L/

007

7
L

/2



Systematic Comovement in Threshold Group-Factor Models

. . . . + . .
Daniele Massacci f  Mirco Rubin ¥ Dario Ruzzi §

July 2, 2021

Abstract

We study regime-specific systematic comovement between two large panels of variables that
exhibit an approximate factor structure. Within each panel, we identify threshold-type regimes
through shifts in the factor loadings. For the resulting regimes, and with regard to the re-
lation between any two variables in different panels, we define as “systematic” the comove-
ment that is generated by the common components of the variables. In our setup, changes
in comovement are identified by regime shifts in the loadings. After constructing measures
of systematic comovement between the two panels, we propose estimators for these measures
and derive their asymptotic properties. We develop inferential procedures to formally test for
changes in systematic comovement between regimes. The empirical analysis of two large panels
of U.S. and international equity returns shows that their systematic comovement increases when

U.S. macroeconomic uncertainty is high as determined by our estimation procedure.
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1 Introduction

Comovement is paramount in economics and finance. The cross-sectional variation among macroe-
conomic variables is valuable to study business cycle fluctuations, see e.g. Forni and Reichlin (1998),
Stock and Watson (2002b), and Cheng, Liao, and Schorfheide (2016). Comovement among asset
returns has implications for portfolio diversification, see e.g. Ang and Timmermann (2012), and
deepens the understanding of the global financial integration, see e.g. Miranda-Agrippino and Rey
(2020). When a large number of variables is involved, these are likely to exhibit a dense structure
that reflects common sources of variation, as argued in Giannone, Lenza, and Primiceri (2021). It
is thus appealing to assume an underlying approximate factor structure, in which a small number
of common factors drives the cross-sectional systematic variation among the variables in a panel
through the common components, see Stock and Watson (2010), and references therein. Analysis
of comovement in large dimensional factor models has mainly looked at a single panel of variables,
which means that it has focused on comovement within the group. We depart from this scenario
and consider a more general group-factor structure involving two distinct panels of variables, each
of which admits a common factor representation, and study comovement between the groups. We
further allow for time variation in comovement induced by discrete changes in the factor load-
ings. We thus study comovement subject to possible discrete time variation between two groups of
variables, each of which allows for an approximate factor structure. Our paper makes three main
contributions: it develops a suitable econometric model; it proposes valid measures of systematic
comovement; it illustrates the usefulness of our methodological framework through an extensive
empirical analysis.

Factor representations are widely used to model comovement within large panels of financial
and economic data. Seminal contributions studying static or dynamic frameworks are Connor and
Korajczyk (1986, 1988), Forni, Hallin, Lippi, and Reichlin (2000, 2004), Bai and Ng (2002), Stock
and Watson (2002a,b), Bai (2003), and Forni, Hallin, Lippi, and Zaffaroni (2015, 2017). All these
studies focus on factor models as applied to one group of variables and assume that both loadings
and number of factors remain constant over time. These assumptions impose restrictions along
both the cross-sectional and the time series dimensions of the underlying data generating process,
and such restrictions may not always be accurate in empirically relevant scenarios. The one-group
restriction implies that all factors are pervasive. However, as argued in Goyal, Pérignon, and Villa

(2008), there may arise situations in which it is necessary to distinguish between common factors,



which affect variables in all groups, and group-specific factors, which affect only variables within a
given group. Factor loadings may also be time-varying, as argued for example in Bekaert, Hodrick,
and Zhang (2009) in the context of analyzing international equity return comovement. An accurate
analysis of comovement should consider these two features within a unifying framework, otherwise
the empirical results may lead to misleading conclusions.

Multi-level factor models have been the focus of attention in a number of contributions. Goyal,
Pérignon, and Villa (2008) study the factor structure between two groups of returns from stocks
on NYSE and Nasdaq, and develop a procedure to determine the number of common factors.
Breitung and Eickmeier (2016), and Choi, Kim, Kim, and Kwark (2018), propose a canonical
correlation estimator for multi-level factor models. Ando and Bai (2017), and Han (2021), focus
upon shrinkage-based estimation. Hallin and Liska (2011) extend the dynamic factor model to
the case of a finite number of groups; their model is then applied in Barigozzi and Hallin (2016,
2017), and Barigozzi, Hallin, and Soccorsi (2019). Andreou, Gagliardini, Ghysels, and Rubin (2019)
formally propose a test for the number of common factors between two groups of variables. All
these contributions focus on linear factor representations and do not consider the possibility of
potentially time-dependent loadings.

There now exists a vast literature studying time variation in the loadings in large dimensional
factor models. Bates, Plagborg-Moller, Stock, and Watson (2013) study the robustness properties
of the asymptotic principal components estimator as applied to a misspecified linear factor model
when the true underlying data generating process exhibits time-varing loadings. Breitung and
Eickmeier (2011), Corradi and Swanson (2014), Chen, Dolado, and Gonzalo (2014), Han and Inoue
(2015), Yamamoto and Tanaka (2015), Massacci (2020), and Barigozzi and Trapani (2021), develop
inferential procedures to detect discrete shifts in factor loadings. Cheng, Liao, and Schorfheide
(2016), Baltagi, Kao, and Wang (2017, 2021), Su and Wang (2017), Massacci (2017), Ma and
Su (2018), Pelger and Xiong (2018), Zaffaroni (2019), and Kelly, Pruitt, and Su (2020), propose
model specifications that allow for either discrete or continuous shifts in the factor loadings. These
contributions work under the one-group maintained assumption, which implies that all factors are
pervasive for the observable variables.

We fill the existing gap in the literature by developing a group-factor model that allows for time
variation in the factor loadings: this is the first contribution of our paper. In order to ease the

exposition, we propose a two-group specification, although the model can be extended to a finite



number of groups. Each group admits an underlying approximate static factor representation in
which the loadings exhibit two discrete regimes. Within each group, the shift between states is
modeled through the threshold principle of Pearson (1900): at a given point in time, the factor
loadings depend on the relative position of an observable state variable with respect to the cor-
responding unknown threshold parameter. This general set up extends the existing literature by
allowing for regime-specific group-factor structure. We propose to estimate our threshold group-
factor model by least squares: following Bai and Ng (2002) and Stock and Watson (2002a), we
implement a group-by-group estimator based on asymptotic principal components to estimate fac-
tors, loadings and threshold value. This approach is appealing since it allows to estimate each
group independently and therefore does not require any restriction across the groups.

Given our threshold group-factor model, we propose regime-specific measures of systematic co-
movement between the groups: this is the second contribution of our paper. The building block
is the pairwise common component, which is defined as the product between the common compo-
nents of two cross-sectional units that belong to different groups. As a generalization of the common
components analyzed in Bai (2003), the pairwise common component captures the instantaneous
comovement between a pair of cross-sectional units. Based on the pairwise common components, we
formally develop two regime-specific measures of comovement, namely average systematic covari-
ance and correlation. The former is obtained as the within-regime weighted average of the pairwise
common components; the latter is constructed in an analogous way by suitably standardizing the
pairwise common components so that the absolute value of the resulting measure lies within the
unit interval. Our measures of comovement require assigning a priori weights to the cross-sectional
units within each group; the comovement between each pair is then obtained by specifying suitable
weighting schemes. We motivate our measures of comovement by showing that the average system-
atic correlation has an upper bound that depends on the canonical correlations among the factors in
the two groups and the pervasiveness of the factors within each group, as measured by the R-square
of the factors. We propose valid estimators for the pairwise common components and for the mea-
sures of systematic comovement and we analytically derive their asymptotic distributions based on
a set of empirically plausible assumptions. We further strengthen our methodology by advancing
formal inferential procedures to detect changes in systematic comovement among the regimes: our

test statistics are easily implementable and we prove their asymptotically normal distribution.® We

We develop tests for changes in systematic comovement between the regimes identified and estimated by the
threshold factor model. Nevertheless, it is easy to show that the same tests can be applied for any two regimes



corroborate the validity of our theoretical results through a comprehensive Monte Carlo analysis,
which shows the excellent finite sample performance of estimators and test statistics.

Finally, we employ our theoretical results to study comovement in global equity market returns:
this is the third contribution of our paper. We consider two large groups of equity portfolio
returns, namely U.S. and international, over the sample period running between January 1991 and
December 2019. As a common state variable driving the regimes we opt for the U.S. macroeconomic
uncertainty index of Jurado, Ludvigson, and Ng (2015): our model thus allows to identify low and
high uncertainty regimes within each group. Interestingly, our estimates show that the regimes are
perfectly synchronized across the groups, with a sample split occurring at an estimated value equal
to the 77th percentile of the empirical distribution of the U.S. macroeconomic uncertainty index.
Notice that this first result of the two equity markets switching at the same time between low and
high uncertainty regimes is achieved without imposing any restrictions on the estimation procedure
and thus is a genuine feature of the data. We further show that the first estimated factor within each
group is highly correlated with the first factor of Miranda-Agrippino and Rey (2020): therefore,
the dynamics of equity returns within each group follow those of the global financial cycle discussed
in Rey (2018). Our empirical analysis thus investigates the dynamics of systematic comovement
in global equity markets over the course of the global financial cycle. In particular, we show that
both pairwise and average systematic comovement between the two groups is significantly higher
during periods of high U.S. macroeconomic uncertainty as compared to times of low uncertainty.
To the best of our knowledge, this result has not been previously documented.

The rest of the paper is organized as follows. Section 2 introduces the econometric model,
the measures of systematic comovement, and the related hypotheses about their changes across
regimes. Section 3 discusses estimation of the model and measures of systematic comovement.
Section 4 collects all asymptotic results. Section 5 presents the main findings of an extensive
Monte Carlo study. Section 6 covers the empirical analysis, and Section 7 concludes. Appendix A
states all Assumptions. Appendix B provides the estimators for the asymptotic variances appearing
in Theorems 1 through 5 in Section 4. The Online Appendix C includes the proofs of Proposition 1
and of all Theorems, together with technical Lemmas. The Online Appendix D collects the tables
of results for the Monte Carlo experiments. The Supplementary Material (henceforth SM) collects

additional Monte Carlo and empirical results.

identified exogenously by the econometrician.



2 Threshold group-factor model and systematic comovement

2.1 Model

We are interested in the threshold group-factor model

riie = Dz < 00) Mg Fioe +1(200 > 01) Ny, Fime + exige 0
T2t = (22 < 02) Ny fore + 1 (22t > 02) Ny, Forre + €2int
where I(-) denotes the indicator function. For g = 1,2, 4, =1,..., Ny, and t = 1,..., T, wg; is

the observable dependent variable. The threshold variable z4 is observable, with corresponding

unknown threshold value 0,: 24 and 6, are further discussed in Section 2.1.1 below. For j, = L, H,
/

the Kgj, x 1 vector fg;+ = |:fgjglt7 ...,fgnggjgt} collects the latent factors, with corresponding

Kg;, x 1 vector of loadings Agigiq = [)\gjgigl,...,)\gjgigngg]/. Finally, eg; ¢ is the idiosyncratic

component, with features given in Assumption A.4.

2.1.1 Regimes

The model in (1) generally allows for group-specific threshold variable and value zg and 6y, re-
spectively, for g = 1,2. Four regimes arise within this general framework, namely: (i) {z1; < 61} N
{2zt < 02}; (40) {z16 < 01} {22t > Oa}; (i4d) {z16 > 01} {22 < b2}; (iv) {z11 > 61}N {22t > O2}. Our
set up also allows for a more restrictive scenario in which the threshold variable z1; = z9; = 2z is com-
mon across the groups. In this case, the model generates three regimes, that is: (i) z; < min {6y, 6>};
(73) min{61,02} < zx < max {0y, 602}; (#ii) 2z > max {61,02}. In the latter scenario, if 6 = 03 = 0,
than the model has only two regimes: (i) z; < 6 and (ii) 2z > 6.

In what follows, we deal with the general case in which the threshold variables are group-specific:
the case z1; = z9; = z; is nested within this scenario. The threshold values #; and 65 are generally

unknown: we thus do not impose any restriction on them.

2.1.2 Common and group-specific factors

Following Andreou, Gagliardini, Ghysels, and Rubin (2019), we allow for both common and group

specific factors within each regime. Formally, we let the pervasive factors f,; ¢ be defined as fy; ¢ =

[ cl st
Jijat J gj

factors, respectively, such that either K5, > 0 or K;jg > 0 (or both), and K5, + K;jg = Kgyj, :

/ C S C S 1
gt] , where f7 ; , and fgjgt are K75 ; x1and K 97, X 1 vectors of common and group-specific



the model only has group-specific factors within regime jg if K7 ; = 0 ; the common factors are

1J2
the only drivers of comovement both within and across groups if K ;jg = 0. Importantly, we do not

impose ex-ante the pervasive factors to be common in the two groups, in either regime.

2.1.3 Further notation

In what follows, x5 = [acglt, ...,mgNgt]/ is the N, x 1 vector of observable dependent variables
within each group. The Ny x Kg;, matrix Ag;, = [)\gjgl, .. .,/\gjgNg]/ collects the loadings. The
Ny x 1 vector of idiosyncratic components is eq; = [eglt, - egNgt]/. We define I;7:(0y) = I(2g: < )
and Igpe(6g) = L(zge > 6,). We let 02, gjgt, and Agjg, be the true values of 04, fyj,¢, and Agj,,

respectively.

2.2 Systematic comovement
2.2.1 Pairwise common components

Let nggigt be the common component within group g = 1,2, and regime j, = L, H, for cross-
sectional unit i, = 1,..., Ny, at time period ¢t = 1,...,T. Following Bai and Ng (2002),

defined as

0 .
nggigt 15

0 o or 0
nggigt T A!]]‘gig gjgt: (2)

The common component in (2) naturally extends the common component defined in linear large
dimensional factor models to allow for groups and regimes: see Bai (2003) for an analysis of common
components in linear large dimensional factor models. Based on (2), the common component within

group g = 1,2, for iy =1,..., Ny, and t = 1,...,T, may be written as

0

Cgigt = ]Ith (98) CgLigt + I[gHt (92) chigt = Hth (98) Ag/ug fth + ]IgHt (98) Ag/Hig gOHt : (3)

The common component in (3) reduces to the one in (2) within each regime j, = L,H. The
common components in (2) and (3) apply to an individual cross-sectional unit i, within group
g. They also allow to construct pairwise common components between the two groups. Formally,
from (2) we define the pairwise common component between cross-sectional units i; and iy within
regimes j; and js as

0 . 0 .0 A\ 0 0/ 30
Cijgivint = Cljyint " C2nint = Mjyiy J1j1e 2t A2t (4)



Similarly, from (3) we define the pairwise common component between cross-sectional units i; and

12 unconditional upon the regime as

0 _ 0 0o _
Civigt = Cligt " C2igt = § E ]Iljlt ]I2]2t (02))‘1]111f131t.f 2jat 2]27,2' (5)
ji=L,H jo=L,H

2.2.2 Measuring systematic comovement

From the pairwise common component in (5) we define measures of systematic comovement between
two cross-sectional units conditional upon the regimes. Formally, for ¢ = 1,2, j, = L, H, and
ig = 1,..., Ny, we define the systematic covariance between the i;-th element of x1; and the io-th

element of @9y within regimes j; and jo as

cgleiliQ = E [Cgliztmljlt (9&)) = H2j2t (98> = 1] = 1]111 [fljlthJQt] 2jain (6)

0
Cj1jairia

measures the degree of comovement between z1;,+ and x2;,; in regime j; and jo as induced
by the pervasive factors f%lt and f20j2t3 as such, it is a measure of systematic comovement.

The systematic covariance in (6) measures comovement between two individual cross-sectional
units. In some instances, it may be useful to quantify the average comovement between the two
groups: for example, if x1; and x9; are returns from assets that belong to two separate portfolios,
this is informative about the comovement between the average returns from the two portfolios. To
this purpose, for g = 1,2, consider the N, x 1 vector of weights w; = [wgl, . ,ngg] such that

L?ngg = 1, where ¢, is the Ny x 1 vector of ones. Given the unconditional pairwise common

component c?lizt in (5), we define the average unconditional pairwise common component as
1 2
wl’lUQt § § :w111w27/2 112225 (7)
i1=112=1

We then define the average systematic covariance between the groups in regime j; and jo as

C_g')le’wlwg = E [C(T)Ul’lUQt“Iljlt (H(IJ) = ]IQth (93) = 1:| = A(l)‘/jl( ) [fljlth]Qt] 2]2 (wQ) ) (8)

with )\2]-9 (wy) = Zgg:l wgig)‘(g)jgig with g = 1,2. If the i4-th element of wy is equal to one and all
other elements are equal to zero, for g = 1,2, equation (8) reduces to equation (6); 2 thus

J1j2wiw?2

is a general measure of systematic covariance.



