we only report results using the estimated threshold

value θ̂. Alongside the estimated number of common factors, we evaluate the proportion of the

8An interesting question is what drives the value of θ, and the model could allow for θ to be endogenously
determined by some state variables. We leave this further generalization for future research.

9We have used the algorithm described in Section 4.2. We have carried out the individual tests with M = N in
Step 1; similarly to our findings in the simulations (reported in the Internet Appendix), we assessed the robustness
of the results by using also M = bN/2c and M = 2N , but recorded virtually no changes. We have also set ε = 0.01
in (19). In the determination of the number of factors, we have carried out the individual tests using a nominal
level α = 0.05

T .
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total variance explained by each factor (and the cumulative one). Letting g
(i)
j denote the i-th

largest eigenvalue for each of the two regimes j = D,S (and, similarly, using g(i) for the whole

sample), the proportion of the total variance associated with the i-th common factor is measured

as

ν
(i)
j =

g
(i)
j∑N

i=1 g
(i)
j

, (28)

with ν(i) defined similarly. The cumulative percentage of the total variance explained by P̂j

estimated factors is given by

νj =
∑P̂j
i=1 g

(i)
j∑N

i=1 g
(i)
j

, (29)

with ν defined analogously for the whole sample.

The most striking finding in Table 2 is the discrepancy between the number of estimated

common factors in the two regimes. We note two main points. First, observing P̂D, only one com-

mon factor is needed in the downside state for each of the two cross-sections of returns examined.

Crucially, P̂S is always greater than one (being equal to six and four for the equity and multi-

asset cross-sections respectively) and, interestingly, the proportion of the variance explained by

the common factors in the downside regime is invariably at least the same as in the upside regime.

The fact that the data tend to be driven by few(er) common factors during bad times suggests

that dependence among assets increases in a downturn. In turn, this result is intuitively clear and

consistent with the anecdotal evidence that factor diversification tends to disappear when needed

most (see e.g. Page and Panariello (2018) and the references therein).10 Secondly, applying the

test to the unconditional, linear model would lead to the overestimation of the number of factors,

finding P̂ = 6 or 4 respectively in the two datasets.

These findings clearly indicate that it is important to allow for a different number of factors

in each regime. From a statistical point of view, it is natural that removing a restriction leads

to better inference - in this case, the number of common factors is neither understated (which

would correspond to an omitted variable problem) nor overstated (which would be tantamount

10This result is also consistent with the literature that shows that, in crisis times, the macroeconomy is driven by
a smaller number of common factors (we refer, inter alia, to Stock and Watson (2009), Cheng, Liao, and Schorfheide
(2016) and Li, Todorov, Tauchen, and Lin (2017)).
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to including irrelevant variables). From an empirical viewpoint, the results clearly imply that

restricting the number of common factors to be the same across regimes is not an adequate choice.

6.3 Model fit

In this section, we compare the performance of our latent factor model with downside risk

against a linear specification, in the same vein as Lettau, Maggiori, and Weber (2014). We report

three measures of goodness of fit: the R2, the root of the mean squared prediction error (RMSPE),

and the ratio between the RMSPE and the root mean squared return (RMSR). The results in

Table 3 show that the conditional model performs well, with a very high R2 both in the S regime

and in the D regime, as well as for the full sample; similar results are found using the other

measures of goodness of fit based on the RMSPE.

Our findings also suggest that the performance of the linear, unconditional model over the

full sample is quite satisfactory with an R2 of 0.79 and 0.98 (when the number of common factors

P is set to its estimate P̂ ) for the multi-asset and equity samples respectively, and relatively low

RMSPE. However, we know from earlier evidence that the number of latent factors that matter

for pricing the cross-section of asset returns in the downside regime is much smaller (namely,

1) than the number of factors required in the S regime. Given that the data experience such

strong regime dependence, it seems surprising that the unconditional, regime-independent pricing

model performs as well as it does. To better understand the gain from using a conditional asset

pricing model that allows for downside risk, it is therefore useful to check the performance of

the unconditional model for observations in the S and D regimes separately. The results in

Table 3 show that the performance of the unconditional model is very poor in both the D and

S regimes, with very low explanatory power and large RMSPEs. In fact, the R2 is generally

negative for observations in the D regime. This suggests that the seemingly good performance of

the unconditional model over the full sample is illusory, in the sense that it comes from somehow

combining large pricing errors from two regimes which generate small pricing errors on aggregate,

over the full sample.

The latter point can be seen clearly in Figure 2, where (for both sets of test assets) we report

scatter plots of realized versus model-implied returns, for both the unconditional model, and the
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conditional model under three different cases: the D regime, the S regime, and the full sample.

This figure makes it apparent how the unconditional model performs very poorly in the downside

regime. Note the large positive errors: the unconditional model predicts much higher returns than

the realized ones, which tend to be very negative in this regime. Hence, the unconditional model is

not able to capture such extreme, bad events. The conditional model performs much better, and

there appears to be no systematic tendency to generate positive or negative errors in the downside

regime D. Turning to the S regime, the conditional model performs very well, with the majority

of test asset returns lying close to, or on, the 45 degree line. In contrast, the returns implied

by the unconditional model display a monotonic pattern (hence are highly positively correlated)

with realized returns in the S regime, but do not lie on the 45 degree line for any of the test

asset returns. This means that, even in the S regime, the unconditional model has a tendency to

generate systematic (non-random) pricing errors; however, these pricing errors have the opposite

sign than in the D regime, since the unconditional model predicts lower returns than realized in

the S regime. Over the full sample, the averaging across the errors of these two regimes - large

positive errors for a small number of observations in the D regimes and more moderate negative

pricing errors for a large number of observations in the S regime - gives the appearance that

the unconditional model performs well, but this is of course fallacious: the unconditional model

performs poorly in both regimes.

The analysis above clarifies the gain from using a conditional latent factor model of asset

pricing that allows for different regimes, and hence different sets of factors in good and bad times.

The pricing model is very different in these two regimes: this captures the stark difference in

the time-varying factor structure of asset returns, which is very low-dimensional in bad times,

and requires more factors in good times. A model that does not allow for this feature, which

is prominent across both datasets examined here, can spuriously generate a strong correlation

between model-implied and realized returns over the full sample, but in fact it performs poorly in

both good and bad times. At an applied level, the conditional model is consistent with the notion

that asset returns become very highly correlated in bad times and their factor structure reduces

in dimensionality to one factor, and this feature is key for the model to generate predicted returns

that capture downside risk.

25



Figure 2: Predicted and expected returns
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Notes. The scatter plot shows realized average returns against predicted average returns in downside, upside and over the entire sample for the 130 equity
portfolios and the 57 multi-asset portfolios described in Sections 6.1.1 and 6.1.2, respectively.
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6.4 Risk premia

Table 4 displays the results from estimation of the risk premia obtained from the three-pass

procedure detailed in Section 5. We consider the following set of observable pricing factors: the

return on the market in excess of the risk-free rate (RmRf ); the four additional factors that com-

plete the Fama and French (2015) five-factor model, that is size (SMB), value (HML), operating

profitability (RMW ), and investment (CMA); the momentum factor (MOM ), taken from Carhart

(1997), whose importance is further stressed in Asness, Moskowitz, and Pedersen (2013); the liq-

uidity factor (LIQ) from Pástor and Stambaugh (2003); and ∆VXO, which is the change in the

VXO index, capturing expected volatility in the S&P100 embedded in option prices.11 For all

factors we expect a positive risk premium, except for ∆VXO, as volatility is expected to have a

negative price of risk. For both equity and multi-asset portfolios, we perform the analysis with

respect to conditional and unconditional specifications; the latter case is essentially the three-pass

procedure of Giglio and Xiu (2021), for which results are reported in the first column of Table

4 denoted “Full Sample”. The second and third column of Table 4 report estimated risk premia

from the conditional model with downside risk for each of the two regimes, while the final column

reports the weighted average of the conditional, regime-specific estimates with weights equal to

the number of observations in each regime.

Starting from equity portfolios, in the case of the unconditional model all risk premia are

correctly signed and of reasonable magnitude. They are also generally statistically significantly

different from zero, with the exception of RMW and CMA, which are statistically insignificant,

and also acknowledging that the risk premium for SMB is only statistically significant at the 10

percent level. These results are fairly comparable to the ones reported by Giglio and Xiu (2021)

on a different equity cross-section. The unconditional model, however, hides highly asymmetric

dynamics between the regimes: in the occurrence of the downside event, RmRf, SMB and LIQ

generate excess returns that are negative and statistically significant (only at the 10 percent level

for the case of LIQ), while ∆VXO gives positive excess returns; in good times, a higher number

11The pricing factor RmRf is defined as RmRf = Rm − Rf , where Rm is the market return, and Rf is the
risk-free rate as measured by the one-month Treasury bill rate. The series for Rm, Rf, SMB, HML, RMW, CMA and
MOM are available from Kenneth French website: see footnote 4. LIQ is available from Luboš Pástor’s website.
The VXO data are from the CBOE website.
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of factors, namely RmRf, SMB, MOM and LIQ are positively priced, while ∆VXO is negatively

priced. The average implied risk premium, reported in the last column of the table, is precisely

estimated (statistically significant at the one percent level) only for RmRf and ∆VXO, being for

both these factors larger in magnitude than the risk premia estimated using the unconditional

model specification.

Moving to multi-asset portfolios, we find statistically significant estimates of risk premia as-

sociated with four factors (the market excess return, MOM, LIQ and ∆VXO), although equity

momentum enters with a negative sign in this cross section. However, the conditional models

provide again a more informative picture: the risk premia of RmRf and SMB are negative and

significant in downside periods; RmRf, MOM, LIQ and ∆VXO are statistically significant in good

times, although MOM enters with a negative sign. The average risk premia in the last column

confirm the most precisely estimated risk premia are the ones associated with RmRf and ∆VXO

as in the equity cross-section, although MOM also displays statistical significance with a nega-

tive sign. This suggests that RmRf and ∆VXO are clearly associated with risk premia that are

sizable, statistically significant and strongly regime-dependent but also that equity momentum is

not related in a straighforward way to returns from portfolios outside the equity market universe.

7 Conclusions

In this paper, we propose a methodology to model and price the cross section of asset returns in

the presence of common factors and downside risk. Both features have been shown to offer superior

explanatory power in several empirical papers (e.g. Lettau, Maggiori, and Weber (2014)). We

extend the framework used in the extant literature in at least three ways: we allow for downside risk

via a threshold specification which allows for the estimation of the (usually set a priori) threshold

level; we consider different factor structures in the two regimes, allowing also for different numbers

of factors; we adapt the methodology developed by Giglio and Xiu (2021) to recover the observable

factors risk premia from the estimated latent ones in both regimes.

The proposed model is illustrated through two empirical applications to a large cross-section

of equity returns and a smaller, but more diverse, cross-section of returns from different asset
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classes. The results show that: estimating, rather than setting a priori, the threshold level

improves goodness of fit, also determining substantial differences in the estimation of risk premia

with respect to an exogenously fixed level; estimating the number of common factors separately

between regimes yields very different estimates between regimes, with the downside risk state

having a small number of common factors (one in our data), whilst returns in the good state of the

world are driven by more common factors; estimating the risk premia of popular observable factors

is more accurate and yields estimates consistent with strong asymmetries in the two regimes.

Finally, the empirical analysis shows clearly the limitations of unconditional asset pricing

models that assume a constant relationship between risk and return, while illustrating that the

proposed conditional model is capable to adequately characterize the key properties of different

cross-sections of asset returns.
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Table 1: Estimation and inference on θ

Panel A: Estimation
Equity Multi-asset

fixed estimated fixed estimated

θ −0.030 −0.061 −0.030 −0.062
TD 105 45 49 21
πD 0.158 0.068 0.155 0.066

Corr (D, REC) 0.166∗ 0.244∗ 0.197 0.338
Corr (D,∆IP ) −0.054 −0.084 −0.032 −0.169
Corr (D, V IX) 0.508∗∗∗ 0.538∗∗∗ 0.475∗∗∗ 0.541∗∗
Corr (D, V XO) 0.503∗∗∗ 0.545∗∗∗ 0.486∗∗∗ 0.572∗∗∗
Corr (D, EPU) 0.166∗ 0.293∗∗ 0.200 0.354
Corr (D, EMV ) 0.450∗∗∗ 0.525∗∗∗ 0.414∗∗∗ 0.494∗∗
Corr (D, PREMV ) 0.426∗∗∗ 0.516∗∗∗ 0.399∗∗∗ 0.493∗∗
Corr (D, GPR) −0.003 0.045 0.030 0.096
Corr (D, TED) 0.163∗ 0.210 0.185 0.247
Corr (D, SPX) 0.431∗∗∗ 0.493∗∗∗ 0.388∗∗∗ 0.483∗∗
Corr (D, T10Y 2Y ) −0.059 −0.010 0.060 0.150

Panel B: Inference
Equity Multi-asset

H0 : θ0 = −0.03 0.000∗∗∗ 0.000∗∗∗
H0 : θ0

E = θ0
MA 1.000

Notes. The table contains all the relevant inference on θ in the datasets considered. In Panel A, for each dataset
we report the estimated value, θ̂, and, as a term of comparison, the exogenously fixed value θ = −0.030, which is
proposed in Farago and Tédongap (2018). For both values of θ, we also report the proportion of time periods in
the downside regime D, denoted as πD, and the corresponding number of time periods, denoted as TD. In Panel A
we also report the correlation between the downside indicator functions implicitly defined by both θ̂ and θ, and the
following variables: REC is the NBER U.S. recession indicator; ∆IP is the log difference of industrial production;
VIX is the CBOE volatility index based on S&P 500 index options; VXO is the CBOE volatility index based on
S&P 100 index options; EPU is the economic policy uncertainty index of Baker, Bloom, and Davis (2016); EMV
is the Equity Market Volatility tracker of Baker, Bloom, and Davis (2016); PREMV is the Policy-Related Equity
Market Volatility tracker of Baker, Bloom, Davis, and Kost (2019); GPR is the Geopolitical Risk index of Caldara
and Iacoviello (2018); TED is the TED spread; SPX is the disaster probability for the U.S. of Barro and Liao
(2021); T10Y2Y is the spread for the T-bill between 10 and 2 year maturities. In Panel B we report p-values for
tests based on Section A.2. The first test is for the null hypothesis that θ0 is equal to −0.03. The test at the
bottom of the table is for the null that θ0 is the same across the two datasets: we refer to the values of θ0 in the
equity and multi-asset sample as to θ0

E and θ0
MA respectively. ∗∗∗, ∗∗ and ∗ indicate significance at 1%, 5% and

10% level, respectively.
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Table 2: Number of estimated common factors
Panel A: Unconditional Model

Equity Multi-asset
Common Individual Common Individual
P̂ ν g(i) ν(i) P̂ ν g(i) ν(i)

6 0.945 1 0.833 4 0.881 1 0.712
2 0.050 2 0.085
3 0.028 3 0.053
4 0.019 4 0.031
5 0.009
6 0.007

Panel B: Conditional model, Regime S
Equity Multi-asset

Common Individual Common Individual
P̂S νS g

(i)
S ν

(i)
S P̂S νS g

(i)
S ν

(i)
S

6 0.928 1 0.781 4 0.843 1 0.621
2 0.068 2 0.115
3 0.037 3 0.071
4 0.021 4 0.036
5 0.012
6 0.009

Panel C: Conditional model, Regime D
Equity Multi-asset

Common Individual Common Individual
P̂D νD g

(i)
D ν

(i)
D P̂D νD g

(i)
D ν

(i)
D

1 0.924 1 0.924 1 0.873 1 0.873

Notes. The table contains the number of estimated common factors in each regime. For each dataset considered,
we report inference on the number of common factors in the two regimes - the “normal”regime, denoted as S, and
the “downside”regime, denoted as D. In Panel A, we estimate the number of common factors for the whole sample,
which is tantamount to estimating the number of common factors in a linear specification without thresholds
(the “unconditional model”). In Panels B and C, we report results for the conditional model for regime S and
D respectively. Each sub-table in the panel (for different regimes and different ways of setting the threshold)
contains two types of information. The aggregate information (in the columns headed as “Common”) contains the
estimated number of common factors, P̂ , and the percentage of the variance explained by all the common factors
(this is denoted as νj , for j = D,S, using the notation in equation (28)); similarly, ν refers to the whole sample
estimation. The individual information (in the columns headed as “Individual”) contains the percentage of the
variance explained by the i-th individual common factor (this is denoted as ν(i)

j , for j = D,S, using the notation
in equation (29)); similarly, ν(i) refers to the whole sample estimation.
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Table 3: Goodness of fit measures
Panel A: Conditional model with downside risk

RMSPE
Equity Multi-asset

Pj = P̂j Pj = P̂j
Regime D 2.373 1.826
Regime S 0.105 0.354
Average 0.258 0.452

RMSPE/RMSR
Equity Multi-asset

Pj = P̂j Pj = P̂j
Regime D 0.239 0.275
Regime S 0.072 0.278
Average 0.083 0.278

R2

Equity Multi-asset
Pj = P̂j Pj = P̂j

Regime D 0.942 0.923
Regime S 0.994 0.915
Average 0.990 0.915

Panel B: Linear, unconditional model
RMSPE

Realized Returns Equity Multi-asset
P = P̂ P = 1 P = 5 P = 10 P = 15 P = P̂ P = 1 P = 5 P = 10 P = 15

Regime D 10.570 10.570 10.570 10.570 10.570 7.316 7.304 7.306 7.302 7.302
Regime S 0.774 0.810 0.774 0.771 0.770 0.633 0.703 0.571 0.558 0.551

Full Sample 0.105 0.255 0.106 0.085 0.078 0.370 0.460 0.240 0.201 0.181
RMSPE/RMSR

Realized Returns Equity Multi-asset
P = P̂ P = 1 P = 5 P = 10 P = 15 P = P̂ P = 1 P = 5 P = 10 P = 15

Regime D 1.067 1.067 1.067 1.067 1.067 1.101 1.099 1.100 1.099 1.099
Regime S 0.533 0.558 0.533 0.531 0.531 0.497 0.552 0.448 0.438 0.432

Full Sample 0.149 0.359 0.149 0.119 0.110 0.459 0.570 0.297 0.249 0.225
R2

Realized Returns Equity Multi-asset
P = P̂ P = 1 P = 5 P = 10 P = 15 P = P̂ P = 1 P = 5 P = 10 P = 15

Regime D −0.043 −0.003 0.005 0.005 0.005 −0.063 −0.008 −0.081 −0.196 −0.338
Regime S 0.197 0.202 0.234 0.235 0.236 0.266 0.258 0.306 0.244 0.161

Full Sample 0.978 0.871 0.978 0.986 0.988 0.790 0.675 0.912 0.938 0.950

Notes. This table shows the following goodness of fit measures for the conditional model with downside risk (Panel
A), and for the linear, unconditional model (Panel B): the root-mean-squared pricing error (RMSPE); the RMSPE
to root-mean-squared returns ratio (RMSPE/RMSR); the R-squared (R2). In Panel A, the RMSPE in regime
j = D,S is computed as

√
α′jαj /N , with αj = R̄j − X̂jΓ̂j , where R̄j = T̂−1

j

∑T
t=1 d̂j,tRt is the realized return;

the RMSPE/RMSR is computed as
√
α′jαj

/√
R̄′jR̄j ; R2 is computed as 1−

(
α′jαj

/
R̄′jR̄j

) [
(N − 1)

/(
N − P̂j

)]
;

Average is computed as the weighted average of the quantity of interest in the two regimes, with weights equal
to the sample frequencies of the regimes. In Panel B, realized returns over the full sample are computed as
R̄ = T̂−1∑T

t=1 Rt; the RMSPE in regime j = D,S is equal to
√
α′jUαjU /N , with αjU = R̄j − X̂Γ̂, and the

RMSPE over the full sample is
√
α′α /N , with α = R̄− X̂Γ̂; the RMSPE/RMSR in regime j = D,S is computed

as
√
α′jUαjU

/√
R̄′R̄ and as

√
α′α

/√
R̄′R̄ over the full sample; the R2 in regime j = D,S is computed as

1−
(
α′jUαjU

/
R̄′R̄

) [
(N − 1)

/(
N − P̂

)]
and as j = D,S is computed as 1−

(
α′α

/
R̄′R̄

) [
(N − 1)

/(
N − P̂

)]
over the full sample.
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Table 4: Estimation results
Full Sample Regime D Regime S Avg

Equity Multi-asset Equity Multi-asset Equity Multi-asset Equity Multi-asset
RmRf 0.520∗∗ 0.924∗∗∗ −6.104∗∗∗ −5.78∗∗∗ 1.199∗∗∗ 1.612∗∗∗ 0.705∗∗∗ 1.120∗∗∗

(0.257) (0.296) (1.202) (1.785) (0.230) (0.232) (0.230) (0.247)
SMB 0.250∗ −0.043 −5.619∗∗∗ −4.788∗∗∗ 0.409∗∗∗ 0.153 0.001 −0.175

(0.145) (0.216) (0.973) (0.699) (0.152) (0.221) (0.156) (0.212)
HML 0.298∗∗ 0.363 −1.704 −2.862 0.208∗ 0.205 0.079 0.001

(0.135) (0.270) (1.462) (2.172) (0.127) (0.261) (0.154) (0.283)
RMW 0.126 0.049 −0.352 −0.710 0.035 −0.078 0.009 −0.120

(0.099) (0.119) (0.975) (1.020) (0.087) (0.144) (0.105) (0.151)
CMA 0.143 0.040 −0.822 −1.197 0.052 −0.068 −0.008 −0.143

(0.094) (0.163) (0.914) (1.167) (0.087) (0.174) (0.102) (0.180)
MOM 0.662∗∗∗ −0.459∗∗ −1.798 −1.682 0.611∗∗∗ −0.845∗∗ 0.448∗ −0.901∗∗

(0.161) (0.186) (2.015) (2.084) (0.199) (0.422) (0.230) (0.418)
LIQ 0.300∗∗ 0.460∗∗∗ −7.311∗ −7.550 0.300∗∗∗ 0.509∗∗ −0.214 −0.026

(0.134) (0.172) (4.339) (5.281) (0.108) (0.213) (0.310) (0.403)
∆VXO −0.389∗∗ −0.386∗∗ 1.945∗∗ 2.002 −0.856∗∗∗ −0.731∗∗∗ −0.644∗∗∗ −0.531∗∗

(0.179) (0.165) (0.897) (1.355) (0.191) (0.227) (0.189) (0.233)

Notes. The table contains estimation results for the equity and multi-asset portfolios described in Section 6.1. The sample of equity portfolios runs
from July 1963 to December 2018. The sample of multi-asset portfolios runs between October 1983 and January 2010. The sample for ∆V XO is
available from February 1986 onward. ∗∗∗, ∗∗ and ∗ indicate significance at 1%, 5% and 10% level, respectively.
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A Complements to Sections 4 and 5

In this section of the Internet Appendix, we complement the theory spelt out in Sections 4

and 5, adding further details and explanations. In particular, in Section A.1, we list and discuss

all the relevant assumptions used in the paper. In Section A.2, we discuss in greater depth the

test presented in Section 4.1. In Section A.3, we present all the relevant theory for the estimation

of the number of common factors in each regime, discussed in Section 4.2. Finally, in Section A.4,

we complete the asymptotic theory developed in Section 5.3.

