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Abstract

This Supplementary Material contains a number of additional details and empirical results
from paper “Nowcasting from Cross-Sectionally Dependent Panels.” Specifically, we start out
with more step-by-step details on how we derive our proposed panel nowcasting method from
the paper of Chudik & Pesaran (2015). Then we present empirical findings not included in the
main text for the GDP example: firstly some additional robustness with regards to additional
predictor variables and then robustness to the out-of-sample split ratio.
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S1 Details on Model Estimation and Derivation

In the main paper we present the full mixed-frequency PMIDAS nowcasting model with a ragged
edge. In this section, we go back and construct the PMIDAS model step-by-step in two phases,
starting from the dynamic CSD panel data model of Chudik & Pesaran (2015). As in the main
paper, we have a target variable of interest yi,t for the ith cross-sectional unit and tth time point,
where i = 1, 2, ..., N and t = 1, 2, ..., T . Let xi,t be a predictor which, for the sake of simplicity in
this Supplementary Material, we assume is a single variable. This is easily generalised to the case
of many predictors as in the main text. In this first step we consider xi,t and yi,t to be of the same
frequency. This allows us to directly modify the CCE estimation method of Chudik & Pesaran (2015)
to the lagged version, i.e. LCCE, which permits the model to be used for forecasting. In the second
step, the model is further extended to incorporate the mixed frequency data as in general nowcasting
frameworks. Here the predictor variable xi,t is assumed to be of a higher frequency than that of the
target yi,t. Finally we add in the ragged edge where lag structures and model parameters depend on
the nowcast day, v.

S1.1 The Nowcasting Model: Single Frequency, no Ragged Edge

S1.1.1 Set-up

The main framework for the dynamic heterogeneous panel model with multi-factor error structure
follows the format of Chudik & Pesaran (2015):

yi,t = ci + ϕiyi,t−1 + β0ixi,t + β1ixi,t−1 + ui,t (S1a)

ui,t = γ′
ift + εi,t (S1b)

xi,t = κi + αiyi,t−1 + Γ′
ift + ϵi,t (S1c)

In the above equations, ci and κi are individual fixed effects. The term ft is an m× 1 vector of
unobserved common factors which impact both the target and the predictor through loadings γi and
Γi which are of orders m× 1 respectively. The coefficient αi characterises the relation between the
predictor and lagged target variables, εi,t represents the idiosyncratic errors and ϵi,t is assumed to
follow a general linear covariance stationary process distributed independently of εi,t.

In the original formulation of the CCE approach, the common factors, ft, are estimated using the
cross-sectional averages of zi,t = (yi,t, xi,t)

′. The presence of yi,t in the estimates of the factors clearly
makes the model unsuitable for forecasting or nowcasting applications. Therefore, we propose the
following modifications.

S1.1.2 Estimation and Nowcasting

We define zi,t to contain lagged y and the current information on the predictor variable x, i.e.,

zi,t =

(
yi,t−1

xi,t

)
Combining this with equations S1a, S1b and S1c we obtain:

A0izi,t = czi + A1izi,t−1 + A2izi,t−2 + CiFt + ei,t (S2a)

=⇒ zi,t = Kzi +B0izi,t−1 +B1izi,t−2 + A−1
0i CiFt + A−1

0i ei,t (S2b)
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where:

czi =

(
ci
κi

)
, A0i =

(
1 0

−αi 1

)
, A1i =

(
ϕi β0i

0 0

)
, A2i =

(
0 β1i

0 0

)
Kzi = A−1

0i czi, B0i = A−1
0i A1i, B1i = A−1

0i A2i

Ci =

(
0 γ′

i

Γ′
i 0

)
=
(
C0i C1i

)
C0i =

(
0
Γ′
i

)
C1i =

(
γ′
i

0

)
, Ft =

(
ft
ft−1

)
and ei,t =

(
εi,t−1

ϵi,t

)
Assumption 1. The eigenvalues of the following augmented matrix are less than one in absolute
value: (