The quantity c? defined in (6) is not standardized. Let

J1j2i1t2

Tagirjziy = \/Var (291t Mjue (67) = Tojae (03) = 1]

be the standard deviation of xg;,; conditional upon j; and j;. We define the systematic correlation

between x1;,; and z9;,; in regime j; and j2 as the standardized version of ¢ in (6), namely

J1]22112
A
0 _ 7172112 .
R31]2%122 - o0 . g0 (9)
xljijzin” x2j152102
by construction, —1 < R?1j21112 < 1. We can then measure the average systematic correlation
between the groups as

N1 Na
Jl]2’w1’w2 § : 2 :whlw%? Jijetiiz <1O)

11=112=1

When the i4-th element of w, is equal to one and all other elements are equal to zero, for g = 1,2,
then R?l jpwyw, PeCOmes equal to R?l jyiniz®

The vectors of weights w; and ws in (8) and (10) are a priori chosen. For example, if x; and
a9 contain returns from financial assets, a natural choice is the equal weighting scheme, namely
wy = Ly, /Ny, for g = 1,2: in portfolio choice, this is advocated in DeMiguel, Garlappi, and Uppal
(2009). Alternatively, one could follow Bekaert, Hodrick, and Zhang (2009), and make the weights

depend upon the market capitalization of the underlying assets.

2.2.3 Testing for changes in systematic comovement
The quantities 691 ownw, a0 R?l jywiw, defined in (8) and (10), respectively, allow to construct tests
for changes in systematic comovement between regimes. In the case of the systematic covariance

0
C1jowrws

for g = 1,2, and (j1,j2) # (J1,75), this requires testing the null hypothesis

_ 0

Hy - CJ132w1w2 = Cjrjzwiws (11)

against the alternative
.0

HY 2 € jpwyaws Cyfa*mwz (12)

Similarly, we can construct a test for changes in systematic correlation R?l jpwiws DY testing the
. 0 _ 0 . . R .

null hypothesis H{ RS iwiws = R]*J*wlw2 against the alternative #Hj* : sz'wlwz #R ]1]2w1w2



When the ¢;-th element of w; and the is-th element of wy are equal to one and all other

and RY become tests for ¥

1j2wi w2 J1j2wi w2 J1j2t1%2 and

elements are equal to zero, the tests for c?

0 . 0 . .
R} iyiviy» Tespectively. In the case of ¢; ;4 4, the null and alternative hypotheses in (11) and (12)
c. .0 _ 0 c. .0 0 : : :
become H§ : ¢} 55, = Clrjtivia and HY 1 ¢ jpiiy 7 Crjirin? respectively. Analogous considerations
0
hold for Rj1j2w1w2.

2.2.4 Interpreting systematic comovement

We now show that the systematic correlation is related to both the canonical correlations among
the factors in the two panels and the pervasiveness of the factors within each panel. Denote by

jol Jig the R-square of the factors fg; ¢ for the cross-sectional unit i, in group g, regime (j1, j2):

o B Var [)\'gjgigfgjgt | Tujye (9?) = Dajor (03) - 1] (13)
gj1)2tg Var [xgigt“lljlt (0(1)) == H2j2t (03) - ]-] .

Let ¢;,j,1 be the largest canonical correlation between f1;,; and f2;,¢, that is the maximum cor-
relation achievable among a linear combination of f1;,; and another linear combination of fo;,; in
the generic regime (ji1,j2). More generally, let ¢;, ;, , be the ¢ — th largest canonical correlation
between fljlt and f2j2t. By definition 1 > Djrjol = ¢j1j2,2 > > ¢j1j2,min(K1j1,K2j2) > 0, while
Gjrja,e = 0 for £ > min(Kyj,, Koj,). The next proposition determines the relationship among our

measure of systematic correlation R® the largest canonical correlation among the factors

Jijewiwsz’
®j14»,1, and the cross-sectional averages of the square roots of szl jaig? with ¢ =1, 2.

PROPOSITION 1. Let all the weights wg;, > 0 be such that Zggzl wgi, = 1, forig =1,..., Ny
and g = 1,2. Under Assumptions A.1 - A.3, A.10 and further assuming that the factors and the

errors are uncorrelated within and across groups we have:

0 o Ny ) 2 N2 ) 2
R; < Qjrjad - (Zz’1:1 wlll\/R1j1j2i1) ) (Zi2:1 w212\/R2j1j2i2>'

J1j2wiwz
Proof. See Section C.1 in Appendix C.
The average of the square root of the R-squares in each group, namely Zf\gf": 1 Wyig o /R? is a

gj1j2ig’

measure of pervasiveness of the factors fy;,+ within group g only, for g = 1,2. Proposition 1 shows
that neither ZZ": 1 Wiy o /RZ j1jaig DOT their products across groups, are sufficient to determine the
level of systematic correlation between the two groups g = 1, 2. The same consideration holds for the
largest canonical correlation among the pervasive factors in the two groups, ¢;,;, 1. Using the defi-

( min(Kljl,szZ

)
=1 %jg,e) :

nition of canonical correlation, Proposition 1 also implies )R?l Jawrws

10



Ny , 2 (N2 , 2 . o min(Kuj,Kaj,)
(Zil:l W14y 4 /lel.hil) (szl W25/ R3j, jnis ) - Therefore, neither ¢;, j, 1, nor » ,_; By o b

are sufficient to characterize changes in systematic correlation across two large groups of observa-

tions when taken as stand-alone measures.? On the other hand, our measure R?l jawiws

efficiently
summarizes in one number the information from both the pervasiveness of the factors within each

group and the factor correlation across groups.

2.3 Comovement within group

We conclude this section by noting that although the definitions c?vlet and RY

i1 jawyws, OF Systematic

comovement involve (averages of) individual observations in different groups, these measures can be
easily adapted to include only individuals within the same group. The same consideration extends

to the theorems and tests for change in systematic comovement derived in the following sections.

3 Estimation

3.1 Least squares estimation of the model

Following Massacci (2017), we estimate model (1) by group-by-group least squares. For g = 1,2
and j, = L, H, we assume the true number of factors ngg is known. Otherwise Hg can be estimated
by choosing a number of factors K, g;9 Such that f(gjg > ngg. Given the estimate of 98, ngg can
be consistently determined using standard model selection criteria for static factor models, such as
those proposed in Bai and Ng (2002), Alessi, Barigozzi, and Capasso (2010), Ahn and Horenstein
(2013), and Caner and Han (2014): these require the convergence rate C,7 = min(y/Ng, VT),

which holds for the principal components estimators for factors and loadings.?

2For instance, finding that the average explanatory power of the factors in their own panel (Zggzl Wgig 4 /’Rf] i1 ig)

is high does not imply a high systematic correlation if all the factors are not much correlated, i.e when their maximum
canonical correlation is small, or when the sum of all the canonical correlations ZZ? (K131 Ka232) ®j1jo,e is small.
Symmetrically, either finding K7, ;, > 0 common factors - that is K7, ;, canonical correlation equal to 1 between the
pervasive factors of the two panels in regime (ji,j2), or finding that there is a high degree of comovement between
(some of) the factors as measured by ZZT(KIH K22 @j142,¢, is not enough to generate an increase in the systematic
across-panel correlation R?l jawqw, With respect to another regime with fewer common factors, or less comovement
among the factors. For example, if the K7, ;, common factors have very small loadings (relatively to the other factors)
in one of the two panel, their contribution to the overall R-squared in that panel is small, and the average systematic
correlation between variables x1;,4; and x2j,:, could be low. Therefore, relatively high values of the pervasiveness
of the factors are also needed to generate non-negligible systematic correlation between two individuals belonging to
two groups.

3We conjecture that other procedures to determine the number of factors in large dimensional static linear factor
models, such as Kapetanios (2010), Onatski (2010), and Trapani (2018), may be suitably generalized to become

applicable to the model in (1).

11



Let ég, Agjg and fgjgt be the estimators for 92, Agjg and fgjgt, respectively. For a given value
of 0,4, define

~

T
Sagj, (05) = (N,T) 21 Tgjpt (0g) zu@ly, 9=1,2, jy =1L, H. (14)
t=

Under the identification assumption N ! (A; i Agjg> =1 KO, the estimator ég for 62 is

e -1 Lozt () AgL (0y) AgL (99)/ -
wgt Ng = g A ~ ’ Lgt, 9= 172a
! +lgrt (0g) Agrr (6g) Agr (6)

M=

0, = arg ming, (N, 7)™
¢

where Agjg (0) is the estimator for Agjg for given 6,,: Agjg (04) is equal to /Ny times the N, x ngg
matrix of eigenvectors of ﬁ]mgjg (fg) in (14) corresponding to its ngg largest eigenvalues. Given

ég, the estimator for Agjg is Agjg = Agjg (ég) The estimator for fgjgt is then obtained as fgjgt =

. A\ .
Ng_lAgjg (09> Ty, for g=1,2,t=1,...,T, and Iy; (09) =1

3.2 Estimating systematic comovement

ven 0. A 3 L0 s ,
Given 04, Agj, and fg . ¢, the common components c; ; , in (5) may be estimated as

Civigt = Z Z ISP (él) Lo, (éz) j\lljlilfljltféhtj‘gjgig . (15)

si=L,H je=L,H

For g =1,2, j, = L,H, and ig = 1,..., N, given &t in (15) we estimate in (6) as

J1J21112

~ A A 71 T A A A~
Cjrjoiria = Lo (01’92> Z]Iljﬂf (91) Iajy¢ (92> Ciriat | > (16)

t=1

J1J21112

T
where T}, j, (01,02) :== " T1j,4 (01) Lojpe (62). 1t follows that RY in (9) may be estimated through
=1

its empirical counterpart as

. G
_ J1J2t112
Ry jyinis = = .~ (17)
Ox1j152i1 O x25172i2
where
s ]s2 )
O-xg]1]21g - \/Umgjljgig <01792>7 (18)
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and
2 -1 4 2
Ry O1.02) = Tiga (01.00)™" | X Tuje 60) T 82)
Finally, the average systematic covariance between the groups in (8) may be estimated as
N1 Ny
Cj1jowrwy = Z Z W14y Wiy Cjy joiyin (19)
i1=1iz=1
similarly, the estimator for the average systematic correlation in (10) is
N1 Ny
Rj jowiwy = Z Z W14y Wiy Ry joiyiy - (20)
i1=1iz=1

4 Asymptotic results

In what follows we define Cyp := min(v/N,VT), with N := min (N1, No).

4.1 Limiting distribution of estimator for pairwise common component

The following theorem provides the asymptotic distribution of the estimator ¢;,;,; for the pairwise

systematic component ¢ ; , defined in (15) and (5), respectively.

THEOREM 1. Let Assumptions A.1—A.9 hold . Then as Cyp — 00
. d
CNT (Ci1i2t - clolizt) — N (0’ Q?Nét) ’
forg=1,2,i,=1,...,Ny, and t =1,..., T, with asymptotic variance QY , , defined as

1112t

’(i)ligt = Z Z ]Iljlt(0(1))]12j2t(98)Q?1j2i1’£2t7

n=LH j2=L,H

0 _ (.0 279 1,0 2 yx/0 0 2792 1,0 2 yx/0 .
where Qj1j2i1i2t - (Clj1i1t) (MN2 ‘/2j2i2t + MTW2j2i2t) + (62j2i2t) (MNI ‘/1j1i1t + 'LLTlelilt)’ fOT Jg =

. . Cnr . Cnr
L, H, with pn, = limy 700 ik pr =limy 70 T
VU _ )\0/ DO -1 PO DO -t )\0 WO _ £0 20 -1 QO 20 0
9igigt — TCgigig Agjg 9igt Agjg 9Jgtg’ 9igigt — Jgjgt faig 9iglg faig 9igt?
0 _ %0 0 : 0 0 0 0 0 :
and where Xg ;= g . (09). Matrices X0, (69), Dy Tgjpe and Qg; ;- are defined in As-

sumptions A.1, A.2, A.7 and A.8, respectively.

13



Proof. See Section C.2 in Appendix C.
Theorem 1 shows that the estimator for the pairwise common components is asymptotically normal,
with convergence rate Cnyp accounting for the cross-sectional dimensions of the two groups of

variables x1; and x9;. No restriction on the relationship between N and T is required to achieve

0

asymptotic normality. The variance QY ; , is made of the four mutually exclusive terms Q iy jaiviats

each corresponding to one of the four regimes described in Section 2.1.1. Each term Q?l Jaiviat
consists of two additive parts, which are proportional to the asymptotic variance of the estimators
for the unit-specific common components ¢! iyt and 3 iaint: these asymptotic variances are equal to
/‘%\72 ‘/2[}21-2154— H%ngmt and /‘?Vl Vl(;-l et ,u?leojlilt, respectively, and are analogous to the asymptotic

variance of the common components estimator in linear factor models as derived in Theorem 3 in

Bai (2003). The following corollary describes two special cases.

COROLLARY 1. Let the assumptions of Theorem 1 hold and recall Q?”-Qt from the same theorem.
Then, forg=1,2, jo=L,H,i4=1,...,Ng, andt=1,...,T:

. I~ d . 2 N
(a) Zf N/T — 0, then VN (ci1i2t - C(i)1i2t) - N (07 Q?liQt)’ with Q?ljzhizt = (C(l)jlht) E‘/?(}zbt +
0 2 N L .
(22izt)” 7y Vit -
. ~ d . 2
(b) Zf T/N — 07 then ﬁ(chizt - C?ﬂ'gt) - N(O’Q?ﬂzt)’ with Q?1j2i1i2t = (C(l)jlht) WQOJéiQt +

(ng2i2t) ’ W10j1i1t'

Corollary 1 states the asymptotic distribution of ¢;,;,+ when either N/T'— 0 or T/N — 0. However,

the general result in Theorem 1 does not require any restriction on the limits of N/T" and T//N.

4.2 Limiting distribution of estimators for systematic comovement

The theorem below states the asymptotic distribution of ¢;, j,w,w,, defined in equation (19), as an

estimator for the systematic covariance c? defined in equation (8).

J1j2wi w2

THEOREM 2. Let Assumptions A.1- A.3 and A.5 - A.11 hold, with Cn7 — o0 and VT /N — 0.
Then for g = 1,2, and j, = L, H,

~ d
\/T (Cj1j2w1w2 - Cg')ljz’wl’wz) - N( 0, Qg')ljz (wl’wQ) ) )

14



with

T2
0 0
Qo 0102) = G0 09) T, 00,0 [ REEAE

0
+Q1231]2 1o (W1, W23 w1, w2) + lejljz,jm(wh’w% w1, w2) } ,

where

T T
‘1191127]1]2 (wl’w2) N1, N2,T~>oo ZZ ov Hljlt 01)H2]2t (02) ’wl‘wzt ’ ]11]1'“ (91)H2J2 (92) ‘wl'wgv]

is computed for (57, j3) = (j1,J2). Moreover, for a vector of weights w;, potentially different from

wy, let
0 . _ . 0 0 0 150 0 -
Q12j1j2,jfj; (w1, wo; wi, w3) = Nlj\gn%ﬁoo )‘191 (w1)2f12j1j2 (2f2j2) Q2j2j5 (w2, w3) <2f2j;) 2f123*3*>\1]1 (w?),
0 . _ . or 0 0 10 0
Q21j1j27jfj; (w1, wa; wi, w3) = Ny 1\2H11“—>oo )‘2j2<w2)2f21j1j2 (Efljl) Qljlj; (wy,wy) (Efljl*) f21g*;*)‘ «(w3),

where €5, ., is defined in equation (7), and

N, N, T T
. . |1
92] Js (w!I?wg) = Z Z wgigwglg {T ZZ [ gjgt HQi;“ (0 )fgjgtfg] vegigteglgv] } )
t=1 v=1

ig=11,=1

with Xygg; = Xggi (04). Matrices Xygg; (04) and X125, 5, are defined in Assumptions A.2 and
A. 10, respectively.