Here and in the rest of the appendix, we use the notation c0, c1,... to denote positive and

finite constants, which do not depend on the sample sizes and whose value can change from line

to line, and we use the expression “a.s.” as short-hand for “almost surely”.

A.1 Assumptions and further notation

Let

u0
t = u0

D,t ∪ u0
S,t, (A.1)

where u0
t has dimension P 0

u such that max (P 0
D, P

0
S) ≤ P 0

u ≤ P 0
D+P 0

S , and let B0
u,j =

(
β0
u,j,1, ..., β

0
u,j,N

)′
be, for j = D,S, the N×P 0

u matrix suitably filled with zeros so that B0
u,ju0

t = B0
ju0

j,t for j = D,S.

Finally, let

δ0
i = β0

u,S,i − β0
u,D,i. (A.2)

Assumption 1. There exists an η ∈
(

1
2 , 1

]
such that δ0

i 6= 0 for i = 1, ..., bNηc and ∑N
i=bNηc+1 ‖δ0

i ‖ <

∞.

Assumption 1 is related to the results in Bates, Plagborg-Møller, Stock, and Watson (2013),

who show that, if no more than a fraction O
(
N1/2

)
of the cross-sectional units in a large di-

mensional factor model have a structural break in the loadings, then the principal components

estimator applied to a (misspecified) linear model has the same convergence rate as in the no

break case - namely, Op

(
C−1
N,T

)
(see Bai and Ng (2002)). Thus, Assumption 1 requires that at

least a fraction O (Nη) of the N assets have regime specific factor loadings, for 1
2 < η ≤ 1.
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Assumption 2. It holds that, for all N : (i) (a) the largest eigenvalue of T−1
j

∑T
t=1 E (εtε′tdj,t (θ0))

is finite for j = D,S, and (b) the smallest eigenvalue of T−1
j

∑T
t=1E (εtε′tdj,t (θ0)) is positive for

j = D,S; (ii)

max
1≤i≤N

N∑
k=1

1
Tj

T∑
t=1

T∑
s=1

∣∣∣E (εi,tεk,sdj,t (θ0
)
dj,s

(
θ0
))∣∣∣ <∞,

for j = D,S.

Assumption 3. It holds that (i) E ‖fj,t‖4+2r <∞ for some r > 0, with j = D,S and 1 ≤ t ≤ T ;

(ii) it holds that, as T →∞

1
T

T∑
t=1

E
(
f0
j,tdj,t (θ) f ′j,tdj,t

(
θ0
))
→ Σf ,j

(
θ, θ0

)
,

where Σf ,j (θ, θ0) is positive definite for j = D,S and all θ; (iii)
∥∥∥β0

j,i

∥∥∥ < ∞ for j = D,S and

1 ≤ i ≤ N ; (iv) N−1B′jBj → ΣB,j as N → ∞, where ΣB,j are positive definite matrices for

j = D,S; (v) the eigenvalues of ΣB,jΣf ,j (θ0, θ0) are distinct for j = D,S.

Assumption 2 stipulates that the idiosyncratic part of the model (i.e., the errors εi,t) can be

cross-sectionally correlated; however, by part (i) of the assumption such cross-sectional correlation

is weak. Conversely, by Assumption 3, the “signal” part of the model (i.e., the one related to

the common factor structure) introduces strong cross-sectional correlation between the R̃i,ts. In

particular, as we show in Lemma A.1 below, Assumption 3 entails that the eigenvalues of the

covariance matrix of the R̃i,ts have a spiked structure, whereby the largest eigenvalues diverge

proportionally to N whereas the other ones are bounded.

Assumption 4. It holds that (i) E (εi,t) = 0 and E |εi,t|8 < ∞; (ii) E (dj,t (θ) dj,v (θ) εi,tεi,v) =

τj,i,t,v (θ) with |τj,i,t,v (θ)| < |τj,t,v| for 1 ≤ i ≤ N , and T−1
j

∑T
t=1

∑T
v=1 |τj,t,v| < ∞ for j =

D,S; (iii) E
(
T−1
j

∑T
t=1 dj,t (θ) εi,tεl,t

)
= σj,i,l,t (θ) with |σj,i,l,t (θ)| ≤ |σj,i,l| for 1 ≤ t ≤ T and

N−1∑N
i=1

∑N
l=1 |σj,i,l| <∞ for j = D,S; (iv)

E

∣∣∣∣∣T−1/2
j

T∑
t=1

(dj,t (θ) εi,tεl,t − E (dj,t (θ) εi,tεl,t))
∣∣∣∣∣
4

<∞,
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for j = D,S and 1 ≤ i, l ≤ N ; (v) it holds that E
(
f0
j,sεi,t|zt

)
= 0 for j = D,S and 1 ≤ t, s ≤ T ,

with

E

N−1
N∑
i=1

∥∥∥∥∥T−1/2
j

T∑
t=1

dj,t (θ) f0
j,tεi,t

∥∥∥∥∥
2 <∞,

for all θ and j = D,S.

Assumption 4 mimics similar assumptions in the literature (see e.g. Assumptions C and D

in Bai (2003)), and essentially it states that the idiosyncratic errors are weakly dependent. Parts

(iv) and (v) of the assumption are, essentially, weak (serial) dependence conditions.

Assumption 5. It holds that (i)
{
f0
j,t, zt, εt

}
is a strictly stationary, ergodic, ρ-mixing sequence

with mixing numbers ρj,m satisfying ∑∞m=1 ρ
1/2
j,m < ∞ for j = D,S (ii) E

(∥∥∥f0
j,tεi,t

∥∥∥4
|zt
)
< ∞ a.s.

and E
(∥∥∥f0

j,t

∥∥∥4
|zt
)
<∞ a.s. for j = D,S and 1 ≤ i ≤ N ; (iii) zt has bounded and strictly positive

density; (iv) the density of zt is continuous at θ0; (v) E
(
f0
j,tf0′

j,t|zt = θ
)

is a.s. positive definite and

continuous at θ = θ0 for j = D,S with ∑N
i=bNηc+1 δ

0′
i E

(
f0
j,tf0′

j,t|zt = θ0
)
δ0
i <∞ a.s.; (vi)

{
f0
j,t

}
and

{εi,t} are two mutually independent groups conditionally on zt for j = D,S and 1 ≤ i ≤ N .

Assumption 5 draws upon Assumption 1 in Hansen (2000) (see also Massacci (2017)), to which

we refer to for further discussion. In our context, it is used in order to obtain the convergence

rate of the estimators for factor innovations and loadings. We point out that some of the other

assumptions above - chiefly the ones that contain “time series results”(e.g., Assumptions 4(iv)-(v))

- would follow from Assumption 5, although they could also be derived from other dependence

assumptions.

A final note on the assumptions above. Assumption 3(iv) is typical in the literature on

inference on factor models (we refer, inter alia, to the contributions by Bai and Ng (2002) and

Bai (2003)) and, in essence, it requires that the common factors be “strong” or “pervasive”. A

well-known consequence of the assumption is that - as we show in Lemma A.1 - the eigenvalues of

the second moment matrix of the data diverge at a rate exactly equal to N , which we exploit in

the construction of our tests for the determination of the number of common factors. Conversely,

Assumption 3(iv) rules out the potentially interesting case of having “weak” common factors.

As pointed out in Uematsu and Yamagata (2019), a “weak” common factor can be defined as a
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common factor whose corresponding eigenvalue in the second moment of the matrix diverges, but

at a rate slower than N . Such a case could be of interest in general, and especially in the context

of a threshold factor model, where e.g. a pervasive factor affects only a fraction of the units in

one regime, and is absent in the other regime.

Assumption 6. As min (N, T )→∞, it holds that

(lnN)1+ε (lnT )1/2+ε

T 1/2πj
= 0,

for j = D,S.

By Assumption 6, ĝ(i)
j − g

(i)
j is of a smaller order of magnitude than N . As mentioned above,

this ensures the spiked structure of the spectrum of the sample second moment matrices.i

Assumption 7. iiIt holds that, for j = D,S: (i) E
(∑N

i=1 wiαj,i
)2
≤ c0N for all {wi}Ni=1 such that∑N

i=1w
2
i < ∞; (ii) {αj,i}Ni=1 is independent of all other quantities; (iii) it holds that, as N → ∞,[

V ar
(∑N

i=1 viαj,i
)]−1/2 ∑N

i=1 viαi
D→ N (0, Iν) for every ν-dimensional sequence vi, 1 ≤ i ≤ N ,

such that
∥∥∥N−1∑N

i=1 viv
′
i

∥∥∥ <∞.

Assumption 8. It holds that: (i) in (4), (a) ‖Λ‖ = O (1) and (b) E (et) = 0 with E ‖et‖4 <∞;

(ii) T−1∑T
t=1 etu0′

j,t = OP (1) for j = D,S.

Assumption 9. For j = D,S, it holds that (i) E
(
et|u0

j,t

)
= 0 a.s. for all t and (ii) as T →∞

T−1/2


∑T
t=1 vec

(
etu0′

j,t

)
dj,t (θ0)∑T

t=1 u0
j,tdj,t (θ0)

 D→ N


 0

0

 ,
 Veu,j Π′ue,j

Πue,j Vu,j


 ,

iIn essence, the assumption is a restriction on the rates at which πj can drift to zero: in particular, the
assumption is satisfied as long as π−1

j = O
(
T 1/2−ε) for any ε > 0. Note that the assumption also (very mildly)

restricts the relative rate of divergence between N and T as they pass to infinity - in essence, however, it allows
for N to grow at an arbitrarily high polynomial order with T , i.e. it allows for N = O (Tκ) for any value of κ.

iiAssumption 7 contains some regularity conditions on the pricing errors αi in (1). By part (i), we require that
the second moment of the αis grows linearly with N ; a possible case in which this would happen is when αi is i.i.d.
with zero mean and finite variance. However, the assumption is more general than this, and it allows e.g. for the αis
to have nonzero mean. Indeed, if E (αi) 6= 0 for 1 ≤ i ≤ Nα with Nα = O

(
N1/2), and E

(∑N
i=Nα+1 wiαi

)2
≤ c0N ,

the assumption would hold anyway. Note also that part (iii) of the assumption could be derived using more
primitive assumptions on the αis (see e.g. the very general CLT in McLeish (1974)).
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where

Veu,j = lim
T→∞

E

T−1
T∑

t,s=1
vec

(
etu0′

j,t

) (
vec

(
esu0′

j,s

))′
dj,t

(
θ0
)
dj,s

(
θ0
) ,

Vu,j = lim
T→∞

E

T−1
T∑

t,s=1
u0
j,tu′0j,sdj,t

(
θ0
)
dj,s

(
θ0
) ,

Πue,j = lim
T→∞

E

T−1
T∑

t,s=1
u0
j,t

(
vec

(
esu0′

j,s

))′
dj,t

(
θ0
)
dj,s

(
θ0
) .

Assumption 10. It holds that αj,i is i.i.d. across i with E
(
α2
j,1

)
= σ2

α,j <∞ for j = D,S.

Assumption 10 is a simplifying assumption, which complements Assumption 7 by requiring

the sphericity of the αj,i.

Assumption 11. It holds that: (i) αD and αD are independent; (ii) as T →∞

T−1/2
T∑
t=1



vec (etuD,tdD,t)

uD,tdD,t

vec (etuS,tdS,t)

uD,tdS,t


d→ N (0, V )

with

V =

Vue,D

Πue,D Vu,D

Πue,DS Πue,S;u,D Vue,S

Πue,D;u,S Πu,D;u,S Πue,S Vu,S

,
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where Vue,j, Vu,j, and Πue,j are defined in Assumption 9 (for j = D, S) and

Π′ue,S;u,D = 1
T
E

( T∑
t=1

uD,tdD,t

)(
T∑
t=1

vec (etuS,tdS,t)
)′ ,

Π′ue,D;u,S = 1
T
E

( T∑
t=1

uS,tdS,t

)(
T∑
t=1

vec (etuD,tdD,t)
)′ ,

Π′ue,DS = 1
T
E

( T∑
t=1

vec (etuD,tdD,t)
)(

T∑
t=1

vec (etuS,tdS,t)
)′ ,

Π′u,D;u,S = 1
T
E

( T∑
t=1

uD,tdD,t

)(
T∑
t=1

uS,tdS,t

)′ .
A.2 Complements to Section 4.1: the test for θ0 = c

We discuss our test for H0 : θ0 = c. Some arguments are very similar to the ones used in

Section A.3, and we therefore present them only once, to avoid repetitions, in the next section.

We know that, by Lemma C.7

θ̂ − θ0 = oa.s.
(
T−1vN,T (ε)

)
,

where vN,T (ε) is defined in (C.4). Define now the deterministic sequence sN,T such that

lim
min(N,T )→∞

sN,T =∞,

lim
min(N,T )→∞

sN,TT
−1vN,T (ε) = 0,

for all ε > 0. By construction, we have sN,T
(
θ̂ − c

)
= sN,T (θ0 − c) + oa.s. (1). This, and Lemma

C.7, entail that, under H0

P

(
ω : lim

min(N,T )→∞
sN,T

(
θ̂ − c

)
= 0

)
= 1,
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and therefore we can assume that, under the null

lim
min(N,T )→∞

sN,T
(
θ̂ − c

)
= 0.

Conversely, whenever θ0 6= c, it follows that

P

(
ω : lim

min(N,T )→∞
sN,T

(
θ̂ − c

)
=∞

)
= 1,

and therefore we can assume that, under HA

lim
min(N,T )→∞

sN,T
(
θ̂ − c

)
=∞.

This dichotomous behaviour can be reversed by choosing a transformation h (·) such that limx→∞ h (x) =

0 and limx→0 h (x) =∞, thus defining

fNT = h
(
sN,T

(
θ̂ − c

))
.

Exactly as above, we can assume, on account of continuity, that

lim
min(N,T )→∞

h
(
sN,T

(
θ̂ − c

))
=∞,

lim
min(N,T )→∞

h
(
sN,T

(
θ̂ − c

))
= 0,

under H0 and HA respectively.

We can now construct the following test (also similar to the one in Section 4.2 below):

Step 1 Generate an i.i.d. sequence
{
ξθm, 1 ≤ m ≤Mθ

}
, with common distribution N (0, 1);

Step 2 Generate the Bernoulli sequence ζθm (s) = I
(
f

1/2
N,T ξ

θ
m ≤ s

)
;

Step 3 Define

Sθ =
∫ +∞

−∞

∣∣∣σθ (s)
∣∣∣2 1√

2π
exp

(
−1

2s
2
)
ds,
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where

σθ (s) = 2
M

1/2
θ

Mθ∑
m=1

(
ζθm (s)− 1

2

)
.

Theorem A.1. We assume that the assumptions of Lemma C.7 are satisfied. Then, as min (N,Mθ, T )→

∞ with
Mθ

h1/2 (sN,TT−1vN,T (ε)) → 0, (A.3)

it holds that Sθ D∗→ χ2
1, under H0, and that R−1Sθ

P ∗→ c0 > 0 under HA, for almost all realizations

of {Ri,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T}.

The proof of Theorem A.1 is very similar to the proofs in Horváth and Trapani (2019), and it

is therefore omitted to save space. Letting χ2
1 denote a chi-squared distribution with one degree

of freedom, and defining the critical value cα as P (χ2
1 ≥ cα) = α for a nominal level α, Theorem

A.1 entails

lim
min(N,T,Mθ)→∞

P ∗
(
Sθ ≥ cα

)
= 1, (A.4)

under HA, and

lim
min(N,T,Mθ)→∞

P ∗
(
Sθ ≥ cα

)
= α, (A.5)

under H0. Equation (A.4) has the “traditional” interpretation: when the null is false, the test -

asymptotically - rejects with probability 1. Conversely, equation (A.5) does not have a straight-

forward meaning. The test is constructed using a randomization based on
{
ξθm
}

which does not

vanish asymptotically, and therefore the asymptotics of Sθ is driven by the added randomness.

Thus, different researchers using the same data will obtain different values of Sθ, and, consequently,

different p-values. In order to ameliorate this, we - along the lines of Horváth and Trapani (2019)

- propose to generate the test statistic Sθb for 1 ≤ b ≤ B times, using, at each iteration, an i.i.d.

sequence
{
ξθm,b

}
, 1 ≤ m ≤Mθ, with common distribution N (0, 1), independent across b. Define

Qα = 1
B

B∑
b=1

I
(
Sθb ≤ cα

)
. (A.6)
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The Law of the Iterated Logarithm entails thatiii

lim inf
B→∞

lim
min(N,T,Mθ)→∞

√
B

2 ln lnB
Qα − (1− α)√
α (1− α)

= −1.

Hence, we propose the following “strong rule” to decide in favour of H0:

Qα ≥ (1− α)−
√
α (1− α)

√
2 ln lnB

B
. (A.7)

Finally, we point out that, in our empirical exercises, we have used fNT =
(√

T
∣∣∣θ̂ − c∣∣∣)−1

and

Mθ = T 1/4.

The test above can be generalized in order to compare estimates of θ from different datasets.

Indeed, let the subscripts 1 and 2 denote each datatset, and define the sample sizes as (N1, T1)

and (N2, T2), and the relevant estimates as θ̂1 and θ̂2. Then, upon defining a sequence s∗N,T =

s∗N,T (T1, T2) such that

lim
min(N1,T1,N2,T2)→∞

s∗N,T =∞,

lim
min(N1,T1,N2,T2)→∞

s∗N,T
min {T1, T2}

max {vN1,T1 (ε) , vN2,T2 (ε)} = 0,

the test described above can be applied readily using

f ∗N,T = 1√
min {T1, T2}

∣∣∣θ̂1 − θ̂2

∣∣∣ ,

e.g. using, in Step 1 of the algorithm, Mθ = min
{
T

1/4
1 , T

1/4
2

}
.

iiiDetails on this argument are in Horváth and Trapani (2019).
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A.3 Complements to Section 4.2: theory

Equations (15) and (16) in Section 4.2 contain two estimators of the population covariance

matrices, defined as

ΣD = 1
TπS

T∑
t=1

E
(
R̃tR̃′tdD,t

(
θ0
))
, (A.8)

ΣS = 1
TπS

T∑
t=1

E
(
R̃tR̃′tdS,t

(
θ0
))
. (A.9)

Recall that we denote as g(i)
j the i-th largest eigenvalue of ΣD and ΣS (according as j = D or S).