B0i B1i

I 0

)
Next, we derive the large-N representation of the factors, ft, in terms of the cross-sectional

averages of zi,t. With assumption 1, zi,t is an invertible covariance stationary process and can be
written as:

(I −B0iL−B1iL
2)zi,t = Kzi + A−1

0i CiFt + A−1
0i ei,t (S3a)

=⇒ zi,t = K1zi +Ψi(L)A
−1
0i CiFt +Ψi(L)A

−1
0i ei,t (S3b)

=⇒ zi,t −K1zi = Ψi(L)A
−1
0i CiFt +Ψi(L)A

−1
0i ei,t (S3c)

where:

K1zi = (I −B0iL−B1iL
2)−1Kzi

Ψi0 = I,Ψi1 = B0i

Ψiv = B0iΨi,v−1 +B1iΨi,v−2, v ≥ 2

The assumptions 3-5 of Chudik & Pesaran (2015) ensure that the Ψi(L) coefficient matrices are inde-
pendently distributed of each other and also over the cross-sections. We take weighted cross-sectional
averages of equation S3c, using a weight vector w = (ω1, ω2, ..., ωN)

′. Assuming the granularity con-
ditions and using similar steps as in Chudik & Pesaran (2015), the terms on the RHS of equation
S3c give:

N∑
i=1

[
∞∑
l=0

ωiΨilA
−1
0i CiFt−l

]
=

∞∑
l=0

E
[
ΨilA

−1
0i Ci

]
Ft−l +Op(N

− 1
2 )

= Λ(L)CFt +Op(N
− 1

2 )

(S4a)

and
N∑
i=1

[
∞∑
l=0

ωiΨi(L)A
−1
0i ei,t

]
= Op(N

− 1
2 ) (S4b)
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where:

Λ(L) =
∞∑
l=0

ΛlL
l =

∞∑
l=0

E
[
ΨilA

−1
0i

]
Ll

C = E[Ci] = E

(
0 γ′

i

Γ′
i 0

)
=
(
C0 C1

)
E(C0i) = C0 and E(C1i) = C1

Assumption 2. The inverse of the matrix Λ(L) =
∑∞

l=0 ΛlL
l =

∑∞
l=0E

[
ΨilA

−1
0i

]
Ll exists and has

exponentially decaying coefficients.

Continuing from S4a we have:

N∑
i=1

[
∞∑
l=0

ωiΨilA
−1
0i CiFt−l

]
= Λ(L) [C0 + C1L] ft +Op(N

− 1
2 ) (S5)

Defining the detrended weighted cross-sectional averages from the LHS of equation S3c as z̃wt =∑N
i=1 ωi(zi,t − K1zi) =

∑N
i=1 ωizi,t − czw, where czw =

∑N
i=1 ωiK1zi , we obtain the following large-N

representation of the detrended cross-sectional averages z̃wt:

z̃wt = Λ(L) [C0 + C1L] ft +Op(N
− 1

2 ) (S6)

=⇒ Λ−1(L)z̃wt = [C0 + C1L] ft +Op(N
− 1

2 ) (S7)

Assumption 3. C0 has full column rank.

Assumption 4. The eigenvalues of (C ′
0C0)

−1C ′
0C1 are less than unity in absolute value.

Assumptions 3 and 4 are crucial for the estimation of the unit-specific coefficients. From equation
S6 we have:

ft = G(L)z̃wt +Op(N
− 1

2 ) (S8)

where:

G(L) =
[
I + (C ′

0C0)
−1C ′

0C1L
]−1

[C ′
0C0]

−1C ′
0Λ

−1(L)

Substituting the large-N representation of the unobserved common factors from equation S8 into
equation S1a, in a similar way to Chudik & Pesaran (2015) we obtain an expression for yi,t as a

function of the cross-sectional weighted averages zwt =
∑N

i=1 ωizi,t as follows:

yi,t = c∗i + ϕiyi,t−1 + β0ixi,t + β1ixi,t−1 + δ′i(L)zwt + εi,t +Op(N
− 1

2 ) (S9a)