Proof. See Section C.3 in Appendix C.

The asymptotic variance QY i1ja (W1, W2) Of &), joap, w, is made of three terms. The first term ‘Ilgl Jognga ()

depends on the fourth cross-moments of factors f{)j , and fg . and is due to the estimation of the
1 jov

true cross-covariance matrix of the factors, Z(}m 2 It would be present even if the true loadings

)\2] w, and the time series of the true factors fg; ¢, t = 1,...,T were known. The second and third

terms, Q(1)2j1j2,j1j2(') and lejljz,jljz(')’ originate from the estimation of the loadings A%, . and

1j2%1
Agj2i2, respectively. These two terms are exactly zero when all the factors f{)j ,¢ of the first group
are uncorrelated with all the factors of the second group f§j2t, that is when 2(}12]-1 i = 0.4 The
rate of convergence of ¢j, j,wiw, i VI, since it is estimated as the time average of the product

of the (estimated) common components ¢ij,4,+ and ¢ajyi,¢, and we assume N,T — oo such that

4This is a special case of interest in group-factor models, as it corresponds to two groups not sharing any common
factor and whose group-specific factors are also uncorrelated across groups.
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VT/N — 0 as customary in approximate factor models, see e.g. Bai and Ng (2006). Notice that
Assumption A.11 only requires the absolute summability of the weights. This ensures that the
asymptotic variance of ¢;, j,w,w,, Which is defined as a generic average across all individuals in
groups 1 and 2 with generic weights wy;, and wsg;, converges as Nj, No — oo. This assumption
accommodates the two most interesting cases (i) wyi, = 1/Ny , Vigy, and (ii) wg;, = 1 when iy = i7,
while wg;, = 0 Vig # ig, with g = 1,2.

Theorem 3 provides the asymptotic distribution of le jowiws, the estimator of the systematic

0
correlation R]1 jgwiwg’

THEOREM 3. Let Assumptions A.1-A.3 and A.5- A.11 hold, and Cn1 — 00 with \/T/N — 0.
Define the Ny x 1 wvector of rescaled weights We gj,j, = [Weor gjyjaig ...,wg,gjmig]’, With W gj, jyi, =

0 P — R
wgig/ongmig, ig=1,...,Ng. Then for g=1,2, and j, = L, H,
(D, 0 d 0
T (RJIJ2“’1“’2 o Rj1j2w1w2) - N( 0, QRJU& ) )
0 —_ N .. ..
where QR,jl]’z - QR,jlszl]é (wU’ljUQv w0,231]2)7 and

QR j1jo gt js (Wo 1512 Wo.2152)

2

r WY e (Wo Ly s Wo 21 s W11 jas Wo2i1js)
4-(9 90) **(9 90) R, j1je2,j7 i3 \Wo,lj1ja> Wo, 251525 Yo, 15152 Wo,2j1 52
JiJj2

+Q121132 1d2 (Wo, 112> Wo.2j1 5o} W jz» Wo,21j2)
+Q21]112 ]1]2(w0' Ljjz> Wo,2j1525 Wo,1j1ja» Wa,2j1j2) + 2 - —'1 Jijaije T2 ‘—‘2,3132,3112 )

with

0 . . .
Rojrjogtiz (Wolj1da We 25142} Wa, 157 53 Wo 251 55)

_ E E . 0y .0 o .
- Ny ]\gnil“—mo T COV Hljlt )H2]2t (02) CR,jlet(wU,ljljww6,231]2) )
’ ’ t=1v=1

Tujgo (09) Tajgo (68) B sz 550 (Woii s woziss) |

being computed for (ji,75) = (ji1,j2). Moreover,

N1 No 0 2 2
0 _ 0 J1jaiviat L1ist L2int
CR,jljzt(wa»1j1j27w012j1j2) - Z Z Wo 1515211 Wo, 2515212 Cf1 joiria 0 - ( 0 )2 - 2( 0 )2
i1=1ip=1 J1j2i1i2 xlj1j201 x2j17212
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ey 0 0 .
the quantities Q12,j1j2,jfj§(’v -) and Qzl,jljmikj;(-, -) are defined in Theorem 2, and

1 T T N1 N2
=0 — ; il QY S L\
S g1dendi il Nl)]\gfleﬁw T E E ]Ilﬂlt 1) E E Wor 15, jais Wor 21 iz A2jy iy
' t=1v=1 i1=11ds=1
N; Na O v
1 20 J1J38% !
2“2]1]2 (Zflﬂl) fljlte“lt ’ ]Iljf ( H2J2 02 z : 2 :wa' 155434, Wor, 2]11212( 0 )2)\1jfi’1f1jf”elvi/1v
if=11i,=1 :ltljf]; 2
N1 Na
=0 _ L . o
=2,j172,J135 — Ny, N2,T—>oo T ZZCOV H2J1t ) Z Z w0'71J1J211wa,2j1j212)‘1]212
t=1v=1 i1=112=1
. Ny Ny oo
0 ) . 0 . 0 J1J38% ! . )
XEfl?Juz (2f2J2) fajate2iat » Injro (91) I2j50 (92) E : E :wa,lj*ﬁ it Wor, 255 53 1% (09 )‘2 >‘2J’5i’2f2i5”e2ﬂév
it=1i,=1 ®2j7 j5 5

are also computed for (ji,7j3) = (j1,j2)-

Proof. See Section C.4 in Appendix C.

Compared to Theorem 1, we derive Theorems 2 and 3, as well as Theorems 4 and 5 below,
by replacing Assumption A.4, which only imposes within-group weak dependence between factors
and idiosyncratic components, with the stronger Assumption A.12, which requires independence
between factors and idiosyncratic components both within and between groups. Assumption A.12
may be generalized by imposing some worm of weak dependence between factors and idiosyncratic
components, as in Andreou, Gagliardini, Ghysels, and Rubin (2019), at the expense of a higher
final degree of complexity induced by the presence of cross-moments of order three or higher in the

asymptotic variances of those theorems.

4.3 Limiting distributions of tests for changes in systematic comovement

The following theorems allow to construct tests for the null of no change in the comovement defined
as a change either in the systematic covariance (Theorem 4), or in the systematic correlation

(Theorem 5).

THEOREM 4. For g = 1,2, and jg,j; = L, H, with either j1 # ji, or ja # j3 (or both), consider

the test statistic
T - JT (Cj1j2w1w2 - Cj;‘j;wlwz)

J1j2iijswiws T A )
lejéjfjék
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where @ﬁj2jfj5’ defined in equation (B.6) in Appendiz B, is a consistent estimator for

2717 [ 0

A0 0 0
o (101:02) % Qi (C01-00) = Ty @, Lt (0

J1J23135

0 0
+ Qlzj jo.g7is (W1, W2) + Q215 i (W1, “’2)]

with (jg,j5) = (H,L) or (L,H), and all quantities in the last equation are defined in Theorem

~

2. Let the assumptions of Theorem 2 hold, then T, is such that as N1, No, T — o00: (1)

J1J231J3 wiws
~ d .. A~
c c . .0 —_ 0 . c
TS jaitiswiws N(0,1) under H§ : €}, irupywy = it jrwiwys 4N (i) P(| 7j1j2jfj§w1w2’ > H) — 1

c. .0 0
for any constant k € R under HS : ¢}, ;005 7 Cr jrwiws

Proof. See Section C.5 in Appendix C.
THEOREM 5. For g = 1,2, and jg,j; = L, H, with either j1 # ji, or ja # j3 (or both), consider
the test statistic

?\-R . _ \/T (lejQ’wlwz - ijj§w1w2>

J1J2J1Js wiw2 EIN )
QR,jlejfjg

where é%,jljzjfjé defined in equation (B.7) in Appendiz B is a consistent estimator for

A0 _ 0 0
QRrjijsiti; = @Rii T Qrpss
2. 772 [
0
_ % e (Wo 171 jas W21 i} Wor 175 2 Wer 257 %)
o 0 pno0 o 0 pno R,j142,557 o,17192> ®o,27192> ®o,19795 F0o,27{75
Tj1]2(91’02) ’ T]f]é‘(91’02) 12

+ Q12j1j2,jfj2* (W5, 1525 Wo 2142 Wo, 15753 wo,Zijg)
0 . v -
+ Q21j1j2,j;*j; (Wo, 141 j2s Wo 2514’ Wo, 153 55 wa,%ﬁ;)

=0 =0 =0 =0
+ =1,7172,J175 + =2,7172,J175 + =1,5175,5152 + “2,11*35,]132} )

=0 =0
B jrjagriyr 9nd By

with (jg, jg) = (H, L) or (L, H), and where QOR’jle, Q%j

J1J3

are defined in Theorem 3, while QY () and lehjz,j

0
Wk iz () 152,013

() are defined in Theorem 2. Let the

12j12,5735 1793
. R . Y - d
assumptions of Theorem 2 hold, then 7;-1]-2]-“2*“}11”2 is such that as N1, No, T — 00: (i) 7}1j2jfj2*w1w2 —
R . po — RO . i T
N (0,1) under Hy' : R}, iy = R ipywy s 0 (47) P<‘7}1j2jfj§w1wz| > KZ) — 1 for any constant

1j2wiwe # Jijswiwz”

k € R under H$ : Rg

Proof. See Section C.6 in Appendix C.
As noted in the Introduction, all Theorems 1 - 5 have been derived in the context of the

threshold-group factor model (1) where the Thresholds #; and 62 need to be estimated. It turns
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out that the estimation error of the thresholds does not affect the asymptotic distribution of the
comovement measures. Therefore, the results of all our Theorems 1 - 5 can be applied also in the
case of threshold values exogenously chosen by the econometrician. For instance, if z; = ¢t/T, the
values of the threshold could be set a priori in order to test for a change in comovement across
groups between two distinct periods of time. This can be seen as a formalization of the approach
in Bekaert, Hodrick, and Zhang (2009), who study changes in systematic comovement across non-

overlapping time widows.

5 Monte Carlo

We conduct Monte Carlo experiments to study the finite sample properties of the estimators and
testing procedures proposed in the previous sections. Section 5.1 describes the simulations designs
while Section 5.2 presents the results. We denote with 04« p the A x B dimensional matrix of zeros,

and with 14 the A x 1 vector of ones.

5.1 Simulation Designs

We simulate data from the following Data Generating Process (DGP):

rie = [(2<0)- [ i, Fie + )‘lelff,Lt} +1(z > 0)- [ Veri Fin + Alelff,Ht} + €1yt
T2t = L(2 <0)- [ S1infie + )‘ZLfo;,Lt} +1(z > 0)- [ Striy Lt + >‘2H12f2§,Ht} + €25t

for iy = 1,...,N1,i2 = 1,...,No, t = 1,...,7. This is a constrained version of model (1) where,
compatibly with the findings of the empirical analysis, the threshold variable z; and the threshold
value are the same across the two groups, that is z; = z1+ = z9¢ and 0 = 07 = 65. All dates
when z; < 0 are denoted as regime L, while all dates when z; > 6 are denoted as regime H.
Table 1 (resp. Table 2) displays the number of factors and the values of the other DGP parameters
characterizing each MC design used with respect to Theorems 1, 2 and 3 (resp. Theorems 4 and

5). The number of MC replications used for each design is 4000.

The vectors of factors ff}t, fIC_Lt, filt, fizt, f;[,lt and ff_mt have dimensions K§, K%, K7, K3,
K%, and K§; respectively. Since K} := K7}, = K3, (resp K}, := K{; = K3};), we are imposing
that the number of group-specific factors in regime L (resp. regime H) is the same for group 1 and
group 2. Furthermore, in all simulation designs we assume that the number of common factors

(resp. group-specific factors) is the same in both regimes, that is K{ = K¢, (resp. K; = K73;). Let
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Table 1 — Parameters of Monte Carlo simulation designs for Theorems 1, 2 and 3

Design / Param. | K¢ = K§ | Ki = K§ 05, =0, | coi | B| ar |a: | mo
Design 1 0 3 0.25 0510 0 0 | 0.75
Design 2 0 3 1.00 0510 0 0 | 0.75
Design 3 1 3 0.25 0510 0 0 | 0.75
Design 4 1 3 1.00 0510 0 0 | 0.75
Design 5 0 3 0.25 05[0| 05| 0 |0.75
Design 6 0 3 1.00 050 05| 0 | 075
Design 7 1 3 0.25 050 05| 0 | 075
Design 8 1 3 1.00 050 05| 0 | 075

Table 1 provides values of the parameters in the DGP described in Section 5 for each of the MC simulation designs used
to assess the properties of the statistics in Theorems 1, 2 and 3. In all simulation designs we also set og; = 0g; = 1,
a=1, ®7 = diag(0.4, 0.2, 0.1) and &3 = diag(0.8, 0.4, 0.2).

Table 2 — Parameters of Monte Carlo simulation designs for Theorems 4 and 5

Design / Param. | KY = Kg | K; = K§ 05, =0, | cgi | B| ar | a: o

Design 1 Hop 0 3 0.25 0510 0 0 | 0.75 or 0.5
Design 1 H; 0 3 0.25 0510 0 0 | 0.75 or 0.5
Design 2 Hy 0 3 1.00 0510 0 0 | 0.75 or 0.5
Design 2 H; 0 3 1.00 0510 0 0 | 0.75 or 0.5
Design 3 Ho 0 3 0.25 05/01] 05| 0 | 0.750r 0.5
Design 3 H; 0 3 0.25 05/01] 05| 0 | 0.750r 0.5
Design 4 Hy 0 3 1.00 0510 0.5| 0 | 0.750r 0.5
Design 4 H; 0 3 1.00 05/01] 05| 0 | 0.750r 0.5

Table 2 provides values of the parameters in the DGP described in Section 5 for each of the MC simulation designs
used with respect to Theorems 4 and 5. Designs 1 Hy to 4 Hp, where data is simulated under the null hypothesis
of no change in comovement across regimes by setting ®7 = ®% = 03x3, are used to assess the properties of the
statistics and the size of the tests in Theorems 4 and 5. Designs 1 H; to 4 Hi, where data is simulated under the
alternative hypothesis of change in comovement across regimes by setting ®7 = Osx3 and % = diag(0.8, 0.4, 0.2),
are used to assess the power of the tests in Theorems 4 and 5. In all simulation designs we also set og; = o5; =1
and a = 1. For all designs we consider my = 0.5 only for Theorem 5.

* C (¢ S S * : : O c/ c/ s/ s/ s/ s/ 1
K* = K{+K§+2-K;+2-Kj;, the K*-dimensional vector f; := | 7o Fire FL1e Fioe Fi H,2t]
follows an autoregressive process: f; = apfi—1+ /1 — a% 7¢, where the scalar ar is an AR(1) co-

: : : O c/ c/ s/ s/ s/ s/ 7/
efficient common to all factors. The innovation vector m, := [nf 5y, N§'y, N1 ML M1 Miradl

is simulated such that 7; ~ .i.N (0, %)), with

Ig;, 0 0 0
0 Ig;, 0 0
0 Irx; @

o o o O

o O o O

0
0 0 0 g, @
0
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where @7 = diag(¢y 1, ..., 61,k ) and Py = diag(dyy y, -, ¢ ks, ) are (K} x K7) and (K§ x Kj)
diagonal matrices, respectively. The scalar parameters in the main diagonal of ®§ (resp. ®3;) are
such that 1 > @5 | > ¢5 ) > ... > dpx; > 0 (vesp. 1 > @3y, > ¢}y > . = dmxs > 0), and
generate correlation between the first specific factor in group 1 and the first specific factor in group
2 in regime L (resp. H), the second specific factor in group 1 and the second specific factor in
group 2 in regime L (resp. H), and so on. By definition, they are the ordered non-zero canonical
correlations between the group specific factors in group 1 and 2 in regime L (resp. H). In Designs
1 - 8 of Table 1, we let ®% = diag(0.4, 0.2, 0.1) and ®3;, = diag(0.8, 0.4, 0.2). In Designs 1
Hy - 4 Hy of Table 2, which refer to data simulated under the null hypothesis of no change in
comovement across regimes, ®; = ®3; = 03x3. In Designs 1 Hy - 4 H; of Table 2, which refer
to data simulated under the the alternative hypothesis of change in comovement across regimes,
P35 = 03x3 and P}, = diag(0.8, 0.4, 0.2). The initial values of the factors are drawn from their

stationary distributions, and their paths are re-sampled in each MC simulation.