Lemma A.1. We assume that Assumptions 1-3 are satisfied. Then it holds that, for j = D,S

c
(i)
j N ≤ g

(i)
j ≤ c

(i)
j N, for 0 ≤ i ≤ P 0

j ,

for some 0 < c
(i)
j ≤ c

(i)
j <∞, and

g
(i)
j ≤ c

(i)
j , for i ≥ P 0

j + 1,

for some c(i)
j <∞.

Theorem A.2. We assume that Assumptions 1-5 are satisfied. Then it holds that, for all 1 ≤

i ≤ N and j = D,S

ĝ
(i)
j = g

(i)
j + oa.s.

(
NT 1/2

Tπ0
j

(lnN)1+ε (lnT )1/2+ε
)
,

for every ε > 0.

Lemma A.1 and Theorem A.2 can be read together. According to Lemma A.1, the spectrum

of each second moment matrix has a spiked structure; more specifically, the largest P 0
j eigenvalues

diverge to positive infinity as N → ∞, whereas the others are bounded. The fact that the

divergence rate is exactly N is a direct consequence of Assumption 3(iv) and also of having

assumed η = 1. However, as long as the largest P 0
j eigenvalues diverge, even at a slower rate, the

arguments below are still valid although the construction of the tests may be more convoluted.
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Theorem A.2 offers the sample counterpart to Lemma A.1, giving a bound for the estimation error

ĝ
(i)
j − g

(i)
j .iv v

Hereafter, we provide some comments, and the relevant asymptotics, on the individual tests

for (17), viz. 
H0 : g

(i)
j = c

(i)
j N

HA : g
(i)
j ≤ c

(i)
j

.

Since Theorem A.2 only contains rates, we propose a randomized version of the estimated eigenval-

ues ĝ(i)
j , based on Trapani (2018). Based on Lemma A.1, each g(i)

j should diverge or not according

to whether there are at least i common factors or fewer. Thus, we would expect the same sep-

aration result to also hold for ĝ(i)
j . Indeed, whenever g(i)

j diverges as fast as N (which, in (17),

represents the null hypothesis), ĝ(i)
j also does, at the same rate: this is an immediate consequence

of Theorem A.2. Conversely, there is no guarantee that ĝ(i)
j converges when g

(i)
j does so: in this

case (which corresponds to the alternative hypothesis in (17)), from Theorem A.2, it is still pos-

sible that the estimation error ĝ(i)
j − g

(i)
j will diverge at a rate NT−1/2, modulo some logarithmic

terms.

Therefore, in order to ensure that ĝ(i)
j has the same separation result as its population coun-

terpart g(j)
i , we propose to use the statistic ψ

(
ĝ

(i)
j

)
defined in (18). In (19), we have defined

%j =


ε when lnTj

lnN ≥
1
2

1− 1
2

lnTj
lnN + ε when lnTj

lnN < 1
2

.

ivAs is typical in (large) Random Matrix Theory, there is no guarantee that ĝ(i)
j − g

(i)
j will drift to zero as

min (N,T )→∞. See for example the related contributions by Bai and Yao (2008), Bai and Yao (2012) and Wang
and Fan (2017), and also Lemma 2 in Trapani (2018), where a similar result is derived, under different assumptions
and for a linear model. Indeed, ĝ(i)

j − g
(i)
j may even diverge to infinity. However, as long as ĝ(i)

j − g
(i)
j is of smaller

magnitude than g(i)
j for j ≤ P 0

j , the spiked structure of the spectrum of the second moment matrices is preserved,
in that ĝ(i)

j is of smaller magnitude when j > P 0
j compared to the case j ≤ P 0

j .
vNote that we are not imposing that 0 < πD, πS < 1; we are therefore entertaining the possibility that e.g.

πD = πD (T )→ 0, which may be well suited to a situation in which one of the two regimes occurs very rarely.
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The rationale for this choice is that we need to choose %j such that

lim
min(N,T )→∞

N1−%jT 1/2

Tπj
(lnN)1+ε (lnT )1/2+ε = 0; (A.10)

(19) is therefore proposed under the condition 0 < πD, π2 < 1, although it is valid for any values of

πD and πS . If this is violated, in principle (A.10) can be employed to construct a refined proposal

for %j. Based on (19) and on the strong rates in Theorem A.2, it is easy to see that

lim
min(N,T )→∞

ψ
(
ĝ

(i)
j

)
=∞ under H0,

lim
min(N,T )→∞

ψ
(
ĝ

(i)
j

)
= 1 under HA.

Let κ be defined such that

0 < κ <
c

(i)
j

1
N−p

∑N
h=p+1 c

(h)
j

,

where c(i)
j and the c(h)

j s are defined in Lemma A.1. It holds that

Theorem A.3. We assume that Assumptions 1-6 are satisfied with η = 1 in Assumption 1. Let

M = M (N), so that limN→∞M (N) =∞. Then, as min (N, Tj)→∞ with

M exp
(
−κN1−%j

)
→ 0, (A.11)

it holds that under H0

Υ(i)
j

D∗→ χ2
1, (A.12)

for almost all realizations of {Ri,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T}, j = D,S and all 1 ≤ i ≤ N .

Under HA, it holds that there exists a positive, finite constant c0 such that

1
4MΥ(i)

j
P ∗→ c0, (A.13)

for almost all realizations of {Ri,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T}, j = D,S and all 1 ≤ i ≤ N .
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The theorem, and the algorithm above, suggest that some tuning is needed prior to imple-

menting the test. To begin with, note that the power of tests based on Υ(i)
j increases with M by

(A.13); conversely, in the proof of (A.12) it is shown that the test statistic has a non-centrality

parameter which is controlled by (A.11), and which vanishes faster the smaller M . Thus, the

choice of M reflects the well-known size-power trade-off. In Section B and in the empirics, we use

M = N , which satisfies (A.11) and is our recommended choice.

In Step 2, we recommend to draw the values of s from a standard normal. By integrating s

out in Step 4 of the algorithm, the statistic Υ(i)
j becomes scale-invariant, in the sense that Υ(i)

j

does not depend on the support of s.vi This form of scale invariance is clearly desirable. From a

practical point of view, we propose to use a Gauss-Hermite quadrature to approximate the integral

that defines Υ(i)
j , viz.

Υ̂(i)
j = 1√

π

nS∑
i=1

wi
(
υ

(i)
j

(√
2xi

))2
, (A.14)

where the xi, 1 ≤ i ≤ nS, are the zeros of the Hermite polynomial HnS (x) and

wi =
√
π2nS−1 (nS − 1)!

nS
[
HnS−1

(√
2xi

)]2 . (A.15)

Thus, when constructing υ(i)
j (s), we construct nS of these statistics, each with s =

√
2xi.vii

viWe point out that, in the original paper by Trapani (2018), this is not the case since the methodology is
implemented by extracting several values of s from a uniform distribution with support, say, S: doing this makes
the test statistics dependent on S, thus making them not scale invariant.

viiThe values of the roots xi, and of the corresponding weights wi, are tabulated e.g. in Salzer, Zucker, and
Capuano (1952).
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A.4 Complements to Section 5.2

A.4.1 Assumptions

For j = D,S, consider the matrices M (j)
u = limT→∞ T

−1∑T
t=1 u0

j,tu0′
j,tdj,t (θ0). We then define

Σγ,j = c−2
j Λ0

jVu,jΛ0′
j +

((
γ0′
j,1

(
M (j)

u

)−1
)
⊗ IK

)
Veu,j

(((
M (j)

u

)−1
γ0
j,1

)
⊗ IK

)
+c−1

j Λ0
jΠue,j

(((
M (j)

u

)−1
γ0
j,1

)
⊗ IK

)
+ c−1

j

((
γ0′
j,1

(
M (j)

u

)−1
)
⊗ IK

)
Π′ue,jΛ0′

j ,

Σαγ,j = σ2
α,jΛ0

j

[
1
N

B0′
j B0

j −
( 1
N

B0′
j iN

)( 1
N

B0′
j iN

)′]−1

Λ0′
j ,

where iN is an N × 1 vector of ones.

A.4.2 Estimation of long-run covariance matrices

We propose the following estimators

Σ̂γ,j = c−2
j Λ̂jV̂u,jΛ̂′j +

((
γ̂′j,1

(
M̂ (j)

u

)−1
)
⊗ IK

)
V̂eu,j

(((
M̂ (j)

u

)−1
γ̂j,1

)
⊗ IK

)
(A.16)

+c−1
j Λ̂jΠ̂ue,j

(((
M̂ (j)

u

)−1
γ̂j,1

)
⊗ IK

)
+ c−1

j

((
γ̂′j,1

(
M̂ (j)

u

)−1
)
⊗ IK

)
Π̂′ue,jΛ̂′j,

Σ̂αγ,j = σ̂2
α,jΛ̂j

[
1
N

B̂P̂j ′
j B̂P̂j

j −
( 1
N

B̂P̂j ′
j iN

)( 1
N

B̂P̂j ′
j iN

)′]−1

Λ̂′j, (A.17)

In (A.16), recall that X̂j =
(
ιN , B̂

P̂j
j

)
. Also, we have used

M̂ (j)
u = 1

T

T∑
t=1

ûj,tû′j,td̂j,t, (A.18)

V̂u,j = m̂
(j)
u,0 +

hm∑
k=1

(
1− k

hm + 1

)(
m̂

(j)
u,k + m̂

(j)′
u,k

)
, (A.19)

V̂eu,j = m̂
(j)
eu,0 +

hm∑
k=1

(
1− k

hm + 1

)(
m̂

(j)
eu,k + m̂

(j)′
eu,k

)
, (A.20)

Π̂′ue,j = 1
T

T∑
t=1

(
vec

(
êtû′j,t

))
û′j,td̂j,t +

hm∑
k=1

(
1− k

hm + 1

)(
m̂

(j)
Π,k + m̃

(j)
Π,k

)
, (A.21)
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with

m̂
(j)
u,k = 1

T

T∑
t=k+1

(
ûj,td̂j,t

) (
ûj,t−kd̂j,t−k

)′
,

m̂
(j)
eu,k = 1

T

T∑
t=k+1

(
vec

(
êtû′j,t

)
d̂j,t
) (
vec

(
êt−kû′j,t−k

)
d̂j,t−k

)′
,

m̂
(j)
Π,k = 1

T

T∑
t=k+1

(
vec

(
êt−kû′j,t−k

)
d̂j,t−k

) (
ûj,td̂j,t

)′
,

m̃
(j)
Π,k = 1

T

T∑
t=k+1

(
vec

(
êtû′j,t

)
d̂j,t
) (

ûj,t−kd̂j,t−k
)′
,

for k = 0, 1, .... In (A.19)-(A.20), we use hm = O
(
T 1/3

)
, and êt = gt −

(
â + Λ̂ût

)
. Finally, in

order to compute σ̂2
α,j, let

êj,i,t = Ri,td̂j,t −
[
γ̂j,0 + β̂′j,i (γ̂j,1 + ûj,t)

]
d̂j,t,

and define êj,i = T̂−1
j

∑T
t=1 êj,i,t and

σ̂2
α,j = 1

N

N∑
i=1

ê2
j,i.

All the estimators defined above are consistent - in order to save space, we omit the proofs,

which is based on standard, if tedious, calculations based on using the results reported in the

above. The only result that does not follow immediately is the consistency of σ̂2
α,j, which we state

as a lemma.

Lemma A.2. We assume that Assumptions 1-10 hold. Then, as min (N, Tj) → ∞ for j =

D,S under (24) and (25), it holds that σ̂2
α,j = σ2

α,j + oP ∗ (1), for almost all realizations of

{Ri,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T}.

A.4.3 Estimation of Γj and Λj: asymptotics

Define the P 0
j ×T matrices of regime-specific factor innovations Uj (θ) = [uj,1 (θ) , . . . ,uj,T (θ)],

for j = D,S, such that UD (θ) + US (θ) = (u1, . . . ,uT ) = U.

As is well known, Γj (and Λj) cannot be estimated consistently, but only up to a rotation.
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Define the P 0
j × P̂j rotation matrix

ĤP̂j
jj (θ) = Uj (θ0) Uj (θ)′

T

B0′
j B̂j (θ)
N

V̂j (θ)−1 , (A.22)

for j = D,S, where V̂j (θ) is the P̂j × P̂j diagonal matrix of the first P̂j largest eigenvalues of

Σ̂
j,R̃ (θ) defined in (12). Define also

ĤΓP̂j
jj (θ) =

 1 0′
P̂j

0
P̂j

ĤP̂j
jj (θ)

 , (A.23)

for j = D,S.

For short, we define Ĥjj (θ) as ĤP̂j
jj (θ) when calculated with P 0

j common factors, and ĤΓ
jj (θ)

similarly. Finally, we define Ĥjj (θ0) = Ĥjj and ĤΓ
jj (θ0) = ĤΓ

jj.

Theorem A.4. We assume that Assumptions 1-8 are satisfied. Then, as min (N, Tj) → ∞, it

holds that

Γ̂j −
(
ĤΓ
jj

(
θ0
))−1

Γ0
j =oP (1) + oP ∗ (1) , (A.24)

Λ̂j −Λ0
jĤjj

(
θ0
)

=oP (1) + oP ∗ (1) , (A.25)

for j = D,S, for almost all realizations of {Ri,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T}.

For j = D,S, consider the matrices: M (j)
H,X = limN→∞N

−1ĤΓ′
jj (θ0) X0′

j X0
jĤΓ

jj (θ0); M (j)
H,X,B =

limN→∞N
−1ĤΓ′

jj (θ0) X0′
j B0

j ; and M
(j)
H,u =

(
M (j)

u

)−1
Ĥjj (θ0). We then define

ΣΓ,j =c−2
j

(
M

(j)
H,X

)−1
M

(j)
H,X,BVu,jM

(j)′
H,X,B

(
M

(j)
H,X

)−1
,

ΣαΓ,j =σ2
α,j

(
M

(j)
H,X

)−1
,

ΣΛ,j =
(
M

(j)′
H,u ⊗ IK

)
Veu,j

(
M

(j)
H,u ⊗ IK

)
.
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Theorem A.5. We assume that Assumptions 1-8 are satisfied, and that min (N, Tj) → ∞, with

(24) and (25). Then, under Assumptions 7 and 9, it holds that

( 1
T

ΣΓ,j + 1
N

ΣαΓ,j

)−1/2 (
Γ̂j −

(
ĤΓ
jj

(
θ0
))−1

Γ0
j

)
D∗→ N

(
0, IPj+1

)
. (A.26)

Under Assumption 9(ii), if T 1/2

N
→ 0, it holds that

( 1
T

ΣΛ,j

)−1/2
vec

(
Λ̂j −Λ0

jĤjj

(
θ0
))

D∗→ N
(
0, IPjK

)
, (A.27)

for j = D,S, for almost all realizations of {Ri,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T}.

In order to use the results in Theorem A.5, we propose the following estimators

Σ̂Γ,j =c−2
j

X̂′jX̂j

N

−1
X̂′jB̂

P̂j
j

N

 V̂u,j

X̂′jB̂
P̂j
j

N


′X̂′jX̂j

N

−1

,

Σ̂αΓ,j =σ̂2
α,j

X̂′jX̂j

N

−1

,

Σ̂Λ,j =
((
M̂ (j)

u

)−1
⊗ IK

)
V̂eu,j

((
M̂ (j)

u

)−1
⊗ IK

)
,

whose consistency can be shown along the same lines as for the other estimators.

A.4.4 Asymptotics for the zero beta rate

The following lemma (which can be compared with Theorem 3 in Giglio and Xiu, 2021)

characterizes the distribution of γ̂j,0 and the test for (27).

Theorem A.6. We assume that Assumptions 1-10 hold, and that E (αi,Dαk,S) = 0 for all 1 ≤

i, k ≤ N . Then, as min (N, Tj)→∞ with N
T 2
j
→ 0, it holds that

γ̂
j ,0 − γj,0(

σ2
α,j

(
i′NM0

B,jiN
)−1

)1/2
D∗→ N (0, 1) , (A.28)
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for j = D,S, and

(π̂Dγ̂D,0 + π̂S γ̂S,0)− (πDγD,0 + πSγS,0)(
π2
Dσ

2
α,D

(
i′NM0

B,DiN
)−1

+ π2
Sσ

2
α,S

(
i′NM0

B,SiN
)−1

)1/2
D∗→ N (0, 1) , (A.29)

for almost all realizations of {Ri,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T}, where M0
B,j = B0

j

(
B0′
j B0

j

)−1
B0′
j for

j = D,S.

A.4.5 Testing for zero weighted intercept

We consider the following result, which can be used e.g. to test for

H0 : πDγD,g + πSγS,g = 0.

The result is a direct application of Assumption 11, and we therefore report it without proof.

Define

Σ̃α,γ = π2
Dσ

2
α,DΛD

(
B′DMiNBD

N

)−1

Λ′D + π2
Sσ

2
α,SΛS

(
B′SMiNBS

N

)−1

Λ′S

and

Σ̃ = π2
DΣγ,D + π2

SΣγ,S + πDπSc
−1
D c
−1
S

(
ΛDΠ′u,D;u,SΛ′D + ΛSΠu,D;u,SΛ′S

)
+πDπS

[(
γ′D,1 ·M

(D)′
Hu

)
⊗ IK

]
Π′ue,DS

[(
γS,1 ·M (D)

Hu

)
⊗ IK

]
+
(
πDπS

[(
γ′D,1 ·M

(D)′
Hu

)
⊗ IK

]
Π′ue,DS

[(
γS,1 ·M (D)

Hu

)
⊗ IK

])′
+πDπSc−1

D ΛDΠ′ue,S;u,D

[(
γS,1 ·M (D)

Hu

)
⊗ IK

]
+
(
πDπSc

−1
D ΛDΠ′ue,S;u,D

[(
γS,1 ·M (D)

Hu

)
⊗ IK

])′
+πDπSc−1

S

[(
γD,1 ·M (S)

Hu

)
⊗ IK

]′
Π′ue,D;u,SΛ′S +

(
πDπSc

−1
S

[(
γD,1 ·M (S)

Hu

)
⊗ IK

]′
Π′ue,D;u,SΛ′S

)′
.

Theorem A.7. We assume that Assumptions 1-11 hold, and that E (αi,Dαk,S) = 0 for all 1 ≤

i, k ≤ N . Then, as min (N, Tj)→∞ with N
T 2
j
→ 0, it holds that

( 1
N

Σ̃α,γ + 1
T

Σ̃
)−1/2

[(π̂Dγ̂D,g + π̂S γ̂S,g)− (πDγD,g + πSγS,g)] d→ N (0, IK) .

XIX



The long-run covariance matrices that appear in the theorem can be estimated as

Π̂′u,D;u,S = 1
T

T∑
t=1

(
ûD,tû

′
S,td̂D,td̂S,t

)
+

hm∑
k=1

(
1− k

hm + 1

)(
m̂

(DS)
Π,k + m̃

(DS)
Π,k

)

=
hm∑
k=1

(
1− k

hm + 1

)(
m̂

(DS)
Π,k + m̃

(DS)
Π,k

)
,

with

m̂
(DS)
Π,k = 1

T

T∑
t=k+1

ûS,tû
′
S,t−kd̂S,td̂S,t−k,

m̃
(DS)
Π,k = 1

T

T∑
t=k+1

ûS,t−kû
′
S,td̂S,t−kd̂S,t,

and

Π̂′ue,S;u,D = 1
T

T∑
t=1

ûD,td̂D,tvec
(
êtûS,td̂S,t

)′
+

hm∑
k=1

(
1− k

hm + 1

)(
m̂

(DS)
Π,ue,SD,k + m̃

(DS)
Π,ue,SD,k

)

=
hm∑
k=1

(
1− k

hm + 1

)(
m̂

(DS)
Π,ue,SD,k + m̃

(DS)
Π,ue,SD,k

)
,

where

m̂
(DS)
Π,ue,SD,k = 1

T

T∑
t=k+1

ûD,tvec (êt−kûS,t−k)′ d̂D,td̂S,t−k,

m̃
(DS)
Π,ue,SD,k = 1

T

T∑
t=k+1

ûD,t−kvec (êtûS,t)′ d̂D,t−kd̂S,t,

etc.
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B Simulations

We evaluate the performance of (i) the Least Squares estimator of θ, and (ii) the sequential

procedure to determine the number of common factors.i

Data are generated according to (5), that is

Ri,t =I (Dt)
(
γD,0 + αD,i + β′D,iγD,1 + β′D,iuD,t

)
+ I (St)

(
γS,0 + αS,i + β′S,iγS,1 + β′S,iuS,t

)
+
√

0.5εi,t. (B.1)

In this data generating process (DGP), we generate all variables as having zero mean for simplicity.

Where possible and relevant, we calibrate the values of parameters to values that arise from

empirical analysis. In particular, as far as the downside risk is concerned, we set θ0 = −0.03,

which is the value set in Farago and Tédongap (2018) and Lettau, Maggiori, and Weber (2014).