= c∗i + ϕiyi,t−1 + β0ixi,t + β1ixi,t−1 +

pT∑
l=0

δ′ilzw,t−l + ei,t (S9b)

where:

ei,t = εi,t +
∞∑

l=pT+1

δ′ilzw,t−l +Op(N
− 1

2 )

c∗i = ci − δ′i(1)czw
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and:

δi(L) =
∞∑
l=0

δilL
l = γ′

iG(L) (S9c)

and pT is the truncation used for the infinite lag polynomial of equation S9c.
The nowcasting approach is now based on least squares estimation of equation S9b, under as-

sumptions 1-4 and 7 of Chudik & Pesaran (2015), in addition to the ones stated above. As in the
main text, if one wishes to shut down parameter heterogeneity, the model can be estimated by pooled
OLS. These steps show how the contemporaneous CCE estimation of the CSD panel models can be
modified to LCCE which uses the lagged target variable and henceforth can be used for forecasting
or nowcasting applications.

S1.2 The Nowcasting Model: Mixed-Frequency, no Ragged Edge

S1.2.1 Set-up

To extend the above nowcasting framework to include mixed frequency data (though still no ragged
edge, so no dependence on v), consider the single predictor variable to be of a higher frequency
relative to the target variable. As in the main text, we take the example where yi,t is of quarterly
frequency, and let the predictor variable be monthly and denoted by xM

i,t . The ratio of frequencies
can be easily generalised. We use the stacked high-frequency process XM

i,t :

XM
i,t =

 xM
i,t

xM
i,t− 1

3

xM
i,t− 2

3


which was defined in the main text in equation 1.

To extend the panel model to mixed frequency, the lags of the high-frequency process are directly
included in equations S1a, S1b and S1c in line with UMIDAS-type models of Foroni et al. (2015)
and others. Hence, we adapt the previous model to get the following mixed-frequency dynamic
heterogeneous panel data model with multi-factor error structure:

yi,t = ci + ϕiyi,t−1 + β0ix
M
i,t + β1ix

M
i,t− 1

3
+ β2ix

M
i,t− 2

3
+ ui,t (S10a)

ui,t = γ′
ift + εi,t (S10b)

XM
i,t = κi + αiyi,t−1 + Γ′

ift + ϵi,t (S10c)

where we adopt the same notation as in the previous section for simplicity, noting that the parameters
κi and αi and the errors ϵi,t are now vectors and Γi is a matrix, in order to match the dimension of
XM

i,t in the mixed frequency set-up.
Equation S10a is the panel equivalent of a UMIDAS model with no functional distributed lag

polynomials. Foroni et al. (2015) conclude that UMIDAS performs better as compared to other func-
tional lag MIDAS in case the differences in frequencies is not too high, particularly in the quarterly
to monthly frequency mix, as in the empirical application later. This also suits the linear estimation
framework of LCCE described above as UMIDAS models, unlike other MIDAS specifications, do not
have to be estimated by non-linear least squares.

The entire system of equations can be cast into an MFVAR representation constructed using
stacked skip-sampled processes (Ghysels 2016). In our case, the MFVAR is already in a reduced form,
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with restricted parameter space as in Ghysels (2018). Additionally, the MFVAR here is extended to
the case of panel data (the MF-PVAR) and with a multi-factor error structure. To see this explicitly,
construct the stacked compact expression of the equations S10a, S10b and S10c as below:

hi,t =

(
yi,t
XM

i,t

)

K0ihi,t = ci +K1ihi,t−1 + Cift + ei,t (S11)

Equation S11 gives the panel extension of the reduced form MIDAS-VAR model. where:

K0i =

(
1 −β0i −β1i −β2i

0 I

)
, ci =

(
ci
κi

)
, K1i =

(
ϕi 0
αi 0

)