(&
mwn

For each group g = 1,2, the first = min(KY§, K§) common factors loadings are drawn

for the L regime as )‘ng’g = agj\gug, with Xgug ~ ’LZN( Ige . , Ike ); the first K3 . =

min
min(K7j, K§) group-specific factors loadings are drawn for the L regime as }‘f;Lz‘g = U;X;Lig,
X;Lig ~ 1.5.N ( lgs - Iks ); the first K¢ . common factors loadings are generated for the

H regime as Afy, = Afp; + 0flke ; the first K7, group-specific factor loadings are gen-

gLi, + 05 1ks, . If Kip > Kj, the additional AK®¢ =

erated for the H regime as )‘f]Hig = )\ng

K — Kj common factor loadings in regime H are drawn from Af;;, = afj\f Li;» With S\‘f Liy ™
’L?,N( Iage(1 —1—57?1), NS ) If K§; < K%, the additional AK® := Kf — K§ common factor
loadings in regime L are drawn from Af;;, = ‘7%~§Lz’1’ with S‘SfLil ~ .i.N ( 1age, Inge ). If
K3, > K7, the additional AK® := K3, — K group-specific factor loadings in regime H are drawn

from Xj ;= 0§ XS g, with Xj ;. ~ 0N ((1ages(1+63), Iags ). Finally, if K3 < K3, the addi-

s

tional AK® := K} — K73, group-specific factor loadings in regime L are drawn from Ap Li, = 055\ oLiy’

with XS~ 0N (1aks, Iags ) with:

0¢ >0 for iy=1,.,[Ngl, 6 =0 for ig=[NZ]+1,..,N,,

08 >0 for iy=1,.[Ngl, & =0 for ig=[Ng]+1,.. N,

where [-] denotes the integer part of the argument, and the scalars of, o5, 0§, and o5 determine

the contribution of each factor to the overall variability of the “common component”, that is the
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variance of the observables due to all the pervasive factors for each group g = 1,2, and regime
j = L,H. Finally, we set 0f = 0§ = 0, if K{ =0, and 0f = o5 = 0, if Kj = 0. For each
design and sample sizes combination the loading matrices are the same across all MC simulations.

The idiosyncratic innovations vector ey = [egi ¢, ..., €gN,¢]’ has dimension Ny, with g = 1,2. We

define the (N7 + N3)-dimensional vector e; := [e),, €5,]’, and assume the following AR(1) process:

. — . * . / 2 .
€igt = QeCigt—1 + (ng “Ceyigt 1- ae) Vigt

where a is a common AR(1) scalar coefficient for groups g = 1,2, and

) 2K§0S? + 2K 052 if 2 <6,
Cejigt =
Ky [(05+05)2 + (0)2] + K [(03 40502 4 (07 it 2>,
Let vyt := [V14, ..., Vigt, -, UN,¢), then the (N1 + Nz )-dimensional vector vy := [v],, v5,]" is simulated as

vy ~ 1.1.N(0,%,), where 3, = {B'i_ﬂ}ij, fori,j =1,..., N1+ Na, The scalar § in [0, 1) induces cross-
sectional dependence among the idiosyncratic innovations, similarly to Bates, Plagborg-Moller,
Stock, and Watson (2013). The variance of the idiosyncratic part is ¢, times the variance of the
common component in group g and state 7.5 The initial values of the idiosyncratic innovations are
drawn from their stationary distributions, and all the innovations paths are re-sampled in each MC
simulation.

The DGP for the threshold variable is an AR(1) process: z; = azzt,l—l—\/@ V¢, where v, ¢ ~
i.2.N(0,1). Let ®(6) be the cumulative distribution function of the Standard Normal computed in
6 € R,and 7° = P(z < 0") = ®(6°) be the unconditional probability of observing a value of z; < 6°,
then 0 = ®~1(7%). We report simulation results for all Theorems setting a, = 0 and 7° = 0.75
(corresponding to 6% ~ 0.6745). Only for the test in Theorem 5, we also report the simulated size
and power for the combination of parameters a, = 0.0 and 7° = 0.5 (corresponding to 6° = 0).
Additionally, in the SM we report results for all Theorems for a, = 0.5 and/or 7% = 0.50. The
initial values of z; are drawn from its stationary distribution, and its sample paths are re-sampled
in each MC simulation. The innovations of factors, errors, threshold variable, and loadings are

drawn as mutually independent.

SWhen cg; = 1for g =1,2 and j = L, H, then the scalar c. ¢ is defined so that the variance of the idiosyncratic
part is equal to the variance of the common component within each group g = 1,2 and state H, L.
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5.2 Monte Carlo results

In order to save space, in Appendix D we only display Tables D.1 and D.2 with the first two
moments, median and interquantile range of the simulated distributions for Theorems 1, 2, respec-
tively, and Table D.3 in the same appendix with the empirical size and power of the test of Theorem
5. Analogously, Figure 1 reports the histograms of the simulated distributions for Theorems 1 and
2, and the distribution under the null of no change in systematic correlation for the test is Theorem
5, only for two combination of sample sizes, namely: N; = Ny = 50 (resp. 500), and T" = 200
(resp. 1000). In Section E of the SM we report analogous tables and figures for all the remaining
Theorems. As it can be seen from the moments and the quantiles reported in Tables D.1 - D.3,
from the histograms in Figure 1, and from the results in Section E of the SM, for all the Theorems
1 - 5 and also for relatively small sample sizes (with the smallest ones being N; = Ny = 30 and
T = 100) the simulated distributions approximate well a Gaussian distribution with zero mean and
variance equal to the estimated asymptotic variance form each theorem.

Table D.3 displays the empirical size of the tests for the null hypotheses of no change in system-
atic correlation across all individuals in the two groups corresponding to nominal sizes of 1%, 5%,
and 10%. It also reports the empirical power of the same test performed on a DGP corresponding
to the alternative hypothesis, with a significance level of 5%. The null hypothesis is imposed in the
two regimes by simulating group-specific factors with zero correlations across groups, which implies
that the systematic covariance and correlation across groups are zero in both regimes. The alterna-
tive hypothesis is imposed by simulating group-specific factors with correlation structure changing
from one regime to the other, as described above. We observe that the asymptotic Gaussian dis-
tribution provides an overall very good approximation for the tails of the feasible test statistics of
Theorems 4 and 5 under the null. For the vast majority of sample sizes and simulation designs,
the size distortions range from 0.1% to 5%. The largest size distortions and the lowest values of
the power (that is around 70%) are observed for the smallest value of 7', that is 7' = 100, and
for the designs where 70 = 0.75. As expected, when the sample sizes increase the size distortions
monotonically disappear, and the power approaches 1. By comparing Tables D.3 (a) and (b), we
notice that decreasing 7° from 0.75 to 0.5 (that is reducing the threshold value 6° from 0.6745 to
0) also substantially improves the size and the power of the test in Theorem 5. Analogous consid-
erations can be made by looking at the results in Section E of the SM for all the other Theorems

and simulation designs.
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Figure 1 — Finite sample distribution of statistics in Theorems 1, 2 and 5, with 7o = 0.75
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This figure shows the simulated empirical distribution of relevant statistics obtained with 4000 Monte Carlo simula-
tions and computed for different sample sizes (N1, N2, T') and for the values of the DGP parameters in Design 2 of
Tables 1 and 2 with 7o = 0.75. Panels (a) and (b) refer to the recentered and standardized statistic &,,¢ in Theorem

1 defined as: Cnt (iyint — c?1i2t)/ Qi,ire - Panels (c) and (d) refer to the recentered and standardized statis-
tic ¢, jowiw, in Theorem 2 defined as: VT (1 sy wy — cglj2w1w2)/ Q1 jo (w1, ws) , with w = [1,0,0,...,0] and
ws = [1,0,0,...,0]. Panels (e) and (f) refer to the test statistic ﬁ?j2jfj;w1w2 in Theorem 5, with wy = [1/Ny,...,1/Ni]
and wy = [1/Na,...,1/N3]. Under the Assumptions of Theorems 1, 2 and 5, the asymptotic distribution of the three
statistics is standard Gaussian (solid red line).

6 Systematic Comovement over the Global Financial Cycle

There exists empirical evidence that increasing financial integration has led to the emergence of a
global financial cycle: see Rey (2018). As documented in Miranda-Agrippino and Rey (2020), and
further in Habib and Venditti (2019), one of the main drivers of the global financial cycle is U.S.
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monetary policy. Given the misalignment between countries’ specific macroeconomic conditions
and the global financial cycle discussed in Rey (2018), it is unclear how the comovement of asset
returns evolve over the latter when the former change. We thus use the tools developed in this
paper to study systematic comovement in global equity markets over the financial cycle depending
on the state of U.S. macroeconomic uncertainty. Section 6.1 describes the data and the empirical
specification. Section 6.2 deals with estimation and model selection. Section 6.3 presents the

empirical findings about systematic comovement. Section 6.4 discusses the results.

6.1 Data and Empirical Specification

We consider monthly data and study the period running between January 1991 and December
2019, a total of T' = 348 time series observations. Financial data are obtained from Kenneth
French website. In the case of the U.S., we consider the following N; = 100 value-weighted
portfolios: 25 portfolios sorted by size and book-to-market ratio; 25 portfolios sorted by size and
operating profitability; 25 portfolios sorted by size and investment; 25 portfolios sorted by size and
momentum. We then consider the Ny = 100 homologous portfolios for international equity markets:
these are a subset of the portfolios considered in Fama and French (2012) and ensure that U.S. and
international portfolios are obtained through the same sorting schemes.” Notice that, unlike higher
frequency returns such as daily or weakly, lower frequency monthly returns mitigate the effect on
our comovement measure that may be induced by the fact that markets in different countries may
be open at different times. All returns are in U.S. dollars and are computed in excess of the U.S.
risk-free rate at the end of each month: this is defined as the 1-month U.S. treasury bill rate and
reflects the cost of short term funding in the U.S. dollar market. Therefore, we conduct our analysis
from the perspective of a U.S. investor. As a measure of U.S. macroeconomic uncertainty we take
the one month ahead index developed in Jurado, Ludvigson, and Ng (2015) and available from
Sydney Ludvigson website, which we denote by UM.®

Given the theoretical model in (1), we let ¢ = 1 and g = 2 denote the groups of U.S. and

international portfolios, respectively: x1;,¢+ is the excess return on the U.S. portfolio 7; at time ¢;

5See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html .

"International (ex-U.S.) portfolios are formed from the set of individual stock returns from the following 22
countries: Australia, Austria, Belgium, Canada, Switzerland, Germany, Denmark, Spain, Finland, France, Great
Britain, Greece, Hong Kong, Ireland, Italy, Japan, Netherlands, Norway, New Zealand, Portugal, Sweden, Singapore.

8U.S. macroeconomic uncertainty data are kindly made available at https://www.sydneyludvigson.com/
data-and-appendixes .
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similarly, z2;,: is the excess return on the international portfolio i3 at time ¢. The threshold variable
is defined as z; = UM. Our empirical model thus allows us to measure changes in systematic

comovement induced by contemporaneous values of U.S. macroeconomic uncertainty.

6.2 Estimation and Model Selection

We apply to each individual group the test proposed in Massacci (2020) to detect threshold-type
regime changes in the loadings: the test is robust to factor heteroskedasticity, a key feature of factor
models applied to financial returns as pointed out in Baele, Bekaert, and Inghelbrecht (2010).° In
both U.S. and international portfolios, the null hypothesis is rejected at the 1% significance level:

this strong rejection of the null provides evidence in favor of regime changes in the loadings.'®

We estimate the model as detailed in Section 3.1. In order to span the true factor space, for
g = 1,2 we estimate 08 by imposing an upper bound Kj** on the number of factors in each panel
within each regime such that K" is greater than or equal to the true number of factors. We set
K{rax = KX = 10: following Fama and French (2018) and Fama and French (2012), this is greater
than the number of factors expected to drive the cross-sectional variation in U.S. and international
equity returns, respectively. The estimated threshold values are identical to each other and are
equal to 0 = 0y = 0.674, which corresponds to the 77*-percentile of the empirical distribution of
UM: this is illustrated in Figure 2, which displays 0 = 0y = é, the time series of UM, and gray bars

denoting the event UM > 4.
Notice that we obtain identical values for #; and 6, without imposing any restriction on the es-

timation procedure, as we separately estimate the models for U.S. and international equity returns.
This result implies that, according to our model, regimes changes in the cross-sectional variation of
U.S. and international returns that are induced by U.S. macroeconomic uncertainty are perfectly
synchronized. It also implies that our empirical model identifies two regimes as a whole: this is
perfectly consistent with the description of the regimes provided in Section 2.1.1.1' Given 6, and
ég, we estimate the number of factors driving the cross-sectional variations of returns. Within

each group our model lets the number of factors change between the regimes and we adopt the

9We conduct the test on demeaned variables. The test requires an estimate of the number of factors in the
linear model under the null. We estimate this by applying the ICp2 information criterion of Bai and Ng (2002), for
which we impose an upper bound equal to 10 factors in both panels. The results of the test are unaffected by the
choice of the maximum number of factors. As for the auxiliary threshold regression needed to implement the test,
we use an equal-weighting scheme to obtain cross-sectional averages of U.S. and international returns. Finally, we
approximate the asymptotic distribution of the test statistic using the fixed regressor bootstrap of Hansen (1996)
with 1000 replications.

10 Additional details about inference on the number of regimes are available upon request.

"Following Theorem 3.4 in Massacci (2017), the estimator for 92 is T-consistent, for g = 1,2, which prevents us
from using standard inferential procedures to test the null hypothesis 69 = 693.
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Figure 2 — Time series of Macroeconomic Uncertainty Index and estimated thresholds
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Figure 2 displays the end-of-month values of the macroeconomic uncertainty index (UM) constructed by Jurado,
Ludvigson, and Ng (2015) and used as threshold variable (z:) in the threshold group-factor model. The sample
period is January 1991 to December 2019. The red line corresponds to the estimated threshold value 6, =6, = 0.674
for the panel of monthly U.S. and international equity excess returns.

following two-step approach. For g = 1,2, we first estimate the factors in each regime using the
ICy (Kgj,, Kgj,) criterion of Massacci (2017). This suitably extends the ICpy selection criterion
of Bai and Ng (2002) by making it robust to the threshold effect in the factor loadings: it gives a
consistent estimator for the number of factors if this does not change between the regimes; and it
provides an upper bound to the number of factors when this varies between the regimes since the
factor space needs to be fully spanned for the criterion to be minimized. In the second step we
estimate the number of factors by applying the IC)y selection criterion of Bai and Ng (2002) within
each group and regime and taking as an upper bound the number factors estimated through the
IC) (K 9iqgr Kgj g) criterion of Massacci (2017). Following this strategy we estimate 5 factors within
each regime and group: formally, this means that K gjg = 9, for g=1,2 and j, = L, H. Therefore,
the number of estimated factors does not change across regimes and groups; it is also important
to stress that this result is a genuine feature of the data and it is not obtained by imposing any a

priori restriction, since estimation of Kg;, is run independently for each group and regime.
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6.3 Systematic Comovement

We now study how global equity market comovement changes between the periods of low and
high U.S. macroeconomic uncertainty identified by our model, namely UM < 6 and uM > é,
respectively. Given the interpretation of systematic comovement in Section 2.2.4, we focus on

the average systematic correlation R?

i jpunw, defined in (10): for specific combinations of assets iy

and io belonging to U.S. and international portfolios, respectively, this reduces to the systematic

; 0
correlation R 1 iaiiz

defined in (9). Since regimes are synchronized across groups then j; = js.

We first look at the correlation matrix of excess returns between the two groups in low and
high uncertainty regimes: these are displayed in the top-left and top-right panels of Figure 3,
respectively. During periods of high uncertainty, the average sample correlation between U.S. and
international returns is higher than in periods of low uncertainty and it is equal to 0.707 and 0.543,
respectively.