Similarly, we generate zt as i.i.d.N (µz, σ2
z). Based on our data, we set σz = 0.044; also, in Section

6 we found that P (zt ≤ θ0) ' 0.15, which corresponds to a value µz = −0.015. The rest of the

DGP is specified as follows. For j = D,S, we generate uj,t as i.i.d. N (0, 1) for 1 ≤ t ≤ T ;

similarly, we generate βi,j as i.i.d. N (0, 1) for 1 ≤ i ≤ N ; finally, αj,i is also i.i.d. N (0, 1) for

1 ≤ i ≤ N .ii The number of replications is set to 1, 000.

The specifications of our estimators and tests are as follows. In the estimation of θ, we use a

grid search on the interval [−0.08,−0.04], with steps of size 0.001. In the estimation of Pj, we use

the algorithm described in Section 4.2, with: M = N , ε = 0.01 in (19), nS = 4, and the nominal

level of the individual tests set to α = 0.05
T

.iii

iAs far as the latter is concerned, the results complement the ones in Trapani (2018), which considers the case
of a linear model.

iiWe note that we have carried out some limited experiments where, e.g., a vanishing proportion of the αj,is
had nonzero mean, but results did not change. As far as the idiosyncratic innovation εi,t is concerned, we only
consider the case of no cross sectional independence in our simulations; thus, we generate εi,t as i.i.d. N(0, 0.5).

iiiWe point out that altering the choice of M within a reasonable range does not have any impact on the final
results. Indeed, we tried M = N/2 and M = 2N , without noting any changes. This robustness is in line with the
simulations in Trapani (2018).

Similarly, we have set %j according to (19), with ε = 0.01; based on Theorem A.3, ε does not need to be too
large, since its purpose is to smooth away a slowly varying sequence. Even in this case, as the theory prescribes,
the impact of %j is minimal; we have tried, as robustness check, ε = 0.05 and ε = 0.1, and results virtually do not
change.
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Results are reported for (N, T ) = (57, 316) and (130, 666), which correspond to the sample

sizes in our empirical applications. Further simulations, which reinforce the findings in this section,

are available upon request. Similarly, we consider various number of common factors which mimic

the findings in our empirical applications: P 0
D ∈ {1, 2} and P 0

S ∈ {1, 2, 3, 4, 5, 6}.iv

Consider the estimation of θ, whose performance, in terms of bias and RMSE, we report in

Table B.1. Results show that both indicators decrease with T , as expected, and also with N ,

which is due to a second order improvement in the estimation of the factor structure. We note

that θ̂ tends to be biased towards zero, with this vanishing as (N, T )→∞.

As far as estimation of the number of common factors is concerned, the results are in Table

B.2, where we have reported two indicators: (i) the average estimated number of factors

P̂j = 1
1000

1000∑
r=1

P̂j,r,

j = D,S, and (ii) the percentage of times that P̂j,r 6= P 0
j , j = D,S. Results are very satisfactory,

with the exception of the case (P 0
D, P

0
S) = (2, 1), when (N, T ) = (57, 316). This case is however

unlikely to occur, since our experience indicates that the number of common factors in the down-

side regime tends to be lower than the number of common factors in the other regime. In all

other cases, the estimated numbers of factors is always close to the true number of factors, and

the simulation results provide comfort that the number of common factors is precisely identified

by our procedure even in moderately-sized cross-sections of asset returns.

ivTherefore we do not consider the case where there is no factor at all (i.e., either P 0
D = 0 or P 0

S = 0, or both),
requiring that at least one factor should always be present in asset returns, which seems reasonable (see Lettau
and Pelger (2020) for a related discussion).
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Table B.1: Bias and RMSE for θ̂
Panel A: θ = −0.03

Bias
(N,T ) = (57, 316) (N,T ) = (130, 666)

PS \PD 1 2 PS \PD 1 2
1 0.001 0.000 1 0.000 0.000
2 0.000 0.000 2 0.000 0.000
3 0.000 0.000 3 0.000 0.000
4 0.000 0.000 4 0.000 0.000
5 0.000 0.000 5 0.000 0.000
6 0.000 0.000 6 0.000 0.000

RMSE
(N,T ) = (57, 316) (N,T ) = (130, 666)

PS \PD 1 2 PS \PD 1 2
1 0.003 0.002 1 0.003 0.000
2 0.000 0.000 2 0.000 0.000
3 0.000 0.000 3 0.000 0.000
4 0.000 0.000 4 0.000 0.000
5 0.000 0.000 5 0.000 0.000
6 0.000 0.000 6 0.000 0.000

Panel B: θ = −0.06
Bias

(N,T ) = (57, 316) (N,T ) = (130, 666)
1 2 1 2

1 0.008 0.006 1 0.014 0.010
2 0.005 0.003 2 0.004 0.001
3 0.002 0.000 3 0.000 0.000
4 0.000 0.001 4 0.000 0.000
5 0.000 0.000 5 0.000 0.000
6 0.000 0.000 6 0.000 0.000

RMSE
(N,T ) = (57, 316) (N,T ) = (130, 666)

1 2 1 2
1 0.009 0.008 1 0.014 0.012
2 0.007 0.005 2 0.007 0.004
3 0.004 0.002 3 0.001 0.000
4 0.002 0.001 4 0.000 0.000
5 0.001 0.000 5 0.000 0.000
6 0.001 0.001 6 0.000 0.000

The table contains bias and RMSE for θ̂.
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Table B.2: Number of estimated common factors across
regimes

Mean
(N,T ) = (57, 316) (N,T ) = (130, 666)

PS \PD 1 2 PS \PD 1 2

1 0.996, 0.999 1.000, 1.599 1 0.998, 0.996 0.996, 1.984
2 1.997, 0.999 1.992, 1.996 2 1.980, 0.996 1.990, 1.984
3 3.000, 0.998 2.985, 1.951 3 2.976, 1.000 2.950, 1.980
4 3.996.0.999 3.996, 1.980 4 3.966, 0.992 3.958, 1.980
5 4.978, 0.999 4.985, 1.992 5 4.946, 0.994 4.924, 1.984
6 5.975, 1.000 5.929, 1.883 6 5.924, 0.994 5.912, 1.980

Missed true value (%)
(N,T ) = (57, 316) (N,T ) = (130, 666)

PS \PD 1 2 PS \PD 1 2
1 0.400, 0.100 0.000, 40.00 1 0.200, 0.800 0.400, 1.000
2 0.200, 0.100 0.200, 0.700 2 1.400, 0.400 0.600, 1.000
3 0.000, 0.200 0.700, 4.800 3 1.000, 0.000 2.000, 1.400
4 0.200, 0.100 0.200, 1.800 4 1.200, 0.800 2.000, 1.600
5 0.700, 0.100 0.500, 0.700 5 2.400, 0.600 2.000, 1.000
6 1.000, 0.000 4.400, 11.50 6 2.000, 0.600 2.200, 1.200

The table contains the average numbers of estimated factors and the percentage
of times the estimator is wrong.
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C Technical Lemmas

We begin with a Borel-Cantelli type result, whose proof can be found in Barigozzi and Trapani

(2021).

Lemma C.1. Consider a multi-index partial sums process Ui1,...,ih, with 1 ≤ i1 ≤ S1, 1 ≤ i2 ≤ S2,

etc... Assume that

∑
S1

· ·
∑
Sh

1
S1 · ... · Sh

P
(

max
1≤i1≤S1,...,1≤ih≤Sh

|Ui1,...,ih| > εLS1,...,Sh

)
<∞, (C.2)

for some ε > 0 and a sequence LS1,...,Sh defined as

LS1,...,Sh = Sd1
1 · ... · S

dh
h l1 (S1) · ...lh (Sh) ,

where d1, d2, etc. are non-negative numbers and l1 (·), l2 (·), etc. are slowly varying functions in

the sense of Karamata. Then it holds that

lim sup
(S1,...,Sh)→∞

|US1,...,Sh|
LS1,...,Sh

= 0 a.s. (C.3)

Henceforth, we will extensively use the following notation:

vN,T (ε) = (lnN lnT )2 3+r+ε
r , (C.4)

where ε > 0 and r is defined in Assumption 3(i). Recall (11)

S
(
BP ,UP , θ

)
= 1
NT

N∑
i=1

T∑
t=1

[
R̃i,t −

(
βPD ′D,i uPDD,tdD,t (θ) + βPS ′S,i uPSS,tdS,t (θ)

)]2
,

which is the least squares loss function calculated at the triplet
(
BP ,UP , θ

)
; similarly, we define

SUB (θ) = 1
NT

N∑
i=1

T∑
t=1

[
R̃i,t −

(
β
P 0
D ′
D,i uP

0
D
D,tdD,t (θ) + β

P 0
S ′
S,i uP

0
S
S,tdS,t (θ)

)]2
, (C.5)
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which denotes the concentrated version of S
(
BP ,UP , θ

)
when using the correct number of factors

P 0
D and P 0

S . Finally, when using PD and PS factors, with P 0
D ≤ PD ≤ Pmax and P 0

S ≤ PS ≤ Pmax,

we write

S
(P )
uB (θ) = 1

NT

N∑
i=1

T∑
t=1

[
R̃i,t −

(
β̂PD ′D,i ûPDD,tdD,t (θ) + β̂PS ′S,i ûPSS,tdS,t (θ)

)]2
, (C.6)

to define the concentrated version of S
(
BP ,UP , θ

)
in that case. We will also use the Pm × Pj

projection matrices

Ĥ
Pj,m
jm (θ) =

U0
m,m (θ0) U0

m,j (θ)′

T

B0′
mB̂Pj

j (θ)
N

(
V̂
Pj
j (θ)

)−1
, (C.7)

where j,m = D,S, U0
m,j (θ) is defined as the Pm × T matrix of regime-specific factors, Um (θ),

multiplied by a T × T diagonal matrix whose entries are dj,t (θ), 1 ≤ t ≤ T ; finally, V̂ Pj
j (θ) is a

Pj × Pj matrix containing the largest Pj eigenvalues of

1
NT

T∑
t=1

R̃tR̃′tdj,t (θ) .

Note that, for j 6= m, ĤPjm
jm (θ0) reduces to a matrix of zeros. In order to make the notation

lighter, the superscript Pj,m is set equal to Pj when j = m.

We now present a few lemmas to show the strong consistency of θ̂.

Lemma C.2. We assume that Assumptions 1-4 are satisfied. Then it holds that

1
N

N∑
i=1

∥∥∥∥β̂Pjj,i (θ0
)
− ĤPj

jj

(
θ0
)′
β0
j,i

∥∥∥∥2
= oa.s.

(
PjC

−2
N,TvN,T (ε)

)
,

for every ε > 0 and j = D,S.

Proof. This follows by adapting the passages in the proof of Theorem 3.2 in Massacci (2017).
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Then we have

1
N

N∑
i=1

∥∥∥∥β̂Pjj,i (θ0
)
− ĤPj

jj

(
θ0
)′
β0
j,i

∥∥∥∥2
(C.8)

≤

 4
N2

N∑
i=1

N∑
l=1

σ2
jil

(
θ0
)

+ 1
N

 1
N2

N∑
l=1

N∑
q=1

∣∣∣∣∣
N∑
i=1

κjil
(
θ0
)
κjiq

(
θ0
)∣∣∣∣∣

21/2

+ 2
N

N∑
i=1

(∥∥∥β0
D,i

∥∥∥2
+
∥∥∥β0
S,i

∥∥∥2
) 1
NT 2

N∑
l=1

∥∥∥∥∥
T∑
t=1

dj,t
(
θ0
)

u0
j,tel,t

∥∥∥∥∥
2

×
(

1
N

N∑
i=1

∥∥∥β̂Pjj,i (θ0
)∥∥∥2

)

= AN,T

(
1
N

N∑
i=1

∥∥∥β̂Pjj,i (θ0
)∥∥∥2

)
,

having defined

σjil
(
θ0
)

= 1
T

T∑
t=1

E
(
dj,t

(
θ0
)
ei,tel,t

)
,

κjil
(
θ0
)

= 1
T

T∑
t=1

dj,t
(
θ0
)
ei,tel,t − σjil

(
θ0
)
.

By the proof of Theorem 3.2 in Massacci (2017), it follows immediately that E |AN,T | ≤ c0C
−2
N,T .

Thus, using the maximal inequality for multi-parameter processes in Corollary 4 of it follows that

E max
1≤i≤N,1≤t≤T

|Ai,t| ≤ c0C
−2
N,T lnN lnT.

Lemma C.1 and Markov inequality immediately yield AN,T = oa.s.
(
C−2
N,T (lnN)2+ε (lnT )2+ε

)
for

every ε > 0. Also,
1
N

N∑
i=1

∥∥∥β̂Pjj,i (θ0
)∥∥∥2

= Pj,

by construction, since B̂Pj
j (θ0)′ B̂Pj

j (θ0) = NIPj . The desired result follows by putting everything

together.
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Lemma C.3. We assume that Assumptions 1-5 are satisfied. Then it holds that

∣∣∣θ̂ − θ0
∣∣∣ = oa.s. (1) ,

for all P 0
j ≤ Pj ≤ Pmax, j = D,S.

Proof. The desired result follows upon showing

S
(P )
UB (θ)− S(P0)

UB

(
θ0
)

= c0

∣∣∣θ − θ0
∣∣∣+ oa.s. (1) , (C.9)

with c0 > 0, for every θ 6= θ0 - note that S(P )
UB (θ) is defined in (C.6). We being by considering the

identity

S
(P )
UB (θ)− S(P )

UB

(
θ0
)

=S(P )
UB (θ)− S(P )

B

(
B0
DĤ

PD
DD (θ) + B0

SĤ
PS,D
SD (θ) ,B0

DĤ
PD,S
DS (θ) + B0

SĤ
PS
SS (θ) , θ0

)
+ S

(P )
B

(
B0
DĤ

PD
DD (θ) + B0

SĤ
PS,D
SD (θ) ,B0

DĤ
PD,S
DS (θ) + B0

SĤ
PS
SS (θ) , θ0

)
− S(P )

B

(
B0
DĤ

PD
DD (θ) ,B0

SĤ
PS
SS (θ) , θ0

)
+ S

(P )
B

(
B0
DĤ

PD
DD (θ) ,B0

SĤ
PS
SS (θ) , θ0

)
− S(P )

UB

(
θ0
)
,

where S(P )
B denotes the loss function S

(
BP ,UP , θ

)
concentrated at BP . By construction, it holds

that

S
(P )
B

(
B0
DĤ

PD
DD (θ) ,B0

SĤ
PS
SS (θ) , θ0

)
= S

(P )
B

(
B0
D,B0

S , θ
0
)
.

Following the proof of Lemma A.2 and Theorem 3.3 in Massacci (2017), it can be shown by

standard arguments that

E
∣∣∣S(P )

B

(
B0
D,B0

S , θ
0
)
− S(P )

UB

(
θ0
)∣∣∣2 ≤ c0C

−2
N,T ,

E
∣∣∣S(P )

UB (θ)− S(P )
B

(
B0
DĤ

PD
DD (θ) + B0

SĤ
PS,D
SD (θ) ,B0

DĤ
PD,S
DS (θ) + B0

SĤ
PS
SS (θ) , θ0

)∣∣∣2 ≤ c0C
−2
N,T ;
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then, using again Corollary 4 in Moricz (1983), it follows that

E max
1≤t≤T,1≤i≤N

∣∣∣S(P )
B,it

(
B0
D,B0

S , θ
0
)
− S(P )

UB,it

(
θ0
)∣∣∣2 ≤ c0C

−2
N,T (lnN) (lnT ) ,

and

E max
1≤t≤T,1≤i≤N

∣∣∣S(P )
UB,it (θ)− S(P )

B,it

(
B0
DĤ

PD
DD (θ) + B0

SĤ
PS,D
SD (θ) ,B0

1Ĥ
PD,S
DS (θ) + B0

SĤ
PS
SS (θ) , θ0

)∣∣∣2
≤ c0C

−2
N,T (lnN) (lnT ) ,

where

S
(P )
UB,it (θ) = 1

NT

i∑
i′=1

t∑
t′=1

[
R̃i,t −

(
β̂′D,iûD,tdD,t (θ) + β̂′S,iûS,tdS,t (θ)

)]2
,

and SB,it defined similarly. Hence, Lemma C.1 yields

S
(P )
UB (θ)− S(P )

B

(
B0
DĤ

PD
DD (θ) + B0

SĤ
PS,D
SD (θ) ,B0

DĤ
PD,S
DS (θ) + B0

SĤ
PS
SS (θ) , θ0

)
= oa.s.

(
C−1
N,T (lnN)1+ε (lnT )1+ε

)
.

Similarly, by using Lemma A.3 in Massacci (2017) and the same arguments as above, it follows

that there exists a c0 > 0 such that

S
(P )
B

(
B0
DĤ

PD
DD (θ) + B0

SĤ
P2,D
SD (θ) ,B0

DĤ
PD,S
DS (θ) + B0

SĤ
PS
SS (θ) , θ0

)
− S(P )

B

(
B0
D,B0

S , θ
0
)

= c0

∣∣∣θ − θ0
∣∣∣+ oa.s. (1) .

Putting everything together, we have

S
(P )
UB (θ)− S(P )

UB

(
θ0
)

= c0 + oa.s. (1) .

Then (C.9) follows if we show that

S
(P )
UB

(
θ0
)
− S(P0)

UB

(
θ0
)

= oa.s. (1) . (C.10)
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It holds that ∣∣∣S(P )
UB

(
θ0
)
− S(P0)

UB

(
θ0
)∣∣∣ ≤ ∣∣∣S1

UB

(
θ0
)∣∣∣+ ∣∣∣S2

UB

(
θ0
)∣∣∣ ,

where

S1
UB

(
θ0
)

= 2
NT

T∑
t=1

(
dD,t

(
θ0
)

u0′
D,tĤ

PD+
DD

(
θ0
)′ (

B̂PD
D

(
θ0
)
−B0

DĤ
PD
DD

(
θ0
))′

+dS,t
(
θ0
)

u0′
S,tĤ

PS+
SS

(
θ0
)′ (

B̂PS
S

(
θ0
)
−B0

SĤ
PS
SS

(
θ0
))′)

et,

S2
UB

(
θ0
)

= 1
NT

T∑
t=1

(
dD,t

(
θ0
)

u0′
D,tĤ

PD+
DD

(
θ0
)′ (

B̂PD
D

(
θ0
)
−B0

DĤ
PD
DD

(
θ0
))′

×
(
B̂PD
D

(
θ0
)
−B0

DĤ
PD
DD

(
θ0
))
ĤPD+
DD

(
θ0
)

u0
D,t

+ dS,t
(
θ0
)

u0′
S,tĤ

PS+
SS

(
θ0
)′ (

B̂PS
S

(
θ0
)
−B0

SĤ
PS
SS

(
θ0
))′

+
(
B̂PS
S

(
θ0
)
−B0

SĤ
PS
SS

(
θ0
))
ĤPS+
SS

(
θ0
)

u0
2,t

)
.

We now estimate the order of magnitude of S1
UB (θ0) and S2

UB (θ0). We have

∣∣∣S1
UB

(
θ0
)∣∣∣ ≤ 2T−1/2P 0

D

∥∥∥ĤPD+
DD

(
θ0
)∥∥∥( 1

N

N∑
i=1

∥∥∥∥β̂PDD,i (θ0
)
− ĤPD

DD

(
θ0
)′
β0
D,i

∥∥∥∥2
)1/2

 1
N

N∑
i=1

∥∥∥∥∥ 1√
T

T∑
t=1

dD,t
(
θ0
)

u0
D,tei,t

∥∥∥∥∥
21/2

+ 2T−1/2P 0
S

∥∥∥ĤPS+
SS

(
θ0
)∥∥∥( 1

N

N∑
i=1

∥∥∥∥β̂PSS,i (θ0
)
− ĤPS

SS

(
θ0
)′
β0
S,i

∥∥∥∥2
)1/2

 1
N

N∑
i=1

∥∥∥∥∥ 1√
T

T∑
t=1

dS,t
(
θ0
)

u0
S,tei,t

∥∥∥∥∥
21/2

.

By construction, note that ∥∥∥ĤPj+
jj

(
θ0
)∥∥∥ ≤ c0P

1/2
j (C.11)

for j = D,S. Also, Assumption 4(v) entails that, by the same logic as in the previous passages
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that
1
N

N∑
i=1

∥∥∥∥∥ 1√
T

T∑
t=1

dj,t
(
θ0
)

u0
j,tei,t

∥∥∥∥∥
2

= oa.s. (vN,T (ε)) ,

for every ε > 0 and j = D,S. Thus, using Lemma C.2, we finally have

∣∣∣S1
UB

(
θ0
)∣∣∣ = oa.s.