Ci =

(
γ′
i

Γ′
i

)
, ei,t =

(
εi,t
ϵi,t

)
S1.2.2 Estimation and Nowcasting

To estimate the factors in the mixed frequency set-up, the process, in essence, remains quite similar
to that in subsection S1.1.2. We redefine the stacked vector, zMi,t , of the lagged target variable and
the stacked predictor variable, as well as the β parameters, as follows:

zMi,t =

(
yi,t−1

XM
i,t

)
βi =

β0i

β1i

β2i


Lagging equations S10a, and S10b and writing the system in a stacked compact matrix notation:(

1 0
−αxi I

)(
yi,t−1

XM
i,t

)
=

(
ci
κi

)
+

(
ϕi β′

i

0 0

)(
yi,t−2

XM
i,t−1

)
+

(
0 γ′

i

Γ′
i 0

)(
ft
ft−1

)
+

(
εi,t−1

ϵi,t

) (S12)

This gives the reduced form MFVAR expression and rest of the estimation process can now be carried
out as described in S1.1.2 with the stacked skip-sampled high-frequency predictor variable XM

i,t . The
final mixed frequency panel nowcasting equations are:

yi,t = c∗i + ϕiyi,t−1 + β′
iX

M
i,t + δ′i(L)z

M
wt + εi,t +Op(N

− 1
2 ) (S13a)

= c∗i + ϕiyi,t−1 + β′
iX

M
i,t +

pT∑
l=0

δ′ilz
M
t−l + ei,t (S13b)

where zMt =
∑N

i=1 ωiz
M
i,t is the equivalent cross-sectionally weighted average as in the previous section,

this time modified for the mixed-frequency set-up. We note that, as in Chudik & Pesaran (2015), an
additional set of variables (for instance gi,t) may be used in the cross-sectional averages to estimate the
factors. The idea here is that the variables gi,t are also impacted by the same common factors. This
is quite common in macroeconomic databases, where a handful of factors capture the information
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contained in large sets of indicators. Thus, the model can be further enriched by the information
contained in other high-frequency macro-series, which do not enter the main nowcasting equation.

S1.3 The Nowcasting Model: Mixed-Frequency, Ragged Edge

Finally, we now turn our attention to the main nowcasting approach with mixed frequencies and the
ragged edge, as outlined in the main text. As described there, the incorporation of country-level
calendar effects requires additional notation:

1. The nowcast is performed on the vth day of the nowcast quarter;

2. miv : The monthly lag available for the high-frequency variable for the cross-section i on the
vth day of the nowcast quarter;1

3. div : The quarterly lag available for the high-frequency variable for the cross-section i on the
vth day of the nowcast quarter.

The PMIDAS model equations (S10a, S10b and S10c) in this set up are then modified as follows
(taking again the single variable case, unlike the multiple variable case in the main text), with a lag
structure which depends on div and miv, as well as model parameters that depend on v:

yi,t = cvi + ϕviyi,t−div + β′
viX

M
i,t−miv

3
+ γ′

vift + εv,i,t (S14a)

XM
i,t−miv

3
= κvi + αviyi,t−div + Γ′

vift + ϵv,i,t (S14b)

where XM
i,t , as above, is the stacked vector defined in equation 1 in the main text. Lagging equation

S14a by div periods, and manipulating equation S14b gives the following:

yi,t−div = cvi + ϕviyi,t−2div + β′
viX

M

i,t−miv−div
3

+ γ′
vift−div + εv,i,t−div (S15a)

−αviyi,t−div +XM
i,t−miv

3
= κi + Γ′

vift + ϵv,i,t (S15b)

Stacking this into one system yields the following:(
1 0

−αvi I

)(
yi,t−div

XM
i,t−miv

3

)
=

(
cvi
κvi

)
+

(
ϕvi β′

vi

0 0

)(
yi,t−2div

XM
i,t−miv

3
−div

)

+

(
0 γ′

vi

Γ′
vi 0

)(
ft

ft−div

)
+

(
εv,i,t−div

ϵv,i,t

) (S16)

Finally, we modify the stacked vector from before to get:

zMi,t,v =

(
yi,t−div

XM
i,t−miv

3

)
(S17)