We then investigate to what extent this increase in correlation is due to systematic comovement.

To this purpose, we estimate RY through R;, jziris defined in (17): this is displayed in the

J1j2i12
bottom-left and bottom-right panels of Figure 3, respectively. A visual inspection shows that
systematic comovement increases during periods of high uncertainty. This can be more clearly seen
from the top panel of Figure 4, which displays the difference (RH Hiyig — RL Liyiy) for each pair of
returns ¢; and 9: all the 100 x 100 = 10,000 entries are positive, with the exception of only 10
of them. These results are confirmed by running the inferential procedure detailed in Theorem
5: in the bottom panel of Figure 4, 80.14% and 57.04% of the differences (EHHM2 — RLLiliz) are
greater than zero in a one-sided test with significance level of 10% and 5%, respectively. We also
apply the test in Theorem 5 to Rj1j2w1w2 defined in (20): the equal-weighted average difference
}A%Hlewz — RLLwle = (0.165 results in a test statistic ﬁfHLLwlwz = 2.431, and the one-sided test
for the null hypothesis on no positive change in correlation is significant at 1% level.

We can thus conclude that our results clearly show that systematic comovement in global equity

markets increases during periods of high U.S. macroeconomic uncertainty.

6.4 Discussion

Our empirical results may be interpreted through the lens of the global financial cycle (GFC)
discussed in Rey (2018), and Miranda-Agrippino and Rey (2020). Figure 5 plots the cumulated

values of the first factor, that is the first principal component (PC), in group 1, and of the first
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factor in group 2.

Figure 3 — Actual and systematic correlations across panels and in different regimes
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The figure displays the actual overall and estimated systematic correlations across panels of monthly excess returns
on the U.S. (Group 1) and the international (Group 2) equity portfolios when 2; < 61 = 02, that is for all dates that
UM < 0.674, and when z > 01 = 0, that is for all dates that UM > 0.674.



Figure 4 — Difference of systematic correlations across panels between the two regimes
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Panel (a) displays the difference, between high and low Macroeconomic Uncertainty regimes, of the estimated sys-
tematic correlations computed for each pair of returns ¢; and iz, with 41 from the panel of U.S. portfolios and i from
the panel of international (ex U.S.) portfolios. Panel (b) displays the p-value of the one-sided test of significance for
each of the individual differences displayed in Panel (a). A gray square indicates a p-value > 10%, a blue square
indicates a p-value between 5% and 10%, a green square indicates a p-value between 1% and 5%, and a red square
indicates a p-value < 1%. In both panels, each column corresponds to a U.S. portfolio, while each row corresponds
to an international (ex U.S.) portfolio.
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As we have two regimes and all PCs are estimated separately for each group and regime, we
need to choose a suitable standardization of either factors or loadings, and their signs, in order to
represent them graphically.!?

For all groups and regimes we impose the estimated loading matrices to be such that:

N;l ( A’g io Agjg) = Ik, therefore we standardize the scale of the loadings across all groups, regimes
and factors. Moreover, for all dates in regime L, the sign of the first PC in group 1 (resp. group
2) is fixed such that the majority of the loadings of the returns in group 1 (resp. group 2) with
respect to the PC are positive. The same procedure is used to compute the factors in each group
for all dates in regime H.'® From Figure E.5 in the SM we notice that all the loadings are positive
in each regime and group, so the first factors can be interpreted as “Market factors” for the
two geographical regions. For each group, we construct the unique time series of demeaned excess
returns of the two factors, and we show the cumulated version of these two time series starting from
the value 0 in December 1990. As the original non-cumulated factors are estimated from a panel
of demeaned (within each regime) excess returns of individual assets, they are themselves (linear
combinations of ) demeaned excess returns, and thus have zero mean within each regime. Therefore,
the cumulated factors can be interpreted as cyclical variations along long-run factor-specific trend,
and no long-run linear trend appears when plotting them. To ease factor interpretation, Figure 5
also shows the dynamics of the Miranda-Agrippino and Rey (2020)’s GFC factor estimated from
world-wide cross section of risky asset prices.'*

The two groups of equity returns we consider follow a group-specific cycle, which is highly cor-

15 This provides the

related, although not perfectly synchronized, with the global financial cycle.
empirical foundation for our analysis based on a group-factor model. Our empirical specification
thus sheds light on the dynamics of systematic comovement as induced by changes in U.S. macroe-

conomics uncertainty for two sets of equity portfolio returns that follow group-specific cycles. Our

2These standardizations have no effect on the fit of the model, and on the values of the common components and
of our measures of systematic comovement.

30ur standardization also implies that large (resp. small) changes in absolute value of the factor in a date
correspond to average large changes (resp. small) across most of the excess returns of individual assets in each group.
Moreover, the order of magnitude of these effects are comparable across regimes and groups simply by looking at
trajectories of the factors themselves.

MMore specifically, we show the global common factor of Miranda-Agrippino and Rey (2020) as extended by
Miranda-Agrippino, Nenova, and Rey (2020) to cover the time period up to April 2019 and to reflect a larger and
richer set of price series and compositional changes in global markets with the inclusion of Chinese stocks. Data have
been downloaded from Silvia Miranda-Agrippino’s website http://silviamirandaagrippino.com/code-data/.

5The correlation of the first U.S. (resp. International) not-cumulated factor with the non-cumulated global finan-
cial cycle of Miranda-Agrippino and Rey (2020) is 0.80 (resp. 0.86).
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Figure 5 — Cumulative returns of First PCs in both panels
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This figure plots the estimates of the cumulated global factor of Miranda-Agrippino and Rey (2020) together with
those of the cumulated first factor for U.S. and international equity markets obtained according to the empirical
specification detailed in Section 6.1. All cumulated factors have been standardized to have zero mean and unit
variance to ease their comparison. Light gray areas correspond to the high macroeconomic uncertainty regimes,
while the dark gray areas correspond to the NBER recession rates. All the NBER recessions coincide also with high
macroeconomic uncertainty regimes, but the opposite is not true.

results show that, within those fluctuations, the two underlying factor models experience synchro-
nized changed in the loadings that allow to identify variations in systematic comovement between
the two groups: these are such that both pairwise and average systematic comovement are higher
during periods of high macroeconomic uncertainty.

Our results have implications for investors and policy makers. From a portfolio choice per-
spective, our findings suggest that the benefits from global diversification are not constant over
time and become weaker during periods of high U.S. macroeconomic uncertainty; they also imply
that investors may have to rebalance their portfolios depending on how macroeconomic uncertainty
affects factor loadings.'® As shown in Ang and Chen (2002), correlations between asset returns
tend to increase during market downturns: our results thus imply that periods of potential market

instability are associated with high U.S. macroeconomic uncertainty. This suggests that regulators

6See Lehmann and Modest (2005) for a discussion on the link between factor loadings and portfolio weights in
latent factor models.
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may find it useful to track this indicator to monitor stability in global financial markets.

7 Conclusions

We develop measures of pairwise and average systematic comovement for high dimensional approx-
imate group-factor models. We propose consistent estimators for these measures and analytically
derive their asymptotic distributions. We further build formal procedures to test for changes in
systematic comovement induced by threshold-type discrete shifts in the factor loadings. A com-
prehensive Monte Carlo analysis shows the good finite sample properties of our estimators and
test statistics. An empirical analysis of U.S. and international large equity portfolios shows that
measures of both pairwise and average comovement between the groups increase during periods of
high U.S. macroeconomic uncertainty over the course of the global financial cycle.

Our work can be extended along several directions. On the methodological side, it would be
interesting to have continuous variation in the factor loadings to allow for corresponding continuous
dynamics in systematic comovement. Our framework is valid under the maintained assumption
that the two groups are made of balanced panels: the case of unbalanced panels is definitely worth
exploring. From an empirical perspective, our results may be useful to shed light on the systematic
degree of, and comovement between, different classes of financial variables, which could provide
valuable information for macroprudential policy implementation. These issues are high in our

research agenda.
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Appendices

We use the following notation. Let ||A||= \/tr(A’A) denote the Frobenius norm of matrix A.

A Assumptions

Assumption A.1. For g =1,2 and jo = L, H: E[ly;,+(6)) g]gt] = 0; for all 6, and some ngg X
1T

K gi, Positive definite matriz Efgj (0g), T30 Tgjye (09)Lg5,:(04) gjgt gj’-g E(}gj (0g) as T —

oo, E H'fgjgtH < 00.

Assumption A.2. For g = 1,2, j, = L,H and iz = 1,..., N, ))‘g]'z < A < oo and

LA AD 0
HN A/Agjg_DAgJ

0 0
— 0 as Ny — oo for some ngg X Kg positive definite matrix DAgJ

Assumption A.3. There exists a positive M < oo such that for g = 1,2, j, = L, H, for all 0, and
for all (N, T),

1. E (egiys) = 0 and B |egi o|> < M;

2. E [Lyj,t(09)gj,0(0g)egigi€qiyo] = Tajgigtn(0g) with [Tgjoi t0(0g)| < [Tgjyigte| for some 14,500 and

for all iy, and T™1 Zthl Zle | Taigigte| < M.

3. E [T*l s 1ngg (Og)eistCotyt]| = Taigiaty 0): 10usityt, (0)] < M for allly, and
Zzgq lg_1 |Fgigtaty (0g)] < M;

4
4. E ‘T_l/Q ?:1 nggt (gg) CgigtCqlgt — E [nggt (eg) egigteglgt] ‘ < M, for every (ig’ lg)'

Assumption A.4. There exists some positive constant M < oo such that for all 0, and for all

(Ng, T),

_ N,
E {Ng 1 >,

2
T_1/2 [23:1 ]Igjgt (eg) fgjgtegigt} H } < ]\47 g = ]_, 27 jg = L7 H.

Assumptions A.1-A.4 are the natural extensions of Assumptions A-D in Bai and Ng (2002) and

ensure consistency of the least squares estimator as applied to the model in (1).

0
Assumption A.5. Forg=1,2 andiz=1,..., LN;"J with 0.5 < a(g) <1, A gqu #* L)‘ng for any

KgL X KSL full rank matriz L.
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For ¢ = 1,2, Assumption A.5 is sufficient to identify the threshold factor model from a linear
specification. Following Massacci (2020), it requires that enough cross-sectional units experience
a synchronized threshold effects within each group. If this condition fails to hold, the principal
components estimator as applied to the misspecified linear model would achieve the convergence
rate min(y/Ny, V/T) derived in Bai and Ng (2002) for correctly specified linear factor models and the
threshold effect would not be identified. Assumption A.5 is trivially satisfied if KSL # KSH: in this
case the change in the number of factors identifies the regime shift. If KS = KSH then Assumption
A.5 holds provided that A, Hi, is not obtained as the rotation of Ay Li, induced by the same matrix
L, forigz = 1,..., LNga gj: if this is not the case, the model becomes observationally equivalent
to a linear model with a regime change in the covariance structure of the true factors, which is
consistent with Assumption A in Bai and Ng (2002). Assumption A.5 orders the cross-sectional
units for expositional purposes only: this condition can be relaxed without any consequence.

For g = 1,2 and j, = L, H, define 6}, (6,) = E [( O A, — PO ) 200 = eg} and let

fzg (24¢) be the density function of zg.
Assumption A.6. For g =1,2 and j, =L, H:

T
1. {fth,ngt,zgt,egt} ! 1s strictly stationary, ergodic and p—mizing, with p—mizing coeffi-
t

cients satisfying > >4 pjﬁ/nQ < 005

4 4
2. for all 04, E <H~f3jgteigt |2gt = 09> < C and E <Hf3jgtH |2gt = 99> < C for some C < o0
and forig=1,...,Ny, and fz,4(0,) < f < oo;

3. 5fgl (0g) and fzg (24¢) are continuous at 65 = 98;
4. 5ng (0g) >0, forig=1,..., LNO‘gJ and 0.5 < ag <1; fzg (2g¢) > 0 for all b,.

Assumption A.6 suitably extends Assumption 1 in Hansen (2000), to which we refer to for further
comments: it is required to derive the convergence rates of the estimators for #) and 63 and thus

of the principal components estimators for factors and loadings.

Assumption A.7. For g=1,2, jo=L,H, andt=1,...,T, as Ny — oo,

Z Hg]gt ng’geglgt _> N (0 ng t)

g ig=1

where nggt = limp, 00 Fg Z iy Zlg_l giato )\(g);q [ g]qt(é?g)egigteglgt] .
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Assumption A.8. For g=1,2, jo=L,H, andi=1,...,Ng, as T — oo,

T
0
E gjg fg]gtegzgt _> N (0 ( g]gﬂg) ’

where

T T
1
0 : 0 0
ngglg = lim T ZZE [nggt(eg)ﬂgjgv(eg) g]gtfg]gyeglgtegzgv} .
t=1 v=1

Assumptions A.7 and A.8 are analogous to the central limit theorems in Assumption F in Bai
(2003): they allow to obtain the asymptotic distribution of the principal components estimators

for factors and loadings.

Assumption A.9. Forg=1,2,i,=1,...,Ny, and t,v =1,...,T, the idiosyncratic components

€e14,¢ and €2,y are mutually independent.

Assumption A.10. For g = 1,2, and j, = L,H, T™! Zthl ]Iljlt(0?)H2j2t(98)f{)]1tf2j2t E(}lzjljg

as T — oo, for some th X KQJ2 matric 2(}12]‘1]‘2-

Assumptions A.9 and A.10 impose conditions on the idiosyncratic components and the factors,

respectively, that hold across the two groups.

Assumption A.11. The sequence of weights {wy;, }i,=1,...N, 15 such that limy, oo ij-‘;ﬁwgig\g

C, where C is a strictly positive finite constant, for g =1, 2.

Assumption A.11 ensures that the asymptotic variances of the systematic covariance and correla-
tions, which are defined as averages with generic weights wy;, across individuals in the two groups,
converge as N1, No — +00. For both g = 1,2, this assumption accommodates the two most inter-
esting cases (i) wgi, = 1/Ny , Vig, and (ii) wy;, = 1 when i, = i3, while wy;, = 0 Vig # i,. Note
that to ensure the convergence of the variances of the systematic covariance and correlations it is

N,
not necessary to assume that Zigg: 1 Wyiy = 1.

Assumption A.12. Fuctors fgth and idiosyncratic components ege; ., are mutually independent

forallt,v=1,....T, j,=L,H, g,g* =1,2.
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B Covariances estimators

In this section we provide consistent estimators of the asymptotic variance-covariance matrices

appearing in Theorems 1 - 5.

B.1 Estimators for Theorem 1

Similarly to Bai (2003), our Assumption A.9 implies cross-sectional independence of the errors

within each group g = 1,2 and in each regime Jg- In this case, matrix I'y; ¢ defined in Assump-

. . . 0 0 0 ~ .
tion A.7 simplifies to: T'g; , = Nhgloo N, Z )\g]glg)\g;glg [nggt(Q )e €9, t} . Let €4;,+ be residual
ig=1

estimated at time ¢ for individual i4 in group g as:

ég,igt = ]Igjgt(ég)(x%imt — ég,igt)7 t= 1, ...,T, ig = 1, ..,Ng, g = 1, 2.