(
PC−1

N,TT
−1/2vN,T (ε)

)
,

having set P = max {PD, PS}; this term is therefore oa.s. (1) by (20). Similarly, it holds that (see

Massacci (2017))

∣∣∣S2
UB

(
θ0
)∣∣∣ ≤ 1

T

T∑
t=1

∥∥∥u0
D,t

∥∥∥2 ∥∥∥ĤPD+
DD

(
θ0
)∥∥∥2 1

N

N∑
i=1

∥∥∥∥β̂PDD,i (θ0
)
− ĤPD

DD

(
θ0
)′
β0
D,i

∥∥∥∥2

+ 1
T

T∑
t=1

∥∥∥u0
S,t

∥∥∥2 ∥∥∥ĤPS+
SS

(
θ0
)∥∥∥2 1

N

N∑
i=1

∥∥∥∥β̂PSS,i (θ0
)
− ĤPS

SS

(
θ0
)′
β0
S,i

∥∥∥∥2
.

Using (C.11) and Lemma C.2, and noting that Assumptions 3(i) and 5(i) entail

1
T

T∑
t=1

∥∥∥u0
j,t

∥∥∥2
= Oa.s. (1) ,

for j = D,S, we have ∣∣∣S2
UB

(
θ0
)∣∣∣ = oa.s.

(
P

2
C−2
N,TvN,T (ε)

)
,

which again is oa.s. (1) by (20). Thus, (C.10) follows. Putting all together, the desired result

obtains.

In the next two lemmas, we define the set

BN,T =
(
vN,T (ε)
T

, cB

)
, (C.12)
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where 0 < c0 <∞ and vN,T is defined in (C.4), and the functions

ω0 (η, θ) = 1
NηT

N∑
i=1

T∑
t=1

∣∣∣dS,t (θ)− dS,t
(
θ0
)∣∣∣ (δ0′

i u0
t

)2
, (C.13)

h0 (η, θ) = 1
NηT

N∑
i=1

T∑
t=1

dS,t (θ) δ0′
i u0

t ei,t, (C.14)

where u0
t and δ0

i are defined in (A.1) and (A.2) respectively.

Lemma C.4. We assume that Assumptions 3 and 5 are satisfied. Then there exist two random

variables N0 and T0, and a positive, finite constant c0, such that for N ≥ N0 and T ≥ T0, it holds

that

inf
|θ−θ0|∈BN,T

ω0 (η, θ)
|θ − θ0|

≥ c0.

Proof. When possible, we let η = 1 to avoid a burdensome notation, and we consider the case

θ − θ0 > 0 only (the opposite case can be shown by symmetry). Define

ω0
N,T = ω0 (η, θ)− Eω0 (η, θ) ,

and note, to start with, that, by Assumption 5(iii), there exist two positive, finite constants c0

and c1 such that

c0

∣∣∣θ − θ0
∣∣∣ ≤ Eω0 (η, θ) ≤ c1

∣∣∣θ − θ0
∣∣∣ ,

so that

inf
|θ−θ0|∈BN,T

Eω0 (η, θ)
|θ − θ0|

≥ c0. (C.15)

We now show that

sup
|θ−θ0|∈BN,T

∣∣∣ω0
N,T

∣∣∣
|θ − θ0|

= oa.s. (1) . (C.16)

Consider the construction θj = θ0 + cjvN,T (ε) /T , where 1 < c <∞, j = 0, ..., Q and Q is defined

such that cQ−1vN,T (ε) /T ≤ cB and cQvN,T (ε) /T > cB where cB is defined in (C.12), and let

ω0
ĩ,̃t

(θj) =
ĩ∑
i=1

t̃∑
t=1

(∣∣∣dS,t (θj)− dS,t
(
θ0
)∣∣∣ (δ0′

i u0
t

)2
− E

(∣∣∣dS,t (θj)− dS,t
(
θ0
)∣∣∣ (δ0′

i u0
t

)2
))

.
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Then, standard calculations based on the modulus of continuity yield

sup
|θ−θ0|∈BN,T

ω0
N,T

|θ − θ0|
(C.17)

≤ 2 sup
0≤j≤Q

1
NT

∑N
i=1

∑T
t=1 (δ0′

i u0
t )

2 (|dS,t (θj)− dS,t (θ0)| − E |dS,t (θj)− dS,t (θ0)|)
|θj − θ0|

+2 sup
0≤j≤Q

sup
θj≤θ≤θj+1

ln lnT
NT 2

∑N
i=1

∑T
t=1 (δ0′

i u0
t )

2 (|dS,t (θ)− dS,t (θj)| − E |dS,t (θ)− dS,t (θj)|)
|θj − θ0|

= 2 sup
0≤j≤Q

ω0 (θj, θ0)
|θj − θ0|

+ 2 sup
0≤j≤Q

sup
θj≤θ≤θj+1

ω0 (θ, θj)
|θj − θ0|

= I + II.

We begin with I. Let δN,T = NT ; it holds that

∞∑
N=1

∞∑
T=1

1
NT

P

 max
1≤̃i≤N,1≤t̃≤T

sup
0≤j≤Q−1

ω0
ĩ,̃t

(θj)
|θj − θ0|

> δN,T


≤

∞∑
j=0

∞∑
N=1

∞∑
T=1

1
NT

P

 max
1≤̃i≤N,1≤t̃≤T

ω0
ĩ,̃t

(θj)
|θj − θ0|

> δN,T


≤

∞∑
j=0

∞∑
N=1

∞∑
T=1

δ−2
N,T

NT
E

 max
1≤̃i≤N,1≤t̃≤T

∣∣∣∣∣∣
ω0
ĩ,̃t

(θj)
θj − θ0

∣∣∣∣∣∣
2
 .

Also, consider the scalar case for simplicity and note that

E
(
NTω0

N,T (θj)
)2

= E

[
N∑
i=1

(
δ0
i

)2 T∑
t=1

(∣∣∣dS,t (θj)− dS,t
(
θ0
)∣∣∣ (u0

t

)2
− E

∣∣∣dS,t (θj)− dS,t
(
θ0
)∣∣∣ (u0

t

)2
)]2

≤ c0

(
N∑
i=1

(
δ0
i

)2
)2

E

[
T∑
t=1

([∣∣∣dS,t (θj)− dS,t
(
θ0
)∣∣∣ (u0

t

)2
]
− E

[∣∣∣dS,t (θj)− dS,t
(
θ0
)∣∣∣ (u0

t

)2
])]2

≤ c0N
2E

[
T∑
t=1

([∣∣∣dS,t (θj)− dS,t
(
θ0
)∣∣∣ (u0

t

)2
]
− E

[∣∣∣dS,t (θj)− dS,t
(
θ0
)∣∣∣ (u0

t

)2
])]2

.

By Assumption 5(i), |dS,t (θj)− dS,t (θ0)| (u0
t )

2 is a strictly stationary, ρ-mixing sequence with

mixing numbers ρm such that ∑∞m=1 ρ
1/2
m < ∞ - we refer to the proof of Lemma C.11 for details
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on how to show this. Thus, Lemma 1 in Peligrad (1987) entails

E

[
T∑
t=1

([∣∣∣dS,t (θj)− dS,t
(
θ0
)∣∣∣ (u0

t

)2
]
− E

[∣∣∣dS,t (θj)− dS,t
(
θ0
)∣∣∣ (u0

t

)2
])]2

≤ c0TE
[([∣∣∣dS,t (θj)− dS,t

(
θ0
)∣∣∣ (u0

t

)2
]
− E

[∣∣∣dS,t (θj)− dS,t
(
θ0
)∣∣∣ (u0

t

)2
])]2

≤ c0TE
(∣∣∣dS,t (θj)− dS,t

(
θ0
)∣∣∣2 (u0

t

)4
)
.

Also, note that, by Assumption 5(ii)

E
(∣∣∣dS,t (θj)− dS,t

(
θ0
)∣∣∣2 (u0

t

)4
)

= E
(∣∣∣dS,t (θj)− dS,t

(
θ0
)∣∣∣2E [(u0

t

)4
|zt
])
≤ c0

∣∣∣θj − θ0
∣∣∣ .

Thus,

E
(
NTω0

N,T (θj)
)2
≤ c0

∣∣∣θj − θ0
∣∣∣N2T ;

using again Corollary 4 in Moricz (1983), this entails that

E

 max
1≤̃i≤N,1≤t̃≤T

∣∣∣∣∣∣
ω0
ĩ,̃t

(θj)
θj − θ0

∣∣∣∣∣∣
2
 ≤ c0

∣∣∣θj − θ0
∣∣∣−1

N2T (lnN) (lnT ) .

Therefore

∞∑
N=1

∞∑
T=1

1
NT

P

 max
1≤̃i≤N,1≤t̃≤T

sup
0≤j≤Q−1

ω0
ĩ,̃t

(θj)
|θj − θ0|

> δN,T

 (C.18)

≤ c0

 ∞∑
j=0

c−j

 ∞∑
N=1

∞∑
T=1

δ−2
N,T

NT
(vN,T (ε))−1N2T 2 (lnN) (lnT ) <∞,

so that finally this entails

sup
0≤j≤Q−1

ω0
NT (θj)
|θj − θ0|

= oa.s. (1) .

We now turn to II. We now turn to II; as in Hansen (2000), we consider the construction

θj+1 = θj + δj, where δj = T−1cj−1 (c− 1) vNT ; letting mj = Tδj = cj−1 (c− 1) vNT , we also define
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θk = θj + T−1 (k − 1), ≤ 1 ≤ k ≤ mj. We rely on the inequality

sup
θj≤θ≤θj+1

1
NT

ĩ∑
i=1

t̃∑
t=1

(
δ0′
i u0

t

)2
(|dS,t (θ)− dS,t (θj)| − E |dS,t (θ)− dS,t (θj)|) (C.19)

≤ max
2≤k≤mj+1

1
NT

∣∣∣∣∣∣
n′∑
i=1

t′∑
t=1

(
δ0′
i u0

t

)2
d2t (θk, θj)

∣∣∣∣∣∣+ max
1≤k≤mj

1
NT

∣∣∣∣∣∣
n′∑
i=1

t′∑
t=1

(
δ0′
i u0

t

)2
d2t (θk+1, θk)

∣∣∣∣∣∣ = a+ b,

where

d2t (θk, θj) = |dS,t (θk)− dS,t (θj)| − E |dS,t (θk)− dS,t (θj)| ,

d2t (θk+1, θk) = |dS,t (θk+1)− dS,t (θk)| − E |dS,t (θk+1)− dS,t (θk)| .

We begin by considering a

∞∑
N=1

∞∑
T=1

1
NT

P

 max
1≤n′≤N,1≤t′≤T

sup
0≤j≤Q

max
2≤k≤mj+1

1
NT

∣∣∣∑n′

i=1
∑t′

t=1 (δ0′
i u0

t )
2
d2t (θk, θj)

∣∣∣
|θj − θ0|

> ε


≤

∞∑
j=0

∞∑
N=1

∞∑
T=1

1
NT

P

 max
1≤n′≤N,1≤t′≤T

max
2≤k≤mj+1

∣∣∣∣∣∣
n′∑
i=1

t′∑
t=1

(
δ0′
i u0

t

)2
d2t (θk, θj)

∣∣∣∣∣∣ > εNT
∣∣∣θj − θ0

∣∣∣


≤
∞∑
j=0

mj+1∑
k=2

∞∑
N=1

∞∑
T=1

1
NT

P

 max
1≤n′≤N,1≤t′≤T

∣∣∣∣∣∣
n′∑
i=1

t′∑
t=1

(
δ0′
i u0

t

)2
d2t (θk, θj)

∣∣∣∣∣∣ > εNT
∣∣∣θj − θ0

∣∣∣


≤
∞∑
j=0

mj+1∑
k=2

∞∑
N=1

∞∑
T=1

ε−(2+r) (NT )−(2+r) T 2+rc−(2+r)j

v2+r
N,T (ε)NT

×E

 max
1≤n′≤N,1≤t′≤T

∣∣∣∣∣∣
n′∑
i=1

t′∑
t=1

(
δ0′
i u0

t

)2
d2t (θk, θj)

∣∣∣∣∣∣
2+r


for some r > 0 such that E ‖u0
t‖

4+2r ≤ c0T
2+r. Note now that, as in the above, (δ0′

i u0
t )

2
d2t (θk, θj)

is a strictly stationary, ρ-mixing sequence with mixing numbers ρm such that ∑∞m=1 ρ
1/2
m < ∞;
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thus, using Burkholder’s inequality (see Theorem 1.1 in Shao, 1995), we obtain

E

∣∣∣∣∣
N∑
i=1

T∑
t=1

(
δ0′
i u0

t

)2
d2t (θk, θj)

∣∣∣∣∣
2+r

≤ c0N
2+rT 1+r/2

(
E

∣∣∣∣∥∥∥u0
t

∥∥∥2
d2t (θk, θj)

∣∣∣∣2
)1+r/2

≤ c1N
2+rT 1+r/2

∣∣∣∣E ∥∥∥u0
t

∥∥∥4
d2

2t (θk, θj)
∣∣∣∣1+r/2

≤ c0N
2+rT 1+r/2 |θk − θj|1+r/2 ≤ c1N

2+rv
1+r/2
NT (ε) cj(1+r/2).

Applying Corollary 4 in Moricz (1983), it follows that

∞∑
N=1

∞∑
T=1

1
NT

P

 max
1≤n′≤N,1≤t′≤T

sup
0≤j≤Q

max
2≤k≤mj+1

1
NT

∣∣∣∑n′

i=1
∑t′

t=1 (δ0′
i u0

t )
2
d2t (θk, θj)

∣∣∣
|θj − θ0|

> ε


≤ c0

∞∑
j=0

mj+1∑
k=2

∞∑
N=1

∞∑
T=1

ε−(2+r) (NT )−(2+r) T 2+rc−(2+r)j

v2+r
N,T (ε)NT

N2+rv
1+r/2
NT (ε) cj(1+r/2) (lnN lnT )2+r

≤ c0

∞∑
j=0

∞∑
N=1

∞∑
T=1

c−(1+r/2)j

v
1+r/2
N,T (ε)NT

(lnN lnT )2+rmj

≤ c0

 ∞∑
j=0

c−rj/2

 ∞∑
N=1

∞∑
T=1

(lnN lnT )2+r

v
r/2
NT (ε)NT

<∞.

This entails that a = oa.s. (1). Similarly, considering b

∞∑
N=1

∞∑
T=1

1
NT

P

 max
1≤n′≤N,1≤t′≤T

sup
0≤j≤Q

max
1≤k≤mj

1
NT

∣∣∣∑n′

i=1
∑t′

t=1 (δ0′
i u0

t )
2
d2t (θk+1, θk)

∣∣∣
|θj − θ0|

> ε


≤ c0

∞∑
j=0

mj+1∑
k=2

∞∑
N=1

∞∑
T=1

1
NT

P

 max
1≤n′≤N,1≤t′≤T

∣∣∣∣∣∣
n′∑
i=1

t′∑
t=1

(
δ0′
i u0

t

)2
d2t (θk+1, θk)

∣∣∣∣∣∣ > NT
∣∣∣θj − θ0

∣∣∣ ε


≤ c0

∞∑
j=0

mj+1∑
k=2

∞∑
N=1

∞∑
T=1

c−2j ε
−2 (NT )−2 T 2

v2
N,T (ε)NT E max

1≤n′≤N,1≤t′≤T

∣∣∣∣∣∣
n′∑
i=1

t′∑
t=1

(
δ0′
i u0

t

)2
d2t (θk+1, θk)

∣∣∣∣∣∣
2

.
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Also, using again Theorem 1.1 in Shao (1995)

E

∣∣∣∣∣
N∑
i=1

T∑
t=1

(
δ0′
i u0

t

)2
d2t (θk+1, θk)

∣∣∣∣∣
2

≤ c0N
2TE

∥∥∥u0
t

∥∥∥4
d2

2t (θk+1, θk) ≤ c1N
2T |θk+1 − θk|

≤ c1N
2T

δj
mj

= c1N
2,

so that Corollary 4 in Moricz (1983) yields

∞∑
N=1

∞∑
T=1

1
NT

P

 max
1≤n′≤N,1≤t′≤T

sup
0≤j≤Q

max
1≤k≤mj

ln lnT
NT 2

∣∣∣∑n′

i=1
∑t′

t=1 (∆ift)2 d2t (θk+1, θk)
∣∣∣

|θj − θ0|
> ε


≤ c0

∞∑
j=0

mj+1∑
k=2

∞∑
N=1

∞∑
T=1

c−2j ε−2

v2
N,T (ε)NT (lnN lnT )2

≤ c0

 ∞∑
j=0

c−j

 ∞∑
N=1

∞∑
T=1

ε−2

vNTNT
(lnN lnT )2 <∞,

so that b = oa.s. (1). Putting all together, the final result now obtains.

Lemma C.5. We assume that Assumptions 3-5 are satisfied. Then there exist two random vari-

ables N0 and T0, and a positive, finite constant c0, such that for N ≥ N0 and T ≥ T0, it holds

that

sup
|θ−θ0|∈BN,T

|h0 (η, θ)− h0 (η, θ0)|
|θ − θ0|

= oa.s. (1) .

Proof. The proof is very similar to the one of the previous lemma, and we only report the main

passages to save space. Again, set η = 1 and write h0 (η, θ) = h0 (θ) (and h0 (η, θ0) = h0 (θ0)) for

short; we have

sup
θ∈Vc(vNT )

h0 (θ)
|θ − θ0|

≤ 2 sup
0≤j≤Q

1
NT

∑N
i=1

∑T
t=1 ei,tδ

0′
i u0

t [dS,t (θj)− dS,t (θ0)]
|θj − θ0|

(C.20)

+2 sup
0≤j≤Q

sup
θj≤θ≤θj+1

1
NT

∑N
i=1

∑T
t=1 ei,tδ

0′
i u0

t [dS,t (θ)− dS,t (θj)]
|θj − θ0|

= 2 sup
0≤j≤Q

h0 (θj, θ0)
|θj − θ0|

+ 2 sup
0≤j≤Q

sup
θj≤θ≤θj+1

h0 (θ, θj)
|θj − θ0|

= I + II.
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Let

h0
n′,t′

(
θj, θ

0
)

= 1
NT

n′∑
i=1

t′∑
t=1

ei,tδ
0′
i u0

t

[
dS,t (θj)− dS,t

(
θ0
)]
.

It holds that

∞∑
N=1

∞∑
T=1

1
NT

P

(
max

1≤n′≤N,1≤t′≤T
sup

0≤j≤Q

h0
n′,t′ (θj, θ0)
|θj − θ0|

> N−1/2
)

≤
∞∑
j=0

∞∑
N=1

∞∑
T=1

1
NT

P
(

max
1≤n′≤N,1≤t′≤T

h0
n′,t′

(
θj, θ

0
)
> N−1/2

∣∣∣θj − θ0
∣∣∣)

≤
∞∑
j=0

c−2j
∞∑
N=1

∞∑
T=1

N

NT

T 2

v2
NT (ε)E

∣∣∣∣ max
1≤n′≤N,1≤t′≤T

h0
n′,t′

(
θj, θ

0
)∣∣∣∣2 .

Also, using Assumption 4(v) it can be shown after some algebra thatE |h0 (θj, θ0)|2 ≤ c0 (NT )−1 |θj − θ0|;

hence

∞∑
N=1

∞∑
T=1

1
NT

P

(
max

1≤n′≤N,1≤t′≤T
sup

0≤j≤Q

h0
n′,t′ (θj, θ0)
|θj − θ0|

> ε

)
≤ c0

∞∑
N=1

∞∑
T=1

1
vNT (ε)NT (lnN lnT )2 <∞.

Thus, in (D.12), I = Oa.s.

(
N−1/2

)
. We now turn to II. We have

∞∑
N=1

∞∑
T=1

1
NT

P

(
max

1≤n′≤N,1≤t′≤T
sup

0≤j≤Q
sup

θj≤θ≤θj+1

h0
n′,t′ (θ, θj)
|θj − θ0|

≥ NT

)

≤
∞∑
j=0

∞∑
N=1

∞∑
T=1

1
NT

P

(
max

1≤n′≤N,1≤t′≤T
max

2≤k≤mj+1
h0
n′,t′ (θk, θj) ≥ NT

∣∣∣θj − θ0
∣∣∣)

+
∞∑
j=0

∞∑
N=1

∞∑
T=1

1
NT

P

(
max

1≤n′≤N,1≤t′≤T
max

1≤k≤mj
h0
n′,t′ (θk+1, θk) ≥ NT

∣∣∣θj − θ0
∣∣∣)

having defined

h0
n′,t′ (θ, θj) =

n′∑
i=1

t′∑
t=1

ei,tδ
0′
i u0

t d̃
′
2t (θ, θj) ,

h0
n′,t′ (θk, θj) =

n′∑
i=1

t′∑
t=1

ei,tδ
0′
i u0

t d̃
′
2t (θk, θj) ,

h0
n′,t′ (θk+1, θk) =

n′∑
i=1

t′∑
t=1

ei,tδ
0′
i u0

t d̃
′
2t (θk+1, θk) ,
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with d̃′2t (θ, θj) = dS,t (θ)− dS,t (θj), and d̃′2t (θk, θj) and d̃′2t (θk+1, θk) defined similarly. We have

∞∑
j=0

∞∑
N=1

∞∑
T=1

1
NT

P

(
max

1≤n′≤N,1≤t′≤T
max

2≤k≤mj+1
h0
n′,t′ (θk, θj) ≥ NT

∣∣∣θj − θ0
∣∣∣)

≤
∞∑
j=0

mj+1∑
k=2

∞∑
N=1

∞∑
T=1

1
NT

P
(

max
1≤n′≤N,1≤t′≤T

h0
n′,t′ (θk, θj) ≥ NT

∣∣∣θj − θ0
∣∣∣)

≤
∞∑
j=0

mj+1∑
k=2

∞∑
N=1

∞∑
T=1

(NT )−(2+r)

NT

c−(2+r)jT 2+r

v2+r
NT (ε)

E
∣∣∣∣ max
1≤n′≤N,1≤t′≤T

h0
n′,t′ (θk, θj)

∣∣∣∣2+r
.