1Recall that, for simplicity, we use a single predictor variable in the model. With multiple predictors, miv would
also potentially be different across variables.
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as in equation 5 of the main text. So the MFVAR is written as:

A0iz
M
i,t,v = czi + A1iz

M
i,t−div ,v

+
[
C0i + C1iL

div
]
ft + ev,i,t (S18a)

=⇒ zMi,t,v = Kzi +B0iz
M
i,t−div ,v

+ A−1
0i

[
C0i + C1iL

div
]
ft + A−1

0i ev,i,t (S18b)

=⇒ (I −B0iL
div)zMi,t,v = Kzi + A−1

0i

[
C0i + C1iL

div
]
ft + A−1

0i ev,i,t (S18c)

where:

ev,i,t =

(
εv,i,t−div

ϵv,i,t

)
and the rest of the matrices (A0i, B0i and others, suppressing dependence of these on v to avoid
further notational clutter) have the similar definitions as earlier. Further manipulation yields:

zMi,t,v = K1zi +Ψi(L
div)A−1

0i

[
C0i + C1iL

div
]
ft +Ψi(L

div)A−1
0i ev,i,t (S18d)

To estimate the factors, we take the weighted cross-sectional averages of the above. The first term
of the RHS gives:

N∑
i=1

[
ωiΨi(L

div)A−1
0i

{
C0i + C1iL

div
}
ft
]
=

∞∑
l=0

N∑
i=1

ωiΨilA
−1
0i L

ldiv
[
C0i + C1iL

div
]
ft (S18e)

The following generalised assumption replaces the assumptions 2-4 stated earlier to estimate the
factors using the cross-sectional averages of zMi,t,v as defined in equation 5 i.e. ft can be approximated

by a finite number of lags of
∑N

i=1 ωiz
M
i,t,v.

Assumption 5. The weighted average of the lag polynomials on the RHS of equation S18e is invert-
ible and the inverse polynomial has exponentially decaying coefficients:

∞∑
l=0

[
N∑
i=1

ωiΨilA
−1
0i

] [
C0i + C1iL

div
]
Lldiv

Given that div typically only takes on a handful of values, with {0, 1, 2} being the exhaustive set
in the GDP nowcasting example, we may have a weighted average of a maximum of two polynomials
in assumption 5. Taking the example of the U.S. and Germany, if we nowcast Q1 on the 2nd of
February, div takes values 1 and 2 respectively for the US and Germany i.e. v = 33, dUS,33 = 1, for
the US and dGER,33 = 2 for Germany. So, in this case, we have a weighted average of two lagged
polynomials, which is assumed to be invertible by assumption 5.
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S2 Additional Monte Carlo Results - q = 4

In this section we present the additional Monte Carlo results when the frequency mix is changed from
q = 3 to q = 4 which is relevant for annual-quarterly or monthly-weekly panel nowcasting exercises.

Table S1: Simulation Results - Absolute Bias in LCCE and CCE (q = 4)

CCE LCCE

N/T 50 100 150 200 50 100 150 200

ϕ

50 0.0627 0.0278 0.0173 0.0133 0.0540 0.0253 0.0162 0.0126
100 0.0635 0.0273 0.0176 0.0128 0.0543 0.0253 0.0165 0.0123
150 0.0636 0.0279 0.0179 0.0126 0.0552 0.0254 0.0166 0.0118
200 0.0647 0.0279 0.0173 0.0126 0.0564 0.0256 0.0163 0.0117

β(0)

50 0.0247 0.0135 0.0105 0.0093 0.0241 0.0146 0.0126 0.0118
100 0.0174 0.0096 0.0076 0.0062 0.0171 0.0107 0.0089 0.0077
150 0.0134 0.0082 0.0060 0.0050 0.0135 0.0088 0.0069 0.0065
200 0.0125 0.0071 0.0052 0.0045 0.0120 0.0077 0.0063 0.0056

β(1)