N,
. 1 = & < .
' 0 g . _ N
The estimator of T'y; , is: L'gj s N g AgigigNgjgig Lajqt (O )é €gi,¢ » and the estimator of Vg] igt
9 i4=1
is:
1 —1
‘/gjgigt gjgzg E :Ag]glg 9gig g]g E :)‘gjglg 9iglg Agjgig :
zg—l 19—1

The estimator of matrix £ ;, is nggig = ﬁjgig,o +>7 <1 — q—%l) (ﬁjgig,v + ﬁ;gig’v), where:

R 1 R S
Djsigw = 7 > gt (0 gspt—o(0g) foi i 4 vlaiigtégist—v -
t=v+1

This estimator is a Newey-West estimator computed only in the dates characterized by the regime
Jg,» and the role of the indicator function is to exclude from the computation all the dates which

are not in regime j,. Then, the estimator of Wgoj iyt 18

A~

. S -1 . -1 .
nggigt = nggt(eg) (2f931]2> nggig <2fgj1j2> Tt

where 3¢, == — Zﬂljg (01)T2jyt(02) fo £y, with g =1, 2, and the estimator of QY ; ; ;.. is:

9 —(p . N2 (82 Y. . ~2 1470 A N2 (2 v 2 YA, . .
Qj1j2i1i2t - (Cljlllt) (ILLNQ-V-ZJZTIQt—"_ILLTWQjQiQt) + (CQJQZzt) (MNl‘/ljlllt+NTW1]121t> )
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with iy, = Cnt/+\/Ng, and fir = Cnr/ VT. Finally, the estimator of the asymptotic variance
QY1 ist Qiyiye = Yoper 2ajoeri Tjit(01) 2556 (02) Qjy joinist -

B.2 Estimators for Theorem 2

The estimator of le o (W1, w2) is:

T2 )
1,0 | Wy o, (W1, w2)
Ty (1. 62) - Ty (01,02) L7

thz (wlv w2) =

+ Q12j, jo.j1jo (W1, W2 W1, W2) + Q215 js 5y jo (W1, W2 w1, wa)| , (B.1)

where the generic terms ‘i'ﬁjz,jfj; (w1, wa), thhdm (w1, we; wi,ws), and Qleljz,jfjg (w1, wo; Wi, ws)
are computed for (j1,j2) = (ji,J3) and wy, = wy, g = 1,2. The more general definitions of these
three terms, allowing for generic regimes (ji1,j2), (j3,77) and potentially different weights wy, wy,
will prove convenient to simplify the formulas for the estimators used in Theorem 5. The three

terms in the square brackets of the last equations are:

q

~ ~ v A~
W ia i3 (W1 ws) = Dy, s o(wi, wo) + 2 <1 - q+1) Dy j, jrjso(wi,w2)  (B.2)

v=1

with:

A

Dj, j, jz iz (W1, w2)

T
1 R A A PR . . -
= — > Tiye(00)Dajoe (02) s o (01)Dajsi—0 (02) (G jnwn st — Ejrowr o) (Citsgun awat—v — Citjgw wa)
t=v+1

for v = 0,1,...,q, ¢jijpwiwst = Zﬁh:l Zﬁfil w1 5, w235 115, (01) L2556 (02)Cirints a0 Cjy jowy ws =
1

Ty, jo (01,02)

covariance of order v the product of (averages of) common components ¢;,;,; computed only for

Z;‘FZI Cipjown wot - Quantity bjljz,jljz,v(’wh wo) is the estimator of the asymptotic auto-

the dates corresponding to the regime j; and jo. Importantly, the sample average éjlewth is

estimated only in the dates corresponding to the regime ji, jo. Moreover,

A N N . -1 . A -1 . a
Q12152 5 33 (W1, Was WI, wh) = Ay, (w1) gy <2f232> Qajj3 (w2, w;3) (Emg;) Bt195p55 Mgt (WD),

(B.3)
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~ ~ ~ ~ -1 . ~ ~ ~
Q214,51 53 (W1, wa; Wi, w3) = Ay, (w2) X1y jy <2f1j1) Q1 jz (w1, w7) (2f1j1‘> Bo1j5 A2z (W3),
(B.4)
Ng

. . . . 1 . PN
where for g = 1,2, Agj, (g, w}) == > wgiy Ngjyiyr Se12juj = T St Tyt (01)T2450 (02) Fre Fhy,

ig=1

q
nggjg <w97w2) = ngj;O(wga + Z < q+ 1> [ngj;w(wm ) + D]g] v<w97w2):| ’

v=1

. 1 . P
and ngj;;,v('wm'w;) =7 ) ]Igjgt(gg)ﬂgj;t—v(eg)fgifé,tw (qu 1 Zlg 1 Wy,ig gl €q,igtCqlst— v) .

B.3 Estimators for Theorem 3

. Wi . .
Let we,gj,jyi, = #. The estimator of QOR,jm is
O-ngIJZig
T 2
QRjijs(Wotjijos Wo2j1ja) = | o2 | | YRijrjzirie (Wo, 1512 Wo 25152 Wo, 15152 Wo,25155)

Tj1j2 (017 92)
+Q12j1j2.51j2 (Wo 141 j2» Wo 241525 Wo, 11 j2 Wo2j172)
+Q211j2,5152 (w071j1j27 Ws,251j2; Wo,1j152> w072j1j2) +2 Evjijogije T2 B2ijo,guge |5 (B.5)
where the variables inside the square brackets are defined below for the generic couple of regimes

(J1,72), (41, 75), as it will prove convenient to simplify the formulas for the estimators used in

Theorem 5. The terms inside the square brackets are:

I 7 7 . 7 . . 7 . . _— *
U ot i3 (Wo s Wo 2o} Wojt 5 Wo2j133) = Dy 7]1327]1]270+Z ( +1>DR’j1j2vjfj§:v’
with:
| 7
. B o i R
Dijijagtize = 7 > Tujye(00) T (B2) 1710 (01)Tj50 0 (62)
t=v+1

[CR 1ot (Wo 11 jo s Wo25152) — CRj1 jo (Wo, 1y o Wo 21 4o )}

[ Rojiigt—o(Wa 15155 Wo,257j5) — CRj1j3 (wa,urj;vwa,zﬁj;)} ;
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N1 N2 A, 2 2

(e WDene ) — o o | Chgpinist  Thae Tigt
cR,Jl]zt(valhjmw072j1]2) = Wao,1j1j2i1 Wa 2415212 Cirgainia | > 2(Gatininin)?  2(Gw2i1iaia)? )
Cjrjairiz Oz1j1j211 Ox2j1 7212

i1=112=1

1

Ty, (01,02) Zt 1 CRj1jot (W11 jo s Wo 251 3,) - Moreover,
172 ’

and g jy j, (W, 15, o> Wo,2j1 )
Q121725155 (Wo,Ljnjo» Wo 251 o3 Wo 151 5 » Wo,27 53 ) Ad Qa1 v i3 (War 11 5s Wo 2142 Wo 5 i3> War27 5 )
can be computed using substituting w, with W, 4;, j,, and 'w; with ﬁfa,gj{jg in equations (B.3) and
(B.4), with g=1,2. The estimator of =° 912,01 3 is ég,jljmjfj; = DE,gjljz,jf];O"’_Zg:l 2 ( q+1) D"',gj1j2,jfj§,’ua

, 1
where D ;0150 = 7 Dt i1 Lojyt(0g)ajpi—o(01)laj;e- o(02)G, Gt jsewn for v = 0,1,.000,

and
N1 N .
A[ = S/ 3 £ . oo .
Gljppt = Z ng IJuzwo?mz)‘ng £12j1jo (Eﬂh) Jijielrine
11=11i2=1
N1 No o
A[ — 7 . . 7 . . A/ 3 3 £ . A .
G2j1j2t - Z Z w071]132w0,2jlj2>‘1j1i12ﬂ2j1j2 <2f2j2> f2j2t6212t )
i1=14dp=1
N1 No
AIT _ Cirjginia §, P .
Gg]fjg*t - Z Z Wo, 155 Wo, 251 53 52 )‘gj;igfgjgtegﬂgt ) g=12.
i1=11ip=1 zlj7jsi
B.4 Estimators for Theorems 4 and 5
The estimator of Q s ]* i in Theorem 4 is :
AA 2.72 A
leijTjS(wlu’lUQ) = QJUQ('U’th) +QJ 5 (w1, wa) — G 0N T A X | Wi jagi s (w1, w2)
Tj5, (01, 02) - Tjz 5 (61, 62)
+Q12;, 5,553 (W1, w2) + Q215 jy 515 (W1, w2) |, (B.6)

where all the terms in the RHS of the last equation are defined in Section B.2.

The estimator of Q ]1 G233 in Theorem 5 is :

N . A A . A A
QR jjojriz = QR (Woljijs Wo2jijs) + Qrjijz (Wo,15155, Wo 257 55)
92.72 .

- 77 77 X AR j1ja. gt i3 (Wa 1 j2s Wa,2j1j25 Wa, 157 55 » Wo, 257 53)
T}y, (01, 02) - Tjz 5 (01, 02)

+ Qlelj%jfj; (wcf,ljljza Wo,2j1 25 Wo, 15555 > wU,QJ'fj;) + Q21j1j27ji‘j§ (wa,ljljzv Wo 251725 Wo, 157 55 » w0,2jfj§‘)

T Sgue.dt5 T 220020155 T 2151550102 T 22,5155 5142
where all the terms in the RHS of the last equation are defined in Section B.3.
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Online Appendix

C Proofs

C.1 Proof of Proposition 1

To simplify the proof, we assume that both the threshold variables, and the threshold values are the
same across the two groups, that is z1; = 29: = 2z, and 01 = 05 = 0, respectively. Therefore we only
have two regimes - synchronized across the two groups - denoted as j = j; = jo, where j = H, L.
Without loss of generality, we also assume that the number of factors in group 1 (resp. group 2) is
K, (resp. K3) in both regimes j = L, H, with K; < Ky, which implies min(K;, K3) = K;. Under

these simplifying assumptions, model (1) for the generic regime j can we written as:

Tie = MNijfie + e, (C.1)
Tojr = Nojfoji + ez, (C.2)
where fgjt = fgj,c and Ag; = [)\gjl, e /\ngg]’. The factors have zero mean within each regime,

and the variance-covariance matrix is:

/ /
v Fae | _ 5 Futhye Juelope || Brn B  i-HI.

f2jt fojifije fojefaj Yo 22
where Y11 and Yoo are full rank. Let Dj, be the (K, x K,) diagonal matrix collecting the
eigenvalues of Y4, and Cj4 be the (K, x K,) matrix collecting the associated eigenvectors, that

is:

Y1iggCig = CigDjg C'J’-ngg = ngCJ’-g = Ik, , g=1,2 j=H,L.
Define the full rank matrix L;, = D;gl/ZC’]‘g and its inverse Lj_g1 = ngDjl»;Q, for ¢ = 1,2 and

j = H, L. Then model (C.1) - (C.2) is observationally equivalent to:

T = Aljfljt"‘eljt? (C.3)

T2t = 1~\2jf2jt+€2jt7 (C.4)
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!/

where ./~\gj = Althj_gl and f1jt = Ljqfq;t- By definition, we have ./~\gj = [S\Qﬂ, e ,5\ng9 , where
ngig = (Lj_gl)’)\ljig. The factors in the new model (C.3)-(C.4) can be written as:

fije Lj O(ky %K) St

fojt O(ryx K1) Ljo Jojt

and their variance-covariance matrix is:

v Pue | _ Lip  Oxroy | | Zpmn Bz | | L Ougx
fzjt i O(rx K1) Ljo Z/fj12 Yyj22 O(leK2) L;Q
| LSl LpSpnelly | | Ik @
| Lip¥j0Lh1 LjpXgjoally ®; I,

where the last equality follows by defining <I> =Ljp¥ fﬂgLﬂ, and from the fact that:
LigSpnli, = D;2ClS1i6,CigD; 7 = D)?DjD = Iy, forg=1,2 j=H]L.

Therefore, we have just shown that by allowing the factor loadings to change in each regime and
group - as we do in our model - we can always rewrite the original model for each regime as an
equivalent factor model where Var|fy;;] = I, for g = 1,2, and E[fljthJt] = @, is the K1 x Ko
matrix of the correlations between the (rotated) pervasive factors in groups 1 and 2, in regime j.
Therefore, the systematic correlation can be expressed as:

cov( N, Frjes Noiio fo N @5 hoji
ngﬂlm _ ( 1]z1f1]t 2]12f2]t) _ 1jiq1 ~J\27%2 . (05)

\/V(ﬂ?ljz‘l) - V(225 \/V(xljz‘l) - V(225

The zero correlation assumption between factors and idiosyncratic innovations implies:

V(%jigt) = V( g]zqujt + €gjigt t) = gqu (fgjt) gjig T V( egﬂg Z)‘gﬂ et ag]zq g=12.

Let A; and B; be the matrices of canonical directions associated to the ordered canonical corre-
lations between fljt, fgjt, that is A; and Bj are (K; x K;) and (K2 x K3) matrices, respectively,
such that:

ALA; = MjAL = Ig,,  BiB; = BB} = Ix,, (C.6)
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and

;= A; |D; Okyx(o—K1) | B (C.7)

where i)j is the (K; x K7) diagonal matrix of all the K; canonical correlations between fljt and

fajt:

¢i1 0 .. 0
0 ¢io ... 0
o = %52 7
0 0 . 0
00 . i |

with 1 > ¢j1 > ¢j2 > ... > ¢j K, > 0. As discussed at the end of Chapter 12.2 of Anderson (2003),
equation (C.7), corresponds to the Singular Value Decomposition (SVD) of matrix éj. It can be
shown that the columns of A; are the eigenvectors of <i>j<i>9-, while the corresponding eigenvalues

are equal to the squared elements of matrix ®;, that is:
DDA = A;®7 . (C.8)

It can also be shown that the columns of B; are the eigenvectors of i);éj, while the corresponding

non-zero eigenvalues are equal to the squared elements of matrix ®;, that is:

jod "” ) q)? O(le(Kg—Kl))

O((ka-K1)x K1) O((Ka—K)x (K2~ K1)

Equations (C.6) and (C.7) imply:
A®iB; = |®; 1 O, x(rp—r1)

Therefore, factors fljt and fzjt can be rotated by means of matrices A; and Bj respectively, in

order to generate two new set of factors fljt = A;-fljt and fgjt = B;fgjt such that:

V(fije) = AV (fujn)A; = ALA; = Ik, | V(fojt) = BV(foj0)Bj = BiB; = I, ,
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and

Cov(fljt, f2jt) COU(A;'fljt, B;ijt) = A;COU(fljt, f2jt)Bj = A;'(i)Bj

= (PJ E 0K1><(K2_K1) . (C-g)

The new factors fljt = [fljt,l, s fljt7Kl]’ and fgjt = [fthjl, s fvljthz]’ are commonly referred to as
canonical variates. By construction the fljt,l and fgjm are the linear combinations of fljt and fgjt
with the maximum correlation, that is ¢; 1. Moreover, fl jt,2 and fgjt,g are the linear combinations of
fljt and fgjt uncorrelated with f1jt,1 and fgjt’l, respectively, which have the maximum correlation,
that is ¢;2. Analogously, fljt,g and fgjt,g are the linear combinations of fljt and fgjt uncorrelated
with [fljt71,f1jt,2]’ and [fgjt,l,fgjug],, respectively, which have the maximum correlation, that is
®;,3, and so on.!”

By using the orthonormality of the the canonical direction matrices A; and Bj, that is the

equations in (C.6), we have:

My Fue = Njo A4 e = Mi Fue, (C.10)

Nojin it = NojiyBiBifajt = Nojiy fajt, (C.11)

where S\Ijil = 5‘/1jz‘1Aj and ng@ = S\’jSQBj. By using equations (C.10) and (C.11) can rewrite model

(C.1)-(C.2) as an observationally equivalent model with new factors fljt and fgjt:

o oy
Tt = Ay Juje +erjine = A Jije + ejige (C.12)

R oy
Tojist = AgjipSojt +€25iit = Ngji, f2t + €2jint, (C.13)

Equations (C.10) - (C.13) and the assumption that the factors and the errors are uncorrelated

imply that, for g = 1,2 we have:

( gjtg fgjt) - V()‘/g]z fgjt) = gﬂ (fgjt gjig ZAQ]ZQ, Z)‘ljzg,fv

"For a thorough introduction to canonical correlation, canonical directions and variables see Chapter 12.2 of
Anderson (2003) and Chapter 17.16 in Magnus and Neudecker (2007).
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and

Kg
o 52 2
Vizgjigt) = V(Agji, fojt + €gjigt) = Z)‘gjig,f+agjig7
=1

(C.14)

The last four equations and the definition of the population R-square given in equation (13) imply

that
R2. ( gjig fgjt) . ZZ 1 gju,
g]Zq V(.’IJ t) Z )\ +
97ig =1 "gjig L Ug]n
9 o Ko %o
_ V()‘;jigfgjt) 2 /\gﬂg,
= Vi) = =5 o , g=1,2. (C.15)
97igt 20 gjigt T Ugjh
Moreover,
N/ i N/ r N/ i r Y X : Y
cov(Nyjiy frjts Mjiy foje) = Nijiycov(fuje s faje)hajin = My, [(I)j b OK) x (Ka—K) | A2
KoK
= Z)‘1311,€)‘2jzz,€¢j€ + Z 0- >\2ng,€ . (C.16)
= (=Ki1+1
By substituting (C.14) and (C.16) into equation (C.5) we get
Ry ’Zf:ll Ajis e A2jis, Mbﬁ‘
1254112 K K
\/Z/ 11 )\1j71 4 + Jl]l \/Zl 21 )\2]12 ¥4 + 02j12
K, |y . K |y ¥
_ Py ‘Alm, ’ ’)‘2ji2 ¢| Pje Dj1 D0 ‘Alm ¢ ‘Azjia,fz
= K K K K
\/Z . )\1]11 4 + Jl]zl \/Z : )\2]22 ¥4 + 02312 \/Z . )‘1]11 14 + Ulel \/Z 2 )‘2312 4 + 02312
K K
(725 11 )\%]11 4 ! )\gjlg 14
< ¢ja
K K
\/ZE 11 )\1]21 4 + Ul]zl \/Zf 21 >\2312 ¥4 + 02312
it 1 M it
Ji1, J12,
< Pin = ¢j1 - \/R%il : \/joizﬂ

K1 K2
\/ZE 1 )\1]21 4 + Ul]zl \/Zf 1 >\2j12 ¥4 + 02]12

where the first inequality follows from the repeated application of the triangle inequality and the

fact that the canonical correlations ¢;, for all £ = 1, ..,

K1, are non-negative by definition. The

second inequality follows from the fact that ¢;; is the largest canonical correlation, and again

because all the canonical correlations are non-negative.
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Cauchy—Schwartz inequality, while the fourth inequality follows form the assumption K; < Ka.
The last equality follows form the definition of the population R-square in equation (C.15).