Also, using again Theorem 1.1 in Shao (1995), it can be shown that

E

∣∣∣∣∣
N∑
i=1

T∑
t=1

ei,tδ
0′
i u0

t d̃
′
2t (θk, θj)

∣∣∣∣∣
2+r

≤ c0N
2+rcj(1+r/2)v

1+r/2
NT .

Thus, by Corollary 4 in Moricz (1983)

∞∑
j=0

∞∑
N=1

∞∑
T=1

1
NT

P

(
max

1≤n′≤N,1≤t′≤T
max

2≤k≤mj+1
h0
n′,t′ (θk, θj) ≥ NT

∣∣∣θj − θ0
∣∣∣)

≤ c0

∞∑
j=0

mj+1∑
k=2

∞∑
N=1

∞∑
T=1

1
NT

c−jr/2

v
r/2
NT (ε)

(lnN lnT )2+r

Similarly

∞∑
j=0

∞∑
N=1

∞∑
T=1

1
NT

P

(
max

1≤n′≤N,1≤t′≤T
max

1≤k≤mj
h0
n′,t′ (θk+1, θk) ≥ NT

∣∣∣θj − θ0
∣∣∣)

≤
∞∑
j=0

mj∑
k=1

∞∑
N=1

∞∑
T=1

1
NT

P
(

max
1≤n′≤N,1≤t′≤T

h0
n′,t′ (θk+1, θk) ≥ NT

∣∣∣θj − θ0
∣∣∣)

≤
∞∑
j=0

mj∑
k=1

∞∑
N=1

∞∑
T=1

(NT )−2

NT

c−2jT 2

v2
NT (ε)E

∣∣∣∣ max
1≤n′≤N,1≤t′≤T

h0
n′,t′ (θk+1, θk)

∣∣∣∣2 ,
with, after some algebra

E

∣∣∣∣∣
N∑
i=1

T∑
t=1

ei,tδ
0′
i u0

t d̃
′
2t (θk+1, θk)

∣∣∣∣∣
2

≤ c0N.
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Thus

∞∑
j=0

∞∑
N=1

∞∑
T=1

1
NT

P

(
max

1≤n′≤N,1≤t′≤T
max

2≤k≤mj+1
h0
n′,t′ (θk, θj) ≥ N1/2T

∣∣∣θj − θ0
∣∣∣)

≤

 ∞∑
j=0

c−j

 ∞∑
N=1

∞∑
T=1

(NT 2)−1

NT

T 2

v2
NT (ε)N (lnN lnT )2 <∞.

The desired result now follows.

Lemma C.6. We assume that Assumptions 1-4 are satisfied. Then it holds that, for every Pj ≥ P 0
j

∥∥∥β̂Pj ′j,i ûj,td̂j,t − β0′
j,iu0

j,tdj,t
(
θ0
)∥∥∥ = oa.s. (1) , (C.21)

for j = D,S and all 1 ≤ i ≤ N , 1 ≤ t ≤ T . Also, S
(
BP ,UP , θ

)
is continuous in (B,U).

Proof. Using the results in the proof of Lemma A.8 in Massacci (2017), it can be shown that

E
∥∥∥β̂Pjj,i − ĤPj

jj (θ0) β0
j,i

∥∥∥2
≤ c0C

−2
N,T . Thus, using the same logic as above, Lemma C.1 entails that

for all 1 ≤ i ≤ N ,
∥∥∥β̂Pjj,i − ĤPj

jj (θ0) β0
j,i

∥∥∥ = oa.s.
(
C−1
N,T (lnN)1+ε (lnT )1+ε

)
. With the same logic, by

Corollary 3.2 in Massacci (2017), it follows that, for all 1 ≤ t ≤ T ,
∥∥∥∥ûj,td̂j,t − (ĤPj

jj (θ0)′
)−1

u0
j,tdj,t (θ0)

∥∥∥∥ =

oa.s.
(
C−1
N,T (lnN)1+ε (lnT )1+ε

)
. Equation (C.21) now follows immediately. As a consequence, we

can assume that

lim
N,T→∞

β̂
Pj ′
j,i ûj,td̂j,t = β0′

j,iu0
j,tdj,t

(
θ0
)
. (C.22)

Equation (C.22) and elementary algebra now give limN,T→∞ S
(
B̂P , ÛP , θ

)
= S (B0,U0, θ), which

proves the last statement of the lemma.

We are now ready to derive a strong rate for θ̂.

Lemma C.7. We assume that Assumptions 1-5 are satisfied. Then it holds that

θ̂ − θ0 = oa.s.
(
T−1vN,T (ε)

)
,

for every ε > 0.

XX



Proof. Lemma C.3 entails that we can focus on the event
∣∣∣θ̂ − θ0

∣∣∣ < cB. Further, after some

algebra, Lemma C.6 entails that there exists two random variables N0 and T0 such that, for

N ≥ N0 and T ≥ T0, we have

S
(
B̂P , ÛP , θ

)
− S

(
B̂P , ÛP , θ0

)
|θ − θ0|

≥ inf
|θ−θ0|∈BN,T

Eω0 (η, θ)
|θ − θ0|

− sup
|θ−θ0|∈BN,T

∣∣∣ω0
N,T

∣∣∣
|θ − θ0|

− 2 sup
|θ−θ0|∈BN,T

|h0 (η, θ)− h0 (η, θ0)|
|θ − θ0|

.

By using Lemmas C.4 and C.5, it follows that, for all θ such that |θ − θ0| ∈ BN,T

S
(
B̂P , ÛP , θ

)
− S

(
B̂P , ÛP , θ0

)
≥ c0 > 0 a.s.

Since, by definition, S
(
B̂P , ÛP , θ̂

)
≤ S

(
B̂P , ÛP , θ0

)
, this entails that

∣∣∣θ̂ − θ0
∣∣∣ /∈ BN,T , whence

the desired result.

Lemma C.8. We assume that Assumptions 1-5 are satisfied. Then it holds that

Tj − T̂j
T̂j

= oa.s.
(
T−1
j (lnT )1+ε′ vN,T (ε)

)
,

for j = D,S and every ε, ε′ > 0.

Proof. We show the lemma for j = D. Recall that TD = ∑T
t=1 dD,t (θ0) and T̂D = ∑T

t=1 d̂D,t. It

holds that

TD − T̂D ≤
T∑
t=1

∣∣∣dD,t (θ0
)
− d̂D,t

∣∣∣
Denoting the density of zt by ft (z) = f (z), Assumption 5(iii) entails

E
∣∣∣d̂D,t − dD,t (θ0

)∣∣∣ =
∣∣∣∣∣
∫ θ0

θ̂
f (z) dz

∣∣∣∣∣ ≤ c0

∣∣∣θ̂ − θ0
∣∣∣ , (C.23)

so that

TD − T̂D ≤ c0T
∣∣∣θ̂ − θ0

∣∣∣ (lnT )1+ε ,
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having used Lemma C.1. The desired result follows immediately from Lemma C.7.

Lemma C.9. We assume that Assumptions 3-5 are satisfied. Then it holds that

E
∣∣∣R̃i,t

∣∣∣4+ε
<∞ (C.24)

for some ε > 0, and

E max
1≤t≤T

∣∣∣∣∣
t∑

s=1
R̃h,sR̃l,sdD,s

(
θ0
)
− E

[
R̃h,sR̃l,sdD,s

(
θ0
)]∣∣∣∣∣

2

≤ c1T, (C.25)

E max
1≤t≤T

∣∣∣∣∣
t∑

s=1
R̃h,sR̃l,sdS,s

(
θ0
)
− E

[
R̃h,sR̃l,sdS,s

(
θ0
)]∣∣∣∣∣

2

≤ c2T, (C.26)

for all 1 ≤ h, l ≤ N .

Proof. Equation (C.24) is an immediate consequence of Assumptions 3(i) and 4(i). We show only

(C.25); (C.26) follows from exactly the same arguments. To begin with, note that Assumption 5(i)

entails that R̃h,sR̃l,sd1,s (θ0) is also a strictly stationary, ρ-mixing sequence with mixing numbers

ρm such that ∑∞m=1 ρ
1/2
m < ∞ - we refer to the proof of Lemma C.11 for details. Using (C.24), it

follows that

E
∣∣∣R̃h,sR̃l,sdD,s

(
θ0
)∣∣∣2 ≤ (E ∣∣∣R̃h,s

∣∣∣4)1/2 (
E
∣∣∣R̃l,s

∣∣∣4)1/2
<∞.

Note also that
∞∑
m=1

ρ1/2
m <∞⇒

∞∑
m=1

ρm
m

<∞⇒
∞∑
m=1

ρm (2m) <∞.

Hence, Corollary 1.1 in Shao (1995) and the strict stationarity of R̃h,sR̃l,sdD,s (θ0) immediately

yield (C.25).
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Lemma C.10. We assume that Assumptions 1-6 are satisfied. Then it holds that

lim sup
min(N,T )→∞

1
N − p

N∑
h=p+1

ĝ
(h)
j = gj <∞,

lim inf
min(N,T )→∞

1
N − p

N∑
h=p+1

ĝ
(h)
j = g

j
> 0,

for j = D,S and every 0 ≤ p ≤ Pmax.

Proof. Note that

N∑
h=p+1

ĝ
(h)
j −

N∑
h=p+1

g
(h)
j

=
N∑
h=1

ĝ
(h)
j −

N∑
h=1

g
(h)
j −

p∑
h=1

ĝ
(h)
j +

p∑
h=1

g
(h)
j

= tr
(
Σ̂j

)
− tr (Σj)−

( p∑
h=1

(
ĝ

(h)
j − g

(h)
j

))
.

Using Lemma A.2, it is easy to see that

p∑
h=1

(
ĝ

(h)
j − g

(h)
j

)
= oa.s.

(
pNT 1/2

Tπj
(lnN)1+ε (lnT )1/2+ε

)
. (C.27)

Also, the same passages as in the proof of Lemma A.1 in Trapani (2018) yield

tr
(
Σ̂j

)
− tr (Σj) = oa.s.

N (lnN lnT )
1+ε

2

T 1/2πj

 . (C.28)

Thus, recalling that Pmax = O
(
min

{
T 1/2−c, N1/2−c

})
, it follows that

1
N − p

N∑
h=p+1

ĝ
(h)
j = 1

N − p

N∑
h=p+1

g
(h)
j + oa.s.

(lnN lnT )
1+ε

2

T 1/2πj

 = 1
N − p

N∑
h=p+1

g
(h)
j + oa.s. (1) ,

under Assumption 6.

Let now g
u,(h)
j and ge,(h)

j denote the h-th largest eigenvalues of 1
Tπj

∑T
t−1E

(
B0
ju0

j,tu0′
j,tB0′

j dj,t (θ0)
)
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and 1
Tπj

∑T
t−1E (ete′tdj,t (θ0)) respectively. By Weyl’s inequality

g
e,(N)
j + g

u,(h)
j ≤ g

(h)
j ≤ g

u,(h)
j + g

e,(1)
j ,

so that

g
e,(N)
j + 1

N − p

N∑
h=p+1

g
u,(h)
j ≤ 1

N − p

N∑
h=p+1

g
(h)
j ≤

1
N − p

N∑
h=p+1

g
u,(h)
j + g

e,(1)
j .

By Assumption 2(i)(b), it holds that

g
e,(N)
j + 1

N − p

N∑
h=p+1

g
u,(h)
j > 0;

also, Assumption 2(i)(a) and (D.1) entail

1
N − p

N∑
h=p+1

g
u,(h)
j + g

e,(1)
j <∞.

Hence, as N →∞

0 < lim inf
N→∞

<
1

N − p

N∑
h=p+1

g
(h)
j < lim sup

N→∞
<∞.

Putting all together, the lemma follows.

Lemma C.11. We assume that Assumptions 1-5 are satisfied. Then it holds that, for j = D,S

E

∥∥∥∥∥T−1
T∑
t=1

u0
j,tdj,t

(
θ0
)∥∥∥∥∥

2

≤ c0T
−1. (C.29)

Further, under Assumption 9(ii), as T →∞

T−1/2
T∑
t=1

u0
j,tdj,t

(
θ0
)

D→ N (0, Vu,j) , (C.30)

where Vu,j = limT→∞E
(
T−1∑T

t,s=1 u0
j,tu′0j,sdj,t (θ0) dj,s (θ0)

)
.

Proof. We begin by showing that
{
f0
j,tdj,t (θ0)

}
is a ρ-mixing sequence with mixing number ρ̃j,m
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such that ∑∞m=1 ρ̃
1/2
j,m < ∞. Note that f0

j,tdj,t (θ0) is a measurable transformation of
{
f0
j,t, zt, εt

}
.

Let now =t−∞ and =∞t+m be the σ-fields generated by
{
f0
j,t′ , zt′ , εt′

}t
t′=−∞

and
{
f0
j,t′ , zt′ , εt′

}∞
t′=t+m

re-

spectively, and similarly =̃t−∞ and =̃∞t+m be the σ-fields generated by
{
f0
j,t′dj,t′ (θ0)

}t
t′=−∞

and{
f0
j,t′dj,t′ (θ0)

}∞
t′=t+m

respectively. By measurability, =̃t−∞ ⊆ =t−∞ and =̃∞t+m ⊆ =∞t+m; hence,

ρ̃j,m = ρ̃j,m
(
=̃t−∞, =̃∞t+m

)
≤ ρj,m = ρj,m

(
=t−∞,=∞t+m

)
. This therefore entails that ∑∞m=1 ρ̃

1/2
j,m <∑∞

m=1 ρ
1/2
j,m <∞ by Assumption 5(i), which in turn entails that ∑∞k=1 ρ̃j

(
2k
)
<∞.

Note now that E
∥∥∥u0

j,tdj,t (θ0)
∥∥∥2
≤ E

∥∥∥u0
j,t

∥∥∥2
, which is finite by Assumption 3(i). Thus

E

∥∥∥∥∥
T∑
t=1

u0
j,tdj,t

(
θ0
)∥∥∥∥∥

2

≤ E max
1≤k≤T

∥∥∥∥∥
k∑
t=1

u0
j,tdj,t

(
θ0
)∥∥∥∥∥

2

≤ c0T,

where the last inequality follows from Lemma 1 in Peligrad, Utev, and Wu (2007). This proves

(C.29). As far as (C.30) is concerned, it follows readily upon checking the assumptions of Theorem

0 in Peligrad (1987).

D Proofs

Henceforth, we use E∗ and V ∗ to denote, respectively, the expected value and the variance

with respect to P ∗.

Proof of Lemma A.1. The lemma is an adaptation of Lemma 1 in Trapani (2018). In order to

prove it, note that Assumption 4(v) entails that, for j = D,S

1
Tπj

T∑
t=1

E
[(

B0
ju0

j,t + et
) (

B0
ju0

j,t + et
)′
dj,t

(
θ0
)]

= B0
j

1
Tπj

T∑
t=1

E
(
u0
j,tu0′

j,tdj,t
(
θ0
))

B0′
j + 1

Tπj

T∑
t=1

E
(
ete′tdj,t

(
θ0
))
.

We begin by showing that

g
(i)
j

(
B0
j

1
Tπj

T∑
t=1

E
(
u0
j,tu0′

j,tdj,t
(
θ0
))

B0′
j

)
∈
(
c

(i)
j N, c

(i)
j N

)
for 0 ≤ i ≤ P 0

j

= 0 for i ≥ P 0
j + 1

, (D.1)
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for j = D,S, where 0 < c
(i)
j ≤ c

(i)
j < ∞. We show this result for the case j = D only - the case

j = S is repetitive. By the multiplicative Weyl’s inequality (Merikoski and Kumar (2004)) we

have

g
(i)
D

(
B0
D

1
TπD

T∑
t=1

E
(
u0
D,tu0′

D,tdD,t
(
θ0
))

B0′
D

)
≥ g

(min)
D

(
1

TπD

T∑
t=1

E
(
u0
D,tu0′

D,tdD,t
(
θ0
)))

g
(i)
D

(
B0′
DB0
D

)
,

g
(i)
D

(
B0
D

1
TπD

T∑
t=1

E
(
u0
D,tu0′

D,tdD,t
(
θ0
))

B0′
D

)
≤ g

(max)
D

(
1

TπD

T∑
t=1

E
(
u0
D,tu0′

D,tdD,t
(
θ0
)))

g
(i)
D

(
B0′
DB0
D

)
,

by Assumption 3(ii) it holds that

g
(min)
D

(
1

TπD

T∑
t=1

E
(
u0
D,tu0′

D,tdD,t
(
θ0
)))

> 0.

Moreover, by Assumption 3(iv) we have

g
(i)
D

(
B0
DB0′
D

)
≥ c

(i)
1 N for 1 ≤ i ≤ P 0

D

= 0 for i ≥ P 0
D + 1

.

Equation (D.1) now follows immediately. Consider now

1
TπD

T∑
t=1

ete′tdD,t
(
θ0
)

= 1
Tπj

T∑
t=1

εtε
′
tdD,t

(
θ0
)
− εDε′D,

so that

g
(1)
D

(
1

TπD

T∑
t=1

E
(
ete′tdD,t

(
θ0
)))
≤ g

(1)
D

(
1

TπD

T∑
t=1

E
(
εtε
′
tdD,t

(
θ0
)))

+ g
(1)
D (εDε′D) .

The first term is bounded by Assumption 2(i). Also, after some algebra we have

g
(1)
D (εDε′D) ≤ max

1≤i≤N

N∑
k=1

1
(TπD)2

T∑
t=1

T∑
s=1

∣∣∣E (εi,tεk,sdD,t (θ0
)
dD,s

(
θ0
))∣∣∣ ,

which is bounded by Assumption 2(ii). The proof of the lemma now follows immediately along
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the same lines as the proof of Lemma 1 in Trapani (2018).

Proof of Theorem A.2. We prove the theorem for j = 1 - again, the proof for the case j = 2 is

just a repetition of the same arguments. Note that

∣∣∣ĝ(i)
1 − g

(i)
1

∣∣∣ ≤ ∥∥∥Σ̂S − ΣD
∥∥∥
op
,

so that, by symmetry

∣∣∣ĝ(i)
1 − g

(i)
1

∣∣∣ ≤
∣∣∣∣∣∣
N∑
h=1

N∑
l=1

(
1

TπD

T∑
t=1

(
R̃h,tR̃l,td̂D,t − E

(
R̃h,tR̃l,td̂1,t

)))2∣∣∣∣∣∣
1/2

. (D.2)

We define the short-hand notation δh,l,t = Xh,tXl,tdD,t (θ0) − E (Xh,tXl,tdD,t (θ0)); based on this,

(D.2) can be rewritten as

∣∣∣ĝ(i)
1 − g

(i)
1

∣∣∣ ≤
∣∣∣∣∣∣
N∑
h=1

N∑
l=1

(
1

TπD

T∑
t=1

(
δh,l,t + R̃h,tR̃l,t

(
d̂D,t − dD,t

(
θ0
))))2∣∣∣∣∣∣

1/2

. (D.3)

By repeated use of the Cr-inequality we have

∣∣∣ĝ(i)
1 − g

(i)
1

∣∣∣ ≤ c0

∣∣∣∣∣∣
N∑
h=1

N∑
l=1

(
1

TπD

T∑
t=1

δh,l,t

)2

+
N∑
h=1

N∑
l=1

(
1

TπD

T∑
t=1

R̃h,tR̃l,t

(
d̂D,t − dD,t

(
θ0
)))2∣∣∣∣∣∣

1/2

≤ c1

∣∣∣∣∣∣
N∑
h=1

N∑
l=1

(
1

TπD

T∑
t=1

δh,l,t

)2∣∣∣∣∣∣
1/2

+ c2

∣∣∣∣∣∣
N∑
h=1

N∑
l=1

(
1

TπD

T∑
t=1

R̃h,tR̃l,t

(
d̂D,t − dD,t

(
θ0
)))2∣∣∣∣∣∣

1/2

.