50 0.0254 0.0141 0.0109 0.0092 0.0240 0.0159 0.0129 0.0118
100 0.0181 0.0103 0.0076 0.0066 0.0173 0.0116 0.0091 0.0081
150 0.0149 0.0085 0.0061 0.0049 0.0145 0.0096 0.0076 0.0068
200 0.0123 0.0070 0.0052 0.0045 0.0119 0.0076 0.0060 0.0055

β(2)

50 0.0259 0.0143 0.0109 0.0090 0.0248 0.0154 0.0129 0.0117
100 0.0180 0.0097 0.0080 0.0066 0.0171 0.0110 0.0093 0.0082
150 0.0146 0.0083 0.0063 0.0053 0.0144 0.0092 0.0074 0.0067
200 0.0127 0.0071 0.0055 0.0044 0.0123 0.0079 0.0067 0.0056

β(3)

50 0.0250 0.0144 0.0110 0.0095 0.0243 0.0157 0.0130 0.0118
100 0.0180 0.0101 0.0075 0.0062 0.0167 0.0108 0.0094 0.0079
150 0.0145 0.0083 0.0065 0.0054 0.0147 0.0091 0.0076 0.0066
200 0.0125 0.0071 0.0055 0.0046 0.0124 0.0079 0.0065 0.0057

Notes: The numbers in this table are the absolute biases in the estimates of the key model parameters estimated
using two methods, LCCE and CCE, across different sample sizes.
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Figure S1: Bias in ϕ; q = 4
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Notes: The figures display the distribution of the difference in absolute biases of the parameter ϕ for the estimation
methods LCCE relative to CCE. Figures lower than zero mean that LCCE has lower absolute bias than CCE. The
panel header show the number of cross-sections
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Figure S2: Bias Comparison in β(0); q = 4
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Notes: The figures display the distribution of the difference in absolute biases of the parameter β(0) for the estimation
methods LCCE relative to CCE. Figures lower than zero mean that LCCE has lower absolute bias than CCE. The
panel header show the number of cross-sections
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Figure S3: Bias Comparison in β(1); q = 3
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Notes: The figures display the distribution of the difference in absolute biases of the parameter β(1) for the estimation
methods LCCE relative to CCE. Figures lower than zero mean that LCCE has lower absolute bias than CCE. The
panel header show the number of cross-sections
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Figure S4: Bias Comparison in β(2); q = 4
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Notes: The figures display the distribution of the difference in absolute biases of the parameter β(2) for the estimation
methods LCCE relative to CCE. Figures lower than zero mean that LCCE has lower absolute bias than CCE.The
panel header show the number of cross-sections
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Figure S5: Bias Comparison in β(3); q = 4
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Notes: The figures display the distribution of the difference in absolute biases of the parameter β(3) for the estimation
methods LCCE relative to CCE. Figures lower than zero mean that LCCE has lower absolute bias than CCE.The
panel header show the number of cross-sections
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S3 Empirical Application I: Robustness to Additional Pre-

dictor Results

Figure S6: Additional Predictors; Target : Y-o-Y
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Figure S7: Additional Predictors; Target : Q-o-Q
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S4 Empirical Application I: Robustness to Sample Split Re-

sults

Figure S8: 20 % split; Target : Y-o-Y
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Figure S9: 40 % split; Target : Y-o-Y
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Figure S10: 20 % split; Target : Q-o-Q
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Figure S11: 40 % split; Target : Q-o-Q

0.2

0.4

0.6

0.8

1.0

0 15 30 45 60 75 90 105 120 135 150

Days

R
M

S
E

Model Type PMIDAS TS AR Not Pooled Pooled

18


	Details on Model Estimation and Derivation
	The Nowcasting Model: Single Frequency, no Ragged Edge
	Set-up
	Estimation and Nowcasting

	The Nowcasting Model: Mixed-Frequency, no Ragged Edge
	Set-up
	Estimation and Nowcasting

	The Nowcasting Model: Mixed-Frequency, Ragged Edge

	Additional Monte Carlo Results - q=4
	Empirical Application I: Robustness to Additional Predictor Results
	Empirical Application I: Robustness to Sample Split Results