Finally, assuming that wg;, > 0 for all i, = 1,..., Ny and g = 1,2, we have:

Ky ¥ o
Ni N ; N1 Np ‘Zgzl Aljit 0 A2jis, é@bé‘
E E wlilw%Rujim < E E W14, W24y @ s
11=112=1 i1=112=1 \/ZZ 1 >\1j11 V4 + Uljl \/Zf 1 )\2]1,2 ¢ + 02]12
K, |y o
. N1 N> Eﬂfl ‘)\1]'1'1, ‘)\2]‘1'2( ¢j,f
> E E W14, W25
— “ "2 ZKl )\2 + O' ZKQ )\2 +0.2
i1=112=1 1541, 151 2ji2,0 2ji2
<

o (Bo) - (S

i1=1 12=1

]
C.2 Proof of Theorem 1
The proof of Theorem 1 requires following Auxiliary Lemmas.
LEMMA C.1. Under Assumptions A.1 - A.8, forg=1,2, j,=L,H, andigz =1,...,Ng,
., .
)‘gjgig B Hggjgjg (60),)‘219 g ‘/gjg (9.2) g]g g]g Z Hg]g tegzg + Op <02 ) ’
N, T
e (09) D, (00)' A% Ay, (00)
0 0,) A Ay (0
3 gJ 93g” 999\ g/ ¥ _
Hggjgjg (62) = z T : Ngg ‘/g]g (02) ! (017)

and ng (00) is the diagonal matriz consisting of the first Kg;, eigenvalues of ﬁ)mgjg (0g) =

N T Z Ly, (0 )af:gtwgt in decreasing order.

Proof of Lemma C.1. The result is analogous to equation (B.2) in Bai (2003) and the proof is

omitted.
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LEMMA C.2. Under Assumptions A.1 - A.8, forg=1,2, andt=1,...,T,

for — [Hglt(92)ﬁg911(90) + HQQt(eo)ﬁgg22(02)]_lfgt

= Hglt(eo) ] gll 60 Z ]Iglt glz €gigt +]Ig2t(0 ) 922 90 Z Hth 927, €qgigt

ig=1 ig=1

10, [ )40, [ =1 —
b VNyCn,T b VTCn,r .

Proof of Lemma C.2. The result is analogous to equation (A.5) in Bai (2003) and the proof is

omitted.

For g =1,2, j,=1,2,ig=1,...,Ny,and t = 1,..., T, let (gj igt = Cgjyiyt — )iyt~ We then
have
Hljlt(91)H2j2t(92)61j1i1t62j2i2t = Hljlt(e ]I212t( (cljlzlt + C1J121t)(cg]212t + C2J2Z2t)

) 2)
= Tujue(00) 2ot (B2)el; 110000 + Tujit (1) oo (02) i, Cojoint
0, )

+]I1j1t( )H2J2t( C1]1%1t623212t + Hl]lt(al)ﬂ%ﬂ(62)C1]1%1t€2]222t

(C.18)
By Theorem 3.4 in Massacci (2017), we can write (ég — 02) =0, (T_l). By continuous mapping

theorem, this implies that

ngt(é ) ngt(eg) + Op (Tﬁl) , 9=1,2, jg =12 (0-19)
Combining (C.18) and (C.19), it follows that

Tyt (00)Tajoe (02)1jyintlogmine. = Tujue(0) T2zt (09)eY; 5110350000 + T1jut(09)€3 111155000 Op (T71)
+H2Jzt(93)0131111502321215011 (T ) + Clj1i1tcgj2i2top (T_l) Op (T_l)
30 (09) D201 (09) €Y 111 Cognint + Tt (09)6Y 4, Cooint Op (T )
"‘H?ht(eg)cljlzlt@JzzztO ( ) + Clj1i1t§2j2i2t0 (Tﬁl) Op (Tﬁl)
_Hh]lt(e(l))]l?ﬁt(02)623212t<1]111t +Hljlt(91)0232z2tC11111tO ( 1)
+H2]2t(98)c ]222tC1]111tO ( ) + 02j2i2t§1j1i1t0p ( 1) Op (T_l)
11,6 (09) D24 (09) Gy 1Cognint + T1j1e(09)CrinintCosnintOp (T71)
(69)¢

_]11125(:2]2Z2t0 ( ) + C1j1i1t62j2i2t0p (T_l) Op (T_l) .
(C.20)

+oj,e (0
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By Assumptions A.1 and A.2 we have

Coint < it I<I A PV
Coigigt 1 Cgjgigt 1S gjglg ng gjglg

H 9ig tH <A HfgojgtH =0,(1), g=12. (C21)

For g = 1,2, consider

égjgigt = Cgjgigt — nggigt
- gjqzquiqt g;q%q s?th
= [ gjgzgfgjgt + )‘%gzg AgngJg( O)fgjg )‘%gzg AgngJg( 2)fgjgt - Ag}gig g(,)jgt]
= Aggg igt [ Aggjgjg(eo)fgjg ggg ] [)‘;g ig Agﬁgzg AgngJg( 0)]fgjgt
= Agnggﬂggjgjg( )[fgth gngJg (90) gth] [ngqzq - Agjngﬁggjgjg (90)]fgjgt

= )‘gjgigHggjgjg( )[fgjg gngJg(Qo) gojgt] + P‘gjgig - Hggjgjg (00) )‘Sjgzg] fgjgt

and notice that for Iy (69) =1

osats = Hagioia (09 Nyji,) Foist = Maisia = Hogivs, (09)' X055, ) Fai
+[5‘gjgig_ﬂggjgjq(eo)/’\gjgz] gngJq ) ! gjgt
—[S‘gjgig_ﬁggjgjg(go)/)‘gjgzg] gngJg( ) ! gjgt

= [S‘gjgig _I:Iggjgjg(go),’\gjgzg]/ AgngJg(gg)_l _((])jgt

+[A9jgig - Hggjgjq (00)/A2]qzq] [fgjgt - Hggjgjg (00) Qth]
by Lemmas C.1 and C.2 and Assumptions A.7 and A.8, it follows that

. N N N 1
0 0 0\—1 g0 O
P‘gjgig _Hggjgjg(eo)/)‘gj ig ] fgjgt [Agjgig Hggjgjg(g )/)\gﬂgzg], ggjg]g(e ) 939t P ( N, T) ’
g

which implies that

nggigt = Ag; Z gg]g]g( )[.fgjg gg]g]g (00) g]gt]
) f ; - 1
Hgjiiy — Hogjis (6)' Xgj, zg]/ Hygj,,(09) " g0 + Op <NT)
g
- A.g;'gig Hggjgjg ( )[.fgjg gg.]g]g (00) 1 g[])jgt]

-1 A 1
+f [ 997gJg (92),} [)‘gjgig - Hggjgjg (QO)IASngg] + Op (]\7T> ’
g
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and, using again Lemmas C.1 and C.2 and Assumptions A.7 and A.8 we get:

- 0 & 0 0y/
nggigt = Ag;glg gg]gﬂg(a )HQQJng 9 Z ]Igﬂg gj lg Eglgt
lg—l
1 AL AO. 1 T
+fg£ [ QQJng(eo)} V;Jjg (02)71% Tzﬂgjgv(eo) 9Jg vegzgv
9 v=1

+0. ! + 0 L +0 - +0 b
' VN, T ! 012\ng . VNCON,T : ﬁCNgT

1 1 1 1 1 1
- 0 +0 <>+O 40, =— |+ 0y | —— | + O | ——
p(\/Ng) "\VT p( NgT) p(%T) p<ngCNgT> p<ﬁCNgT)
1
Cn,T '

Combining (C.20), (C.21) and (C.22) we obtain

CNT |:]11j1t(91)H2j2t(92)61j1i1t62j2i2t - Hljlt(0?)H2j2t(9?)69]111t03]212t:|

= Cnrljye(09) 256 (09)€Y 5 i 1 AY 5, Hoojo gy (03) Haojyj, (69) [ Sz 1H2g2t(92)>\2j2z26212t}

A% 1 1

. -1 A2 9
+ONTT1j 0 (09) T2t (09)¢Y i, Fotot {H22j2j2(98)/} Vaj, (69)~ % fozﬂbg‘szg)f%wezizv

Ol (00 Ty (62)CS, . AV, EEyy o (60) By (60 [ g Jlmeaxmeult]

. -1 A1 AV T1 T
FONTL (09 Lot (09) D500 F L1 |:H11]'1j1(9(1))/i| Vij, (69) 1 —L TZZ:l T1j0(69) F1j w€1ir0

N
1
+0,
<CWT>

For g = 1,2, the definition of ﬁggjgjg(ﬁg) in equation (C.17) implies that

A (HO)IAO

g]g

. 69 FO. (99
[Hggjgjg(eg),]_lzl 9]9( )j‘v ( )

and

AO/- AO ) -1 1
& 0 0y/ 93 9]
HQQJng (0 ) 993979 (6 ) ( ]g\fg . ) + OP (Cjz\ng .
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The last two equation imply:

Cnt [Hlyat(@l)ﬂ%t(Gz)éljlz‘ltézjﬂgt - Hlm(90)]12j2t(9?)0?j1i1t03j2i2t]
-1
AY. AY.
( j]2\[2 72 |:\/7 Zlg 1]12]2t(92)A2j2l262l2t:|

Cnt 5, (09) Fy), (63)" |
+ \/THl]lt(el)H232t<62>61]111tf2]2t[ = T = \fZU 1H232U(9(2])fgj21)e2i2v

CntT 0 0y,.0 0
= \/]TQ]Iljlt(al)szZt(QQ)cljllltAZ/]Q’LQ

—1
ONT (69206 AY AV, AL, Tyj,¢ (69) N9
+\/]T1 1]1t( 1) 2]2t( 2)62]27,2t 1711 Nl \/72[1 1 1]1t( 1) 1]11161l1t
Cnr Fy (O FD, (0D | [ 1
t—= \/T Hl]lt(e )HQJQt(QO)CQJQZQt-fljlt [ = T = ﬁ ZZZI Hljlv(e(l])f{)jlvelilv

10, ( C};)
(C.22)

and the result stated in the theorem follows from Assumption A.9 as N, No, T — oo using argu-

ments analogous to those in the proof of Theorem 3 in Bai (2003).

[ |
C.3 Proof of Theorem 2
Equation (C.19) implies
5 i\ 0 0 ~1
Lijye (91) I2jyt (92> = Tujye (07) Tojoe (62) + Op (T71) (C.23)
and
T ) ) T o o
Tj,j, <01, 92) => Dt (91) Loyt (92> = [Z Lyjie (67) Injee (69) | + Op (1) (C.24)
=1 t=1
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From (C.22) it follows that

T15,¢(01)T2j51(02) Giyint

AY AL\
= Hljlt(e(l))HQth(eg)c’%iQt +H1j1t(0?)]12]‘2t(90)\/7 1]111tA2]27,2 ( ]]2\[2 ]2 \/72221 H2]2t 02 A2‘72’L26212t

09)FY. (69 T
+H1j1t(0?)]12j2t(00)\/> ljlzlt‘f [ 2]2( )712]2( ) ] []-jjz]IZth(eg)fthQigt]

1
1 AV AY.
0 0 J J
+H1j1t(01)]12j2t(0 )\/ﬁlczjﬂﬁ)\l]”l ( ]1\[1 - m E :]Iljlt )‘1J1216111t

i1=1

1 Vi (09) FY, (69) 1
—i—]hjlt(@?)]bjzt(ﬂg)\/Tcgjziztfft/[ = T = ﬁ;]hjlt(@?)fﬂeult

1
O <0N> |

Substituting the last equation, (C.23) and (C.24) into the expression for ¢;, .4, in equation (16)

we get:

T —1
éj1]'2i1i2 = |:t21 H1j1t (0(1]) H2j2t (98) + Op (1):|
T

37 (B (9) T () + O ) ¢ { s (68) o (8)
t=1

1
1 AY A9, 1
+]I1j1t (0(1)) ]12j2t (02) \/Ec(l)jlnt)‘ggzzz ( 3]2\72 )2 \/]72 Z ]I2j2t (02) )‘2]27,2621215
ig

1 FO. (69) F9. (9 1
+yjp¢ (0(1)) loj,e (02) \/Tc(fjmtf ot [ 22 ( ) 2 ( ) \FZZ IEYY: (92) f2]2t€212t

1 AD/ AO
0 0 0/ 11715
+H1j1t (01) H2j2t (02) \/]VlCZ]QZQtAl]lZl < - : m =

1
[ Z Hljlt (01) )‘1]1%1611115]
0 M-
[Flh (9 )Fl]l 9 ) ]

+11je (69) gt (69) \f jnint Fihrt [ Z Iij¢ (6 )f?jltemt]

ez,
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Therefore,
1 T

\/Téjlj‘zillé |:T Z]Iljlt (0?) H2j2t (93) + Op (
t=1

1 T
AV (5 5  48) 08) S

JT (1 I 0 1 o Aggz 8]2 -t 1 N o o
VT T ; Hljlt (91) H2j2t (92) \/ﬁclhut )‘2j212 Ny \/— 2 2jat (92> A2j2i2€2i2t
1 T 1 F ) 9 F ) 90 T
+\/T _f t; Hljlt (9(1)) H2j2t (90) \/T61]121tf232t:| l 25 ( 2 2J ] T ; ]I2]2t (92) f2j2t6212t:|
1 T 1 A()IIA() 1 -1 . M
+\/T _T t; ]Iljlt (6?) H2j2t (90) m02j212t:| A?‘ljlll ( 1JN1 1 ) |:\/7 Z: 151t ( ) A?jlilelilt:|
[1 & 1 Fyj, (09) Fyj, (69)
+VT T Z: Tyt (07) Tajae (03) \/Tc%zzztflm} [ Ly (05) lj ] Z Ty ,e (67) flojlteli1t:|
VTLY )0, (-
Z Uit (60F) Tzjae (63) Oy 2 (C.25)
Noting that
[T Z]hﬁt (9?) Tgjye (9(2]) +0, <T> } X [1 +0, (T> ] [T Z]Iljlt (9(1)) o, (98) } + O, <T>
t=1 po
(C.26)
we have:

1

}1x[1+op<

T

1\ VT T
+ Oy <T> T t; Lijut (0 )]I2]2t (02) Cj1gainio
= VT, + 0, (1/@) .
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The last equation, together with equation (C.25) implies:

3

T -1
. 1 1 1
(cj1j2i1i2 - C.?leiliZ) = [T Zﬂljlt (6?) H2j2t (98> + Op <T> } x [1 + Op <T> ]
t=1

1 T
\/T |:T t; ]Iljlt (9?) ]I2j2t (08) ’ (C;)ljzillét - C?1j2i1i2):|

X
——

! ﬁ ZH (69) Loje (69) e | AY, %_1 ! 211 (69) A,,,e
5 151t \Y1) *2j52t \Y2) C1j141t 2joio Ny \/Ew . 252t \V2 2joig €21t
1z By, (09) Fy, (9] 11 &

Tt; 1jit (91) Iy (92) Cmmf jgt:| [ 22 ( 2)T 272 ( 2) ] [ﬁtg Lo, (93) f20j2t€2i2t:|

AY A

1
T 1 Ny
1 1
\F Z 11t ( ) H2J2t (92) 02]212t] )‘1J111 < J]l\rl jl) [ /]\71 Azl ]Iljlt (9?) )‘(l)]iilelilt]
t=1 1=

F 00 F . 90 11
Z Tije (69) Lojpe (69) C2J212tf131t] [ 1 ( 1)T 1 (69) ] [

1
VvV Ny

7

+\/T% til]lljlt (67) Tjut (65) Op (C;VT) } + O <\/1T>

_l’_

L —

—_

Using the definition of the common component Cg] igt = )\gggig 95, and Assumptions A.1, A.6 and

A.7 we get:

T -1
. 1 1
ﬁ (Cj1j2i1i2 - C?miliz) = [T Z Hljlt (9?) H2j2t (98) + OP (T) :|
t=1

x{v% !