(D.4)

Using Lemma C.9, we have

E max
1≤h≤N,1≤l≤N,1≤t≤T

h∑
h′=1

l∑
l′=1

(
t∑

t′=1
δh′,l′,t′

)2

≤ c0N
2T ;
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thus, by Lemma C.1 and Markov inequality, we have

N∑
h=1

N∑
l=1

(
1

TπD

T∑
t=1

δh,l,t

)2

= oa.s.

(
N2T

T 2π2
D

(lnN)2+ε (lnT )1+ε
)
,

for every ε > 0. Considering the second term in (D.4), convexity implies that

N∑
h=1

N∑
l=1

(
1

TπD

T∑
t=1

R̃h,tR̃l,t

(
d̂D,t − dD,t

(
θ0
)))2

≤ 1
Tπ2
D

N∑
h=1

N∑
l=1

T∑
t=1

R̃2
h,tR̃

2
l,t

(
d̂D,t − dD,t

(
θ0
))2

.

(D.5)

Hence, applying (C.23) to (D.5) it follows that

N∑
h=1

N∑
l=1

(
1

TπD

T∑
t=1

R̃h,tR̃l,t

(
d̂S,t − dD,t

(
θ0
)))2

≤ c0

∣∣∣θ̂ − θ0
∣∣∣2 1
Tπ2
D

N∑
h=1

N∑
l=1

T∑
t=1

R̃2
h,tR̃

2
l,t.

Equation (C.24) entails

E

(
1

N2T

N∑
h=1

N∑
l=1

T∑
t=1

R̃2
h,tR̃

2
l,t

)
≤ c0.

The maximal inequality for rectangular sums (Moricz (1983)) now yields

E max
1≤h≤N,1≤l≤N,1≤t≤T

h∑
h′=1

l∑
l′=1

t∑
t′=1

R̃2
h′,t′R̃

2
l′,t′ ≤ c0N

2T (lnN)2 lnT,

which, by Lemma C.1 and Markov inequality, yields

N∑
h=1

N∑
l=1

T∑
t=1

R̃2
h,tR̃

2
l,t = oa.s.

(
N2T (lnN)3+ε (lnT )2+ε

)
,

for every ε > 0. Then, by Lemma C.7 we obtain the general result

∣∣∣∣∣∣
N∑
h=1

N∑
l=1

(
1

TπD

T∑
t=1

R̃h,tR̃l,t

(
d̂1,t − dD,t

(
θ0
)))2∣∣∣∣∣∣

1/2

= oa.s.

(
N

TπD
(lnN)

3+ε
2 (lnT )

2+ε
2 vN,T (ε)

)
;

recalling that we have assumed η = 1, the desired result follows.

Proof of Theorem A.3. The proofs are similar to those of Theorems 3 and 4 in Horváth and
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Trapani (2019), and therefore we only report the main arguments to save space. We begin by

showing (A.12). It follows from Lemma A.1 and Theorem A.2 that, for all i and j = D,S

P

ω : lim
min(N,T )→∞

N−%j ĝ(i)
j

gj (p) − κN1−%j

 =∞

 = 1.

Thus, by continuity, we can assume henceforth that

lim
min(N,T )→∞

exp
(
−κN1−%j

)
ψ
(
ĝ

(i)
j

)
=∞. (D.6)

Let Φ (·) denote the standard normal distribution; it holds that

M−1/2
M∑
m=1

(
ζ

(i)
j,m (s)− 1

2

)
= M−1/2

M∑
m=1

(
I
{
ξ

(j)
i,m ≤ 0

}
− 1

2

)
+M−1/2

M∑
m=1

Φ
 s

ψ
(
ĝ

(i)
j

)
− 1

2


+M−1/2

M∑
m=1

I
ξ(j)

i,m ≤
s

ψ
(
ĝ

(i)
j

)
− I {ξ(j)

i,m ≤ 0
}
−

Φ
 s

ψ
(
ĝ

(i)
j

)
− 1

2

 .
By definition

E∗ζ
(i)
j,m (s) = Φ

 s

ψ
(
ĝ

(i)
j

)
 ,

V ∗ζ
(i)
j,m (s) = Φ

 s

ψ
(
ĝ

(i)
j

)
1− Φ

 s

ψ
(
ĝ

(i)
j

)
 .

Thus

E∗
∫ ∞
−∞

∣∣∣∣∣∣M−1/2
M∑
m=1

I
ξ(j)

i,m ≤
s

ψ
(
ĝ

(i)
j

)
− I {ξ(j)

i,m ≤ 0
}
−

Φ
 s

ψ
(
ĝ

(i)
j

)
− 1

2

∣∣∣∣∣∣
2

dΦ(s)

=
∫ ∞
−∞

E∗

∣∣∣∣∣∣
I
ξ(j)

i,1 ≤
s

ψ
(
ĝ

(i)
j

)
− I {ξ(j)

i,1 ≤ 0
}
−

Φ
 s

ψ
(
ĝ

(i)
j

)
− 1

2

∣∣∣∣∣∣
2

dΦ(s),
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on account of the independence of the ξ(j)
i,ms across m. Also

E∗

I
ξ(j)

i,1 ≤
s

ψ
(
ĝ

(i)
j

)
− I {ξ(j)

i,1 ≤ 0
} = Φ

 s

ψ
(
ĝ

(i)
j

)
− 1

2

V ∗

I
ξ(j)

i,1 ≤
s

ψ
(
ĝ

(i)
j

)
− I {ξ(j)

i,1 ≤ 0
} =

Φ
 s

ψ
(
ĝ

(i)
j

)
− 1

2

3
2 − Φ

 s

ψ
(
ĝ

(i)
j

)


≤ Φ
 s

ψ
(
ĝ

(i)
j

)
− 1

2 .

Hence, we have

∫ ∞
−∞

E∗

∣∣∣∣∣∣
I
ξ(j)

i,1 ≤
s

ψ
(
ĝ

(i)
j

)
− I {ξ(j)

i,1 ≤ 0
}
−

Φ
 s

ψ
(
ĝ

(i)
j

)
− 1

2

∣∣∣∣∣∣
2

dΦ (s)

≤
∫ ∞
−∞

∣∣∣∣∣∣Φ
 s

ψ
(
ĝ

(i)
j

)
− 1

2

∣∣∣∣∣∣ dΦ (s) ≤ 1
√

2πψ
(
ĝ

(i)
j

) ∫ ∞
−∞
|s| dΦ (s) = 1

πψ
(
ĝ

(i)
j

) ,
which drifts to zero by (D.6). Also

∫ ∞
−∞

M−1/2
M∑
m=1

Φ
 s

ψ
(
ĝ

(i)
j

)
− 1

2

 dΦ (s) ≤ M

2π
∣∣∣ψ (ĝ(i)

j

)∣∣∣2
∫ ∞
−∞

s2dΦ (s) = M

2π
∣∣∣ψ (ĝ(i)

j

)∣∣∣2 .

Hence, using (A.11), we conclude via Markov’s inequality that

Υ(i)
j =

∫ ∞
−∞

{
2√
M

M∑
m=1

(
I
{
ξ

(j)
i,m ≤ 0

}
− 1

2

)}2

dΦ (s) + oP ∗(1)

=
{

2√
M

M∑
m=1

(
I
{
ξ

(j)
i,m ≤ 0

}
− 1

2

)}2

+ oP ∗(1),

and therefore the desired result follows from the Central Limit Theorem for Bernoulli random

variables.
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We now turn to showing (A.13). Again Lemma A.1 and Theorem A.2 entail that

P

ω : lim
min(N,T )→∞

N−%j ĝ
(i)
j

gj (p) = 0

 = 1.

By continuity, this means that we can assume from now on that

lim
min(N,T )→∞

ψ
(
ĝ

(i)
j

)
= 1. (D.7)

Consider

ζ
(i)
j,m (s)− 1

2 = I

ξ(j)
i,1 ≤

s

ψ
(
ĝ

(i)
j

)
± Φ

 s

ψ
(
ĝ

(i)
j

)
− 1

2 .

Then we have

E∗
∫ ∞
−∞

∣∣∣∣∣∣M−1/2
M∑
m=1

I
ξ(j)

i,1 ≤
s

ψ
(
ĝ

(i)
j

)
− 1

2

∣∣∣∣∣∣
2

dΦ (s)

= E∗

I
ξ(j)

i,1 ≤
s

ψ
(
ĝ

(i)
j

)
− Φ

 s

ψ
(
ĝ

(i)
j

)
2

+M
∫ ∞
−∞

Φ
 s

ψ
(
ĝ

(i)
j

)
− 1

2

2

dΦ (s) .

Given that

E∗

I
ξ(j)

i,1 ≤
s

ψ
(
ĝ

(i)
j

)
− Φ

 s

ψ
(
ĝ

(i)
j

)
2

<∞,

by Markov’s inequality it follows that

∫ ∞
−∞

M−1/2
M∑
m=1

I
ξ(j)

i,1 ≤
s

ψ
(
ĝ

(i)
j

)
− Φ

 s

ψ
(
ĝ

(i)
j

)
2

dΦ (s) = OP ∗(1),

for almost all realizations of {ej, bj,−∞ < j <∞}. Thus, as min (M,N, Tj)→∞ for j = D,S

1
4MΥ(i)

j =
∫ ∞
−∞

(
Φ (s)− 1

2

)2
dΦ (s) +OP ∗(1). (D.8)

Hence the proof of (A.13) is complete.
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Proof of Theorem 1. See the proof of (the identical) Theorem 3 in Trapani (2018).

Proof of Theorem 2. The result follows from combining (A.24) and (A.25), with

γ̂j,g − γ0
j,g = OP

( 1
N1/2

)
+OP

(
T 1/2

Tj

)
+OP

(
C−2
N,T

)
+OP

(
T−1

)
. (D.9)

Proof of Theorem 3. The result readily follows by combining the results in Theorem A.5 (see also

Theorem 3 in Giglio and Xiu (2021)).

Proof of Lemma A.2. We report the proof using the assumption that the true dj,t has been used

(also in the computation of T̂j); extending to the case where d̂j,t is employed is straighforward in

light of the results derived above. It holds that

êj,i = αj,i + εj,i +
(

1
Tj

T∑
t=1

dj,t

)
(γj,0 − γ̂j,0) + 1

Tj

T∑
t=1

(
β′j,i (γj,1 + uj,t)− β̂′j,i (γ̂j,1 + ûj,t)

)
dj,t,

where

εj,i = 1
Tj

T∑
t=1

εi,tdj,t.

Also, applying Theorem 3.4 and Corollary 3.2 in Massacci (2017) (recalling also (24)) yields

1
N

N∑
i=1

∥∥∥βj,i − β̂j,i

∥∥∥2
= oP (1) , (D.10)

∥∥∥∥∥ 1
Tj

T∑
t=1

(uj,t − ûj,t)
∥∥∥∥∥

2

≤ T

Tj

1
T

T∑
t=1
‖uj,t − ûj,t‖2 = oP (1) , (D.11)

having omitted rotation matrices for the sake of the notation. Note now that

1
N

N∑
i=1

ê2
j,i = 1

N

N∑
i=1

α2
j,i

+ 1
N

N∑
i=1

(
εj,i + (γj,0 − γ̂j,0) + 1

Tj

T∑
t=1

(
β′j,i (γj,1 + uj,t)− β̂′j,i (γ̂j,1 + ûj,t)

)
dj,t

)2

+ 2
N

N∑
i=1

αj,i

(
εj,i + (γj,0 − γ̂j,0) + 1

Tj

T∑
t=1

(
β′j,i (γj,1 + uj,t)− β̂′j,i (γ̂j,1 + ûj,t)

)
dj,t

)
.
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The LLN entails
1
N

N∑
i=1

α2
j,i = σ2

α,j + oP (1) ;

upon showing that

1
N

N∑
i=1

(
εj,i + (γj,0 − γ̂j) + 1

Tj

T∑
t=1

(
β′j,i (γj,1 + uj,t)− β̂′j,i (γ̂j,1 + ûj,t)

)
dj,t

)2

= oP (1) ,

and using (repeatedly) the Cauchy-Schwartz inequality, the lemma follows. Now

1
N

N∑
i=1

(
εj,i + (γj,0 − γ̂j) + 1

Tj

T∑
t=1

(
β′j,i (γj,1 + uj,t)− β̂′j,i (γ̂j,1 + ûj,t)

)
dj,t

)2

≤ c0

 1
N

N∑
i=1

ε2j,i + (γj,0 − γ̂j)2 + 1
N

N∑
i=1

(
1
Tj

T∑
t=1

(
β′j,i (γj,1 + uj,t)− β̂′j,i (γ̂j,1 + ûj,t)

))2

dj,t

 .
By (A.24), γj,0− γ̂j = oP (1). Also, combining Theorem 2 and (D.10)-(D.11), it is easy to see that

1
N

N∑
i=1

(
1
Tj

T∑
t=1

(
β′j,i (γj,1 + uj,t)− β̂′j,i (γ̂j,1 + ûj,t)

))2

dj,t = oP (1) .

Finally we have

max
1≤i≤N

E
(
ε2j,i
)

= max
1≤i≤N

1
T 2
j

T∑
t=1

T∑
s=1

E (εi,tεi,sdj,tdj,s) ≤ c0T
−1
j ,

using Assumption 4(ii). Hence
1
N

N∑
i=1

ε2j,i = oP (1) .

Putting all together, the desired result follows.

Proof of Theorem A.4. We present the full version of the proof of (A.24) only; the other two

results follow from similar arguments and, where possible, we omit the details to avoid repetition.

We begin by showing that the estimation error P̂j − P 0
j is negligible. To this end, we assume

without loss of generality that P̂j ≥ P 0
j , and we omit dependence on θ or θ0 whenever possible.
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Let

ĤΓP̂j
jj Γ̂j = Ĥ∗Γjj Γ̂∗j + H̃Γ

jjΓ̃j,

where Ĥ∗Γjj is
(
P 0
j + 1

)
×
(
P 0
j + 1

)
, Γ̂∗j is

(
P 0
j + 1

)
× 1, H̃Γ

jj is
(
P 0
j + 1

)
×
(
P̂j − P 0

j

)
and Γ̃j is(

P̂j − P 0
j

)
× 1, defined such that ĤΓP̂j

jj =
[
Ĥ∗Γjj |H̃Γ

jj

]
and Γ̂j =

(
Γ̂∗′j , Γ̃′j

)′
. We begin by showing

that ∥∥∥∥ĤΓP̂j
jj

∥∥∥∥
F

= OP ∗ (1) . (D.12)

Note that ∥∥∥∥ĤΓP̂j
jj

∥∥∥∥
F
≤
∥∥∥∥∥Uj (θ0) Uj (θ)′

T

∥∥∥∥∥
F

∥∥∥∥∥∥B′j (θ0) B̂j (θ)
N

∥∥∥∥∥∥
F

∥∥∥V̂j (θ)−1
∥∥∥
F

;

the first term is bounded by Assumption 3(i); also note that, using the triangular inequality

∥∥∥∥∥∥B′j (θ0) B̂j (θ)
N

∥∥∥∥∥∥
F

≤
∥∥∥∥∥B′j (θ0) Bj (θ0)

N

∥∥∥∥∥
F

+

∥∥∥∥∥∥∥∥
B′j

(
B̂j (θ)−Bj (θ0) ĤΓP̂j

jj

)
N

∥∥∥∥∥∥∥∥
F

≤
∥∥∥∥∥B′j (θ0) Bj (θ0)

N

∥∥∥∥∥
F

+
∥∥∥∥ Bj

N1/2

∥∥∥∥
F

∥∥∥∥∥∥∥
B̂j (θ)−Bj (θ0) ĤΓP̂j

jj

N1/2

∥∥∥∥∥∥∥
F

.

The first term is bounded by virtue of Assumption 3(iv), whereas the second one can be shown to

be dominated by using the same arguments as in footnote 5 in Bai (2003). Indeed, Finally, note

that

P ∗
(∥∥∥V̂j (θ)−1

∥∥∥
F
≥M

)
= P ∗

(∥∥∥V̂j (θ)−1
∥∥∥
F
≥M |P̂j = P 0

j

)
+ P ∗

(∥∥∥V̂j (θ)−1
∥∥∥
F
≥M |P̂j 6= P 0

j

)
≤ P ∗

(∥∥∥V̂j (θ)−1
∥∥∥
F
≥M |P̂j = P 0

j

)
+ P ∗

(
P̂j 6= P 0

j

)
= oP ∗ (1) ,

by Theorem 1, with g(P 0
j ) (Σ̂

j,R̃ (θ)
)
> 0 implied by Lemma C.10. By similar passages, it is easy

to see that ∥∥∥Γ̂j

∥∥∥
F

= OP ∗ (1) . (D.13)
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We now show that ∥∥∥H̃Γ
jjΓ̃j

∥∥∥
F

= oP ∗ (1) , (D.14)

for almost all realizations of the sample. Indeed,
∥∥∥H̃Γ

jjΓ̃j

∥∥∥
F
≤
∥∥∥H̃Γ

jj

∥∥∥
F

∥∥∥Γ̃j

∥∥∥
F

, and
∥∥∥Γ̃j

∥∥∥
F

is bounded

by (D.13). Also ∥∥∥H̃Γ
jj

∥∥∥
F

= tr
(
H̃Γ′
jjH̃Γ

jj

)
≤
(
P̂j − P 0

j

)
g(1)

(
H̃Γ′
jjH̃Γ

jj

)
,

with P̂j−P 0
j = oP ∗ (1) by Theorem 1 and g(1)

(
H̃Γ′
jjH̃Γ

jj

)
bounded by (D.12). Therefore, ĤΓP̂j

jj Γ̂j =

Ĥ∗Γjj Γ̂∗j+oP ∗ (1). Turning to Ĥ∗Γjj Γ̂∗j , let Γ̂∗P
0
j

j be the estimate obtained when using P 0
j , and consider

Ĥ∗Γjj Γ̂∗j =
(
Ĥ∗Γjj ± ĤΓ

jj

)(
Γ̂∗j ± Γ̂∗P

0
j

j

)
.

By the same arguments as in footnote 5 in Bai (2003), it is easy to see that
∥∥∥∥Γ̂∗j − Γ̂∗P

0
j

j

∥∥∥∥
F

= oP ∗ (1);

then it follows immediately that

Ĥ∗Γjj Γ̂∗j = ĤΓ
jjΓ̂
∗P 0
j

j + oP ∗ (1) ,

which, combined with (D.14), yields

ĤΓ
jjΓ̂j = ĤΓ

jjΓ̂
∗P 0
j

j + oP ∗ (1) . (D.15)

We now conclude the proof of (A.24) by showing that

ĤΓ
jjΓ̂
∗P 0
j

j = Γj + oP (1) .

Let X̂P 0
j

j (θ0) =
[
ιN , B̂

P 0
j

j (θ0)
]
. By the same logic as in the previous passages, and using Theorem

3.4 in Massacci (2017), we have

1
T

T∑
t=1

Γ̂∗P
0
j

j,t d̂j,t =
(
X̂P̂j ′
j (θ̂)X̂P̂j

j (θ̂)
)−1

X̂P̂j ′
j (θ̂) 1

T

T∑
t=1

Rtd̂j,t

=
(
X̂P 0

j ′
j (θ0)X̂P 0

j

j (θ0)
)−1

X̂P 0
j ′
j (θ0) 1

T

T∑
t=1

Rtd̂j,t + oP ∗ (1) + oP (1) .
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Also

(
X̂P 0

j ′
j (θ0)X̂P 0

j

j (θ0)
)−1

X̂P 0
j ′
j (θ0) 1

T

T∑
t=1

Rtd̂j,t (D.16)

=
(
X̂P 0

j ′
j (θ0)X̂P 0

j

j (θ0)
)−1

X̂P 0
j ′
j (θ0) 1

T

T∑
t=1

Rtdj,t
(
θ0
)

+
(
X̂P 0

j ′
j (θ0)X̂P 0

j

j (θ0)
)−1

X̂P 0
j ′
j (θ0) 1

T

T∑
t=1

Rt

(
d̂j,t − dj,t

(
θ0
))

= I + II.

Noting that

1
T

T∑
t=1

Rt

(
d̂j,t − dj,t

(
θ0
))
≤
(

1
T

T∑
t=1
‖Rt‖2

)1/2 ( 1
T

T∑
t=1

(
d̂j,t − dj,t

(
θ0
))2

)1/2

,

and using Theorem 3.4 in Massacci (2017), it follows that

1
T

T∑
t=1

Rt

(
d̂j,t − dj,t

(
θ0
))

= OP

(
T−1

)
,

so that, in equation (D.16), we have II = OP (T−1). Also, by Corollary 3.1(a) in Massacci (2017),∥∥∥∥B̂P 0
j

j −B0
jĤjj

∥∥∥∥2
= OP (NC−2

N,T ), which in turn implies

X̂P 0
j

j (θ0)− (ιN ,B0
jĤjj) = X̂P 0

j

j (θ0)−X0
jĤΓ

jj = OP (NC−2
N,T );

thus

1
T

T∑
t=1

Γ̂∗P
0
j

j,t d̂j,t =
ĤΓ′

jjX0′
j X0

jĤΓ
jj

N

−1ĤΓ′
jjX0′

j

N

( 1
T

T∑
t=1

Rtdj,t
(
θ0
))

+OP (C−2
N,T ) +OP

(
T−1

)
+ oP ∗ (1) .
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Let α = (α1, ..., αN)′. Recalling (4), it follows that

1
T

T∑
t=1

Γ̂∗P
0
j

j,t d̂j,t −
Tj
T

(
ĤΓ
jj

)−1
Γ0
j

= Tj
T

ĤΓ′
jjX0′

j X0
jĤΓ

jj

N

−1ĤΓ′
jjX0′

j αj

N


+
ĤΓ′

jjX0′
j X0

jĤΓ
jj

N

−1ĤΓ′
jjX0′

j

N

( 1
T

T∑
t=1

B0
ju0

j,tdj,t
(
θ0
))

+
ĤΓ′

jjX0′
j X0

jĤΓ
jj

N

−1ĤΓ′
jjX0′

j

N

( 1
T

T∑
t=1

εtdj,t
(
θ0
))

+OP

(
C−2
N,T

)
+OP

(
T−1

)
+ oP ∗ (1)

= Ia + Ib + Ic +OP

(
C−2
N,T

)
+OP

(
T−1

)
+ oP ∗ (1)

Assumptions 3(iv) and 7(i) immediately yields Ia = OP

(
Tj

N1/2T

)
. Consider Ic; it holds that

E

(
1
NT

T∑
t=1

X0′
j εtdj,t

(
θ0
))2

= 1
(NT )2

N∑
i,k=1

T∑
t,s=1

X0
i,jX

0′
k,jE

(
εi,tεj,sdj,t

(
θ0
)
dj,s

(
θ0
))

≤ 1
(NT )2 max

1≤i≤N

∥∥∥X0
i,j

∥∥∥2 N∑
i,k=1

T∑
t,s=1

∣∣∣E (εi,tεj,sdj,t (θ0
)
dj,s

(
θ0
))∣∣∣

≤ c0
N

(NT )2 max
1≤i≤N

N∑
k=1

T∑
t,s=1

∣∣∣E (εi,tεj,sdj,t (θ0
)
dj,s

(
θ0
))∣∣∣ ≤ c0

NT
,

by Assumptions 3(iii) and 2(iv); so, putting all together and using Assumption 3(iv), it follows

that Ic = OP

(
1√
NT

)
. Turning to Ib, (C.29) yields

ĤΓ′
jjX0′

j X0
jĤΓ

jj

N

−1ĤΓ′
jjX0′

j B0
j

N

( 1
T

T∑
t=1

u0
j,tdj,t

(
θ0
))

= OP

(
1√
T

)
(D.17)
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Putting all together, it follows that

1
Tj

T∑
t=1

Γ̂∗P
0
j

j,t d̂j,t −
(
ĤΓ
jj

)−1
Γ0
j = OP

( 1
N1/2

)
+OP

(
T 1/2

Tj

)
+OP

(
T

TjN

)
+OP

(
T−1

)
+ oP ∗ (1) ;

(D.18)

the desired result now follows immediately. We now turn to showing (A.25). We assume that

P 0
j is known; the estimation error P̂j − P 0

j can be shown to be negligible on account of the same

arguments as above. We have

Λ̂j − Λ0
jĤjj =

(
T∑
t=1

g̃tû
P 0
j ′
j,t d̂j,t

)(
T∑
t=1

ûP
0
j

j,t û
P 0
j ′
j,t d̂j,t

)−1

.

Note that, by Corollary 3.2 in Massacci (2017), it is easy to see that

1
T

T∑
t=1

ûP
0
j

j,t û
P 0
j ′
j,t d̂j,t = 1

T

T∑
t=1

Ĥ−1
jj uP

0
j

j,t u
P 0
j ′
j,t

(
Ĥ′jj

)−1
dj,t

(
θ0
)

+ oP (1) . (D.19)

Also

1
T

T∑
t=1

g̃tû
P 0
j ′
j,t d̂j,t = 1

T

T∑
t=1

g̃tû
P 0
j ′
j,t dj,t

(
θ0
)

+ 1
T

T∑
t=1

g̃tû
P 0
j ′
j,t

(
d̂j,t − dj,t

(
θ0
))

= I + II. (D.20)

Consider II; we have

II ≤
(

1
T

T∑
t=1
‖g̃t‖4

)1/4 ( 1
T

T∑
t=1

∥∥∥∥ûP 0
j

j,t

∥∥∥∥4
)1/4 ( 1

T

T∑
t=1

(
d̂j,t − dj,t

(
θ0
))2

)1/2

; (D.21)

using Assumptions 3(i) and 8(i), and using Theorem 3.4 in Massacci (2017), it follows that

II = OP (N−ηT−1). Turning to I, by the definition of g̃t
(
θ̂
)

it holds that

I = 1
T

T∑
t=1

(gt − a) ûP
0
j ′
j,t dj,t

(
θ0
)

+ 1
T

T∑
t=1

(gt − a) 1
T

T∑
t=1

ûP
0
j ′
j,t dj,t

(
θ0
)

= Ia + Ib.
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Using (C.29) and Assumption 8(ii), it follows that Ib = OP (T−1).

Ia = 1
T

T∑
t=1

Λ0
ju0

j,tû
P 0
j ′
j,t dj,t

(
θ0
)

+ 1
T

T∑
t=1

etû
P 0
j ′
j,t dj,t

(
θ0
)

= Ia,1 + Ia,2.

Now

Ia,1 = Λ0
jĤjjĤ−1

jj

(
1
T

T∑
t=1

u0
j,tu0′

j,t

)(
Ĥ′jj

)−1
dj,t

(
θ0
)

+Λ0
j

1
T

T∑
t=1

u0
j,t

(
ûP

0
j

j,t − Ĥ−1
jj u0

j,t

)′
dj,t

(
θ0
)

= Ia,1,1 + Ia,1,2.

Following the same passages as in the proof of Lemma B.2 in Bai (2003), it can be shown that

1
T

T∑
t=1

u0
j,t

(
ûP

0
j

j,t − Ĥ−1
jj u0

j,t

)′
dj,t

(
θ0
)

= OP

(
C−2
N,T

)
, (D.22)

so that Ia,1,2 = OP

(
C−2
N,T

)
. Also

Ia,2 =
(

1
T

T∑
t=1

etu0′
j,t

)(
Ĥ′jj

)−1
dj,t

(
θ0
)

+ 1
T

T∑
t=1

et
(
ûP

0
j

j,t − Ĥ−1
jj u0

j,t

)′
dj,t

(
θ0
)

= Ia,2,1 + Ia,2,2.

Assumption 8(ii) entails that Ia,2,1 = OP

(
T−1/2

)
. Finally, by the same token as for (D.22),

Ia,2,2 = OP

(
C−2
N,T

)
, whence Ia,2 = OP

(
T−1/2

)
+OP

(
C−2
N,T

)
. Putting all together, we obtain

Λ̂j − Λ0
jĤjj = OP

( 1
T 1/2

)
+OP

(
C−2
N,T

)
+OP

(
T−1

)
. (D.23)

Proof of Theorem A.5. Consider (A.26). Upon inspecting (D.18), under (24) and (25), and using

Lemma C.8, it is immediate to see that the limiting behaviour of T 1/2
(
Γ̂∗P

0
j

j −
(
ĤΓ
jj

)−1
Γ0
j

)
is
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driven by

ĤΓ′
jjX0′

j X0
jĤΓ

jj

N

−1 ĤΓ′
jjX0′

j B0
j

N

( T
Tj

1
T 1/2

T∑
t=1

u0
j,tdj,t

(
θ0
))

+ Tj
T

ĤΓ′
jjX0′

j αj

N

 .
The desired result now follows immediately from (C.30) and Assumption 7. Turning to (A.27),

combining (D.23) and (25), it follows that the limiting law of T 1/2
(
Λ̂j −Λ0

jĤjj

)
is driven by

(
1

T 1/2

T∑
t=1

etu0′
j,t

(
Ĥjj

)−1
dj,t

(
θ0
))( 1

T

T∑
t=1

(
Ĥjj

)−1
u0
j,tu0′

j,t

(
Ĥ′jj

)−1
dj,t

(
θ0
))−1

=
(

1
T 1/2

T∑
t=1

etu0′
j,tdj,t

(
θ0
))( 1

T

T∑
t=1

u0
j,tu0′

j,tdj,t
(
θ0
))−1

Ĥjj,

and using Assumption 9(ii) the desired result follows immediately.

Proof of Theorem A.6. The proof makes appeal to several arguments which have already been

used in the paper and therefore, for the sake of a concise discussion, we omit passages when this

does not give rise to ambiguity.

We begin by noting that, by the Frisch-Waugh-Lovell theorem, it holds that

γ̂j,0 =
(
i′NM̂B,jiN

)−1 (
i′NM̂B,jRj

(
θ̂
))
,

having defined

M̂B,j = B̂j

(
B̂′jB̂j

)−1
B̂′j,

for j = D,S - note that we use B̂j in lieu of B̂Pj
j to make the notation less burdensome. Thus, on

account of equation (5), it holds that

γ̂j,0 = γj,0 +
(
i′NM̂B,jiN

)−1 (
i′NM̂B,jαj

)
+
(
i′NM̂B,jiN

)−1
(
i′NM̂B,j

1
Tj

T∑
t=1

εtd̂j,t

)
. (D.24)
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We begin by noting that, using Corollary 3.1(a) in Massacci (2017), it is easy to see that

∥∥∥M̂B,j −M0
B,j

∥∥∥2
= OP

(
NC−2

N,T

)
,

so that
i′NM̂B,jiN

N
=
i′NM0

B,jiN

N
+OP

(
C−2
N,T

)
= OP (1) . (D.25)

Also, it holds that

E
(
B̂j −B0

jĤjj

)′
αjα

′
j

(
B̂j −B0

jĤjj

)
= σ2

α,jE
(
B̂j −B0

jĤjj

)′ (
B̂j −B0

jĤjj

)
= O

(
NC−2

N,T

)
,

again by Corollary 3.1(a) in Massacci (2017); this yields the (non sharp) bound

i′N
(
M̂B,j −M0

B,j

)
αj = OP

(
N1/2C−1

N,T

)
. (D.26)

Finally, note that Assumption 7(i) entails that

N1/2
(
i′NM0

B,jiN
)−1 (

i′NM0
B,jαj

)
= OP (1) . (D.27)

Putting (D.25)-(D.27) together, we obtain

N1/2
(
i′NM̂B,jiN

)−1 (
i′NM̂B,jαj

)
= N1/2

(
i′NM0

B,jiN
)−1 (

i′NM0
B,jαj

)
+ oP (1) . (D.28)

Consider now

i′NM̂B,j
1
Tj

T∑
t=1

εtd̂j,t = i′N
1
Tj

T∑
t=1

εtd̂j,t + i′NB̂j

(
B̂′jB̂j

)−1
B̂′j

1
Tj

T∑
t=1

εtd̂j,t = I + II. (D.29)
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Using Assumption 2(ii) and equation (C.23), it is easy to see that

E

(
i′N

1
Tj

T∑
t=1

εtd̂j,t

)2

= T−2
j E

 N∑
i,k=1

T∑
t,s=1

εi,tεk,sd̂j,td̂j,s


≤ NT−2

j max
1≤k≤N

N∑
i=1

T∑
t,s=1

∣∣∣E (εi,tεk,sd̂j,td̂j,s)∣∣∣ ≤ c0
N

Tj
,

so that

i′N
1
Tj

T∑
t=1

εtd̂j,t = OP

(
N1/2T

−1/2
j

)
. (D.30)

In order to study II in (D.29), note that

i′NB̂j

(
B̂′jB̂j

)−1
B̂′j

1
Tj

T∑
t=1

εtd̂j,t (D.31)

= i′NB0
jĤjj

(
B̂′jB̂j

)−1
Ĥ′jjB0′

j

1
Tj

T∑
t=1

εtd̂j,t + i′N
(
B̂j −B0

jĤjj

) (
B̂′jB̂j

)−1
Ĥ′jjB0′

j

1
Tj

T∑
t=1

εtd̂j,t

+ i′NB0
jĤjj

(
B̂′jB̂j

)−1 (
B̂j −B0

jĤjj

)′ 1
Tj

T∑
t=1

εtd̂j,t

+ i′N
(
B̂j −B0

jĤjj

) (
B̂′jB̂j

)−1 (
B̂j −B0

jĤjj

)′ 1
Tj

T∑
t=1

εtd̂j,t

= I + II + III + IV.

By construction,
(
B̂′jB̂j

)−1
= Op (N−1), and i′NB0

j = OP (N). Using Assumption 2(ii) and

equation (C.23), similarly to (D.30), it also follows that

B0′
j T
−1
j

T∑
t=1

εtd̂j,t = OP

(
N1/2T

−1/2
j

)
, (D.32)
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so that I = OP

(
N−1/2T

−1/2
j

)
. Consider now

B0
j − B̂jĤ−1

jj

= T−1B0
jĤjj

(
Ĥ−1
jj U0

j,t − Ûj,t

)
Û′j,tĤ−1

jj + T−1εj

(
Û′j,t −U0′

j,t

(
Ĥ−1
jj

)′)
Ĥ−1
jj

+ T−1εjU0′
j,t

(
Ĥ−1
jj

)′
Ĥ−1
jj , (D.33)

where εj is an N×T matrix with columns εtd̂j,t. Using exactly the same arguments as in the proofs

of Lemmas B.1 and B.3 in Bai (2003), it holds that
∥∥∥T−1

(
Ĥ−1
jj U0

j,t − Ûj,t

)
Û′j,tĤ

∥∥∥ = OP

(
C−2
N,T

)
and

∥∥∥∥T−1εj

(
Û′j,t −U0′

j,t

(
Ĥ−1
jj

)′)
Ĥ
∥∥∥∥ = OP

(
C−2
N,T

)
. Hence, it follows that

i′NB0
j

(
T−1Ĥjj

(
Ĥ−1
jj U0

j,t − Ûj,t

)
Û′j,t

)
Ĥ−1
jj = OP

(
NC−2

N,T

)
. (D.34)

Also

i′NT
−1εj

(
Û′j,t −U0′

j,t

(
Ĥ−1
jj

)′)
=

N∑
i=1

T−1
T∑
t=1

εj,i,td̂j,t

(
û′j,t − u0′

j,t

(
Ĥ−1
jj

)′)

≤
N∑
i=1

∥∥∥∥∥T−1
T∑
t=1

εj,i,td̂j,t

(
û′j,t − u0′

j,t

(
Ĥ−1
jj

)′)∥∥∥∥∥ ;

again by using the same arguments as in the proof of Lemma B.1 in Bai (2003), it can be shown

that

E

∥∥∥∥∥T−1
T∑
t=1

εj,i,td̂j,t

(
û′j,t − u0′

j,t

(
Ĥ−1
jj

)′)∥∥∥∥∥ ≤ c0C
−2
N,T ,

which yields that

i′NT
−1εj

(
Û′j,t −U0′

j,t

(
Ĥ−1
jj

)′)
= OP

(
NC−2

N,T

)
. (D.35)

Finally, note that

E
∥∥∥i′NT−1εjU0′

j,t

∥∥∥2
=

N∑
i=1

N∑
j=1

T−2
T∑
t=1

T∑
s=1

E
(
εi,tεj,sd̂j,td̂j,s

)
E
∥∥∥u0′

j,tu0
j,s

∥∥∥
≤
(

max
1≤t≤T

E
∥∥∥u0

j,t

∥∥∥2
)
N

T
max

1≤i≤N

N∑
k=1

T−1
T∑
t=1

T∑
s=1

∣∣∣E (εi,tεk,sd̂j,td̂j,s)∣∣∣ ≤ c0
N

T
,
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after Assumptions 2(ii) and 3(i), and using (C.23), which entails that

i′NT
−1εjU0′

j,t = OP

(
N1/2T−1/2

)
. (D.36)

Putting (D.34)-(D.36) together, it follows that

i′N
(
B̂j −B0

jĤjj

)
= OP

(
NC−2

N,T

)
. (D.37)

Thus, considering (D.31), (D.32) and (D.37) immediately entail that II = OP

(
N1/2T

−1/2
j C−2

N,T

)
.

Turning to III, note that, using (D.33)

(
B̂j −B0

jĤjj

)′ ( 1
Tj

T∑
t=1

εtd̂j,t

)

=
(
B0
jĤjjT

−1
(
Ĥ−1
jj U0

j,t − Ûj,t

)
Û′j,tĤ−1

jj

)′ ( 1
Tj

T∑
t=1

εtd̂j,t

)

+
(
T−1εj

(
Û′j,t −U0′

j,t

(
Ĥ−1
jj

)′)
Ĥ−1
jj

)′ ( 1
Tj

T∑
t=1

εtd̂j,t

)

+
(
T−1εjU0′

j,t

(
Ĥ−1
jj

)′
Ĥ−1
jj

)′ ( 1
Tj

T∑
t=1

εtd̂j,t

)

= I + II + III. (D.38)

Using (D.32), it follows that

I =
(
ĤjjT

−1
(
Ĥ−1
jj U0

j,t − Ûj,t

)
Û′j,tĤ−1

jj

)(
′B0′

j

1
Tj

T∑
t=1

εtd̂j,t

)
= OP

(
N1/2T

−1/2
j C−2

N,T

)
;

further, we have

N∑
i=1

(
1
Tj

T∑
t=1

εi,td̂j,t

)
T−1

T∑
t=1

εi,td̂j,t

(
û′j,t − u0′

j,t

(
Ĥ−1
jj

)′)
= OP

(
NT

−1/2
j C−2

N,T

)

N∑
i=1

(
1
Tj

T∑
t=1

εi,td̂j,t

)(
1
T

T∑
t=1

εi,tu′j,td̂j,t
)

= OP

(
NT−1

)
,
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whence II = OP

(
NT

−1/2
j C−2

N,T

)
and III = OP (NT−1). Finally, using the same arguments

as above, it holds that IV is dominated. Putting all together, we conclude that, in (D.29),

II = OP (NT−1), whence

i′NM̂B,j
1
Tj

T∑
t=1

εtd̂j,t = OP

(
N1/2T−1/2

)
+OP

(
NT−1

)
. (D.39)

Putting (D.25), (D.27) and (D.39) together, it follows that, in (D.24)

N1/2 (γ̂j,0 − γj,0) =
(
i′NM0

B,jiN

N

)−1 (
i′NM0

B,jαj

N1/2

)
+OP

(
N1/2T−1

)
+ oP (1) . (D.40)

Recalling that, by Lemma C.8, π̂j − πj = OP (T−1) with η > 1
2 , the desired result follows from

Assumption 7(iii) and the Cramer-Wold device.

Proof of Theorem A.1. The proof is essentially the same as the proof of Theorems 3 and 4 in

Horváth and Trapani (2019) and most of it is therefore omitted. In order to understand the role

of (A.3), note that

M
−1/2
θ

Mθ∑
m=1

(
ζθm (s)− 1

2

)
= M

−1/2
θ

Mθ∑
m=1

(
ζθm (0)− 1

2

)

+M
−1/2
θ

Mθ∑
m=1

(
ζθm (s)− ζθm (0)−

∫ s/fN,T

0

1√
2π

exp
(
−1

2x
2
)
dx

)

+M
−1/2
θ

Mθ∑
m=1

∫ s/fN,T

0

1√
2π

exp
(
−1

2x
2
)
dx.

By the same passages as in the proof of Theorem 3 in Horváth and Trapani (2019), it is easy to

see that

M
−1/2
θ

Mθ∑
m=1

(
ζθm (0)− 1

2

)
= OP ∗ (1) ;

also

E∗
∫ ∞
−∞

∣∣∣∣∣∣M−1/2
θ

Mθ∑
m=1

(
ζθm (s)− ζθm (0)−

∫ s/fN,T

0

1√
2π

exp
(
−1

2x
2
)
dx

)∣∣∣∣∣∣
2

ds = o (1) ,
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and ∫ ∞
−∞

∣∣∣∣∣∣M−1/2
θ

Mθ∑
m=1

∫ s/fN,T

0

1√
2π

exp
(
−1

2x
2
)
dx

∣∣∣∣∣∣
2

ds = c0
Mθ

f
1/2
N,T

= o (1) ,

after (A.3). The rest of the proof follows immediately.
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