1j1t (9?) ]12j2t (08) ’ (C?IjQiliQt - C?1j2i1i2)]

IIMH

T
-1

1z Fyj, (69 F2 (69)’ 1 Z
0 iz (09) Py 0\ £0
+>\191@'1 _f t; ISP (91) Iy (92 fl]lt 2]27& [ 2 : ﬁ t; I2jp¢ (92) J3jot€2it
(1 L Fyj, (69) FlJ ) Tz 0y £0
1 1
+>\2gm T t; Lirt (69) Tojoe (65) f232t.f1j1t [ﬁ t; Ty ¢ (67) fljltelilt:|

o <¢%> (V%) (c?w)
%)

RAERR <m>+o <%

o8



which implies that

. -1
~ 1 1
JT (Ejujainia — C?mmz) = [T Z L4 (9(1)) l2j,t (98) + Oy <T) }

1
| T

1j1t (9(1)) H2j2t (08) ’ (C?1j2i1i2t - C?1j2i1i2):|

HMH

LT Fojy () Fyy, 00)] T 1 I
)qml T ; Tyjyt (9?) oyt (98) flojltf2]2t:| [ 22 ( 2)T 22 ( 2) ] [ﬁ t; Iy (98) fgj2t€2i2t:|
T Fy (09 Fy, (09)] 11
+A2]212 T Z ]Ilﬂt (01) H2j2t (92) f2]2tf1]1t =L ( 1) =z ( 1) N Z H1j1t (6?) .f?jltelilt
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We thus have
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and the result stated in the theorem follows from Cnp — oo with VT /N — 0, and Assumptions

Al-A3and A.5-A.12.
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C.4 Proof of Theorem 3

Definition (18), and equations (C.23) - (C.24) imply:
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and:
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A first order expansion of ]/%jleiliQ defined in equation (17), together with equations (C.29) and
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(C.30), implies:
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Therefore we get:
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or, equivalently:
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In order to compute the asymptotic variance of the RHS of equation (C.31) we need to compute,

for g = 1,2, covariance terms like:
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where the first equality follows from the definitions z4; + = nggig Sgj t t€g.i ¢, and the third equality
follows from the independence of the factors from the innovations - that is Assumption A.12 - and

the assumption that the factors have zero expected value, see Assumption A.1. Therefore we have

Cov (A%m |:Tt

M=

0 0
Tijie (607) fijeeiint »

||M%

Tyjpe (9 ) Lojyt (92) f2]2t-f1]1t:|

Fij, (09) Fyj, (09) *Q
T VT |

=1
O 1 T
_ Shpinig L I O\ 1 ;
2( a:g]lgzzg)Q th:; 1]1t( 1) 2j2t( 2) gz t)
) ! ! 1
Fooo (69 F... (69 Foo (09) oo (00
TIE};OT;;COVOU” (67) )‘21212 232 2)T 1 (69) 1 ( 1)T 11 (67) ] f?jltelilt |
C?ljzilig 0 0 )
072]11j1v (91) I2/50 (92) i fljw@l,iw)
(O-wljleil)

and, using again the independence across groups of the innovations - that is Assumption A.9, we
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Using analogous arguments for al the covariances between the elements in the RHS of equation

(C.31), the result of the theorem follows.

C.5 Proof of Theorem 4
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which completes the proof of the theorem.

C.6 Proof of Theorem 5
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which completes the proof of the theorem.

D Monte Carlo: Tables
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Table D.1 - Finite sample distribution of the recentered and standardized statistic ¢;,;,¢ in Theorem 1 with my = 0.75
ar =0 Design 1 Design 2 Design 3 Design 4
N1 = N2 T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.
30 100 | -0.017 0.001 1.329 1.477 | -0.035 -0.018 1.167 1.456 | -0.063 -0.020 1.213 1.537 | -0.035 -0.027 1.232 1.582
30 200 | -0.055 -0.022 1.155 1.418 | 0.007 -0.002 1.377 1.456 | -0.069 -0.015 1.167 1.478 | -0.061 -0.043 1.169 1.471
30 500 | -0.024 -0.019 1.205 1.442 | 0.010 0.025 1.090 1.406 | -0.020 -0.026 1.102 1.393 | -0.054 -0.039 1.135 1.508
50 100 | -0.032 -0.022 1.181 1.488 | -0.025 -0.008 1.175 1.466 | -0.051 -0.022 1.218 1.480 | -0.044 -0.027 1.173 1.485
50 200 | -0.016 -0.042 1.103 1.431 | -0.012 0.012 1.104 1.414 | -0.059 -0.039 1.119 1.425 | -0.037 -0.040 1.718 1.442
50 500 | -0.010 0.006 1.068 1.407 | 0.004 -0.010 1.081 1.436 | -0.049 -0.015 1.075 1.412 | -0.020 -0.003 1.064 1.414
100 100 | -0.025 -0.019 1.126 1.445 | -0.031 -0.009 1.197 1.444 | -0.040 -0.012 1.266 1.497 | -0.049 -0.032 1.160 1.491
100 200 | -0.027 -0.027 1.025 1.380 | 0.000 0.016 1.065 1.413 | -0.007 -0.037 2.907 1.390 | -0.032 -0.008 1.090 1.371
100 500 | -0.011 0.018 1.037 1.377 | -0.029 -0.033 1.025 1.387 | -0.022 -0.020 1.085 1.365 | -0.004 0.003 1.043 1.371
300 100 | -0.045 -0.024 1.128 1.424 | 0.020 0.018 1.147 1.443 | -0.003 0.022 1.277 1.428 | -0.016 -0.019 1.200 1.422
300 200 | -0.014 0.006 1.064 1.382 | -0.008 -0.017 1.040 1.369 | -0.016 0.001 1.103 1.385 | -0.048 -0.021 1.104 1.449
300 500 | -0.015 -0.005 1.038 1.374 | -0.023 -0.016 1.011 1.366 | -0.016 -0.005 1.036 1.390 | 0.001 0.002 1.017 1.326
500 100 | 0.005 0.001 1.159 1.473 | -0.018 -0.017 1.139 1.456 | -0.066 -0.021 1.174 1.449 | -0.033 -0.009 1.153 1.479
500 500 | 0.003 0.001 1.022 1.364 | -0.015 -0.013 1.024 1.333 | -0.002 0.018 1.016 1.363 | -0.032 -0.040 1.022 1.345
500 1000 | -0.006 0.010 1.024 1.352 | -0.007 -0.033 1.010 1.338 | -0.025 -0.020 1.237 1.342 | -0.019 0.003 1.070 1.343

ar = 0.5 Design 5 Design 6 Design 7 Design 8
N1 = Na T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.
30 100 | -0.075 -0.053 1.230 1474 | -0.012 0.020 1.165 1.457 | -0.051 -0.014 1.186 1.565 | -0.062 -0.026 1.248 1.561
30 200 | -0.052 -0.039 1.137 1.460 | -0.038 -0.036 1.138 1.433 | -0.032 -0.018 1.203 1.506 | -0.071 -0.069 1.127 1.491
30 500 | -0.027 -0.022 1.124 1.436 | -0.020 -0.018 1.134 1.487 | -0.076 -0.056 1.135 1.489 | -0.056 -0.045 1.147 1.465
50 100 | 0.010 0.027 1.172 1.457 | -0.068 -0.047 1.383 1.466 | -0.026 -0.039 2.266 1.484 | -0.041 -0.013 1.385 1.494
50 200 | -0.010 0.005 1.104 1.420 | -0.041 -0.029 1.095 1.432 | -0.026 -0.003 1.091 1.445 | -0.049 -0.039 1.196 1.487
50 500 | -0.011 -0.002 1.062 1.412 | -0.006 0.015 1.084 1.437 | -0.017 -0.009 1.083 1.425 | -0.006 0.025 1.069 1.395
100 100 | -0.043 -0.036 1.141 1.454 | -0.057 -0.054 1.315 1.470 | -0.066 -0.032 1.248 1.485 | -0.031 -0.021 1.176 1.489
100 200 | -0.020 -0.005 1.089 1.404 | -0.018 -0.030 1.091 1.399 | 0.008 0.018 1.071 1.407 | -0.035 -0.025 1.094 1.424
100 500 | 0.001 0.008 1.041 1.358 | -0.023 -0.009 1.045 1.416 | -0.022 -0.005 1.047 1.402 | -0.027 -0.013 1.067 1.410
300 100 | -0.028 0.004 1.128 1.480 | -0.044 -0.029 1.146 1.434 | -0.023 0.028 1.279 1.538 | -0.036 -0.006 1.202 1.479
300 200 | -0.039 -0.024 1.077 1.420 | 0.022 0.028 1.069 1.401 | -0.020 -0.013 1.110 1.422 | -0.032 -0.023 1.083 1.385
300 500 | 0.008 0.002 1.022 1.383 | -0.003 -0.012 1.020 1.371 | 0.010 0.026 1.029 1.347 | -0.036 -0.017 1.036 1.369
500 100 | -0.008 -0.011 1.158 1.488 | -0.029 -0.006 1.183 1.484 | -0.030 -0.007 1.204 1.476 | -0.066 -0.045 1.209 1.446
500 500 | -0.010 0.008 1.033 1.361 | 0.015 0.032 1.034 1.364 | -0.045 -0.046 1.050 1.402 | -0.016 -0.028 1.055 1.392
500 1000 | 0.012 0.001 1.019 1.366 | -0.019 -0.007 1.009 1.375 | -0.026 -0.016 1.024 1.380 | -0.010 -0.003 1.001 1.349

This table reports the mean (m.), the median (med.), standard deviation (std.) and interquartile range (igr.) of the empirical distribution of the recentered
and standardized statistic ¢;,i,¢+ in Theorem 1 defined as: cyr (ailigt - c?1i2t) /y/@i, iyt - The standardized statistic is computed for different sample sizes
(N1, N2, T) and different values of the DGP parameters (Designs 1 - 8). The asymptotic distribution of the statistic is N(0,1) under the Assumptions of
Theorem 1 and has interquartile &~ 1.349. The empirical distributions are obtained by recomputing the statistics with 4000 Monte Carlo simulations.
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Table D.2 - Finite sample distribution of the recentered and standardized statistic ¢;, jyaw,w, i Theorem 2 with 7o = 0.75

ar =0 Design 1 Design 2 Design 3 Design 4
N1 = N2 T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.
30 100 | -0.121 -0.054 1.025 1.348 | -0.147 -0.093 1.011 1.359 | -0.214 -0.095 1.090 1.460 | -0.194 -0.102 1.080 1.372
30 200 | -0.080 -0.039 1.023 1.376 | -0.100 -0.044 1.037 1.396 | -0.138 -0.075 1.055 1.450 | -0.140 -0.073 1.040 1.343
30 500 | -0.073 -0.041 1.041 1.440 | -0.051 -0.021 0.994 1.361 | -0.109 -0.096 1.008 1.368 | -0.104 -0.066 1.006 1.352
50 100 | -0.154 -0.074 1.036 1.414 | -0.134 -0.068 1.044 1.345 | -0.195 -0.104 1.066 1.404 | -0.197 -0.100 1.095 1.445
50 200 | -0.107 -0.038 1.026 1.352 | -0.087 -0.026 1.040 1.398 | -0.131 -0.044 1.046 1.397 | -0.131 -0.070 1.040 1.394
50 500 | -0.078 -0.074 1.009 1.333 | -0.034 -0.025 0.993 1.356 | -0.095 -0.056 0.996 1.344 | -0.092 -0.049 1.036 1.362
100 100 | -0.152 -0.076 1.033 1.416 | -0.1563 -0.077 1.052 1.454 | -0.205 -0.134 1.043 1.371 | -0.209 -0.120 1.090 1.438
100 200 | -0.085 -0.042 1.004 1.354 | -0.085 -0.042 1.008 1.365 | -0.159 -0.106 1.042 1.386 | -0.142 -0.068 1.058 1.343
100 500 | -0.069 -0.058 1.015 1.356 | -0.046 -0.029 1.008 1.379 | -0.069 -0.020 1.010 1.369 | -0.092 -0.046 1.014 1.379
300 100 | -0.126 -0.054 1.033 1.364 | -0.106 -0.033 1.051 1.401 | -0.198 -0.090 1.072 1.411 | -0.193 -0.106 1.076 1.417
300 200 | -0.107 -0.062 1.015 1.379 | -0.142 -0.083 1.025 1.393 | -0.148 -0.096 1.012 1.314 | -0.155 -0.097 1.021 1.305
300 500 | -0.034 -0.016 0.995 1.335 | -0.070 -0.036 1.020 1.396 | -0.094 -0.049 1.019 1.364 | -0.081 -0.037 1.022 1.371
500 100 | -0.137 -0.083 1.043 1.409 | -0.109 -0.050 1.014 1.343 | -0.196 -0.097 1.066 1.398 | -0.179 -0.093 1.078 1.441
500 500 | -0.071 -0.036 1.017 1.375 | -0.100 -0.064 1.011 1.352 | -0.086 -0.024 1.012 1.381 | -0.065 -0.019 1.023 1.393
500 1000 | -0.041 -0.007 0.991 1.339 | -0.079 -0.076 1.009 1.336 | -0.100 -0.081 1.035 1.386 | -0.050 -0.013 1.024 1.381
ar = 0.5 Design 5 Design 6 Design 7 Design 8
N1 = Na T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.
30 100 | -0.209 -0.108 1.164 1.601 | -0.229 -0.130 1.168 1.574 | -0.309 -0.171 1.209 1.548 | -0.313 -0.175 1.214 1.578
30 200 | -0.164 -0.118 1.114 1.547 | -0.147 -0.080 1.088 1.476 | -0.229 -0.119 1.185 1.525 | -0.248 -0.160 1.148 1.498
30 500 | -0.073 -0.031 1.079 1479 | -0.077 -0.033 1.087 1.414 | -0.150 -0.094 1.090 1.471 | -0.126 -0.065 1.112 1.506
50 100 | -0.192 -0.096 1.136 1.561 | -0.214 -0.141 1.115 1.506 | -0.319 -0.204 1.217 1.588 | -0.303 -0.179 1.213 1.567
50 200 | -0.126 -0.071 1.096 1.455 | -0.143 -0.060 1.112 1.472 | -0.193 -0.089 1.141 1.461 | -0.231 -0.140 1.145 1.524
50 500 | -0.101 -0.070 1.082 1.475 | -0.093 -0.049 1.074 1.424 | -0.128 -0.060 1.118 1.491 | -0.174 -0.092 1.096 1.460
100 100 | -0.202 -0.120 1.150 1.584 | -0.230 -0.155 1.139 1.559 | -0.323 -0.197 1.211 1.558 | -0.300 -0.165 1.210 1.595
100 200 | -0.152 -0.081 1.117 1.456 | -0.170 -0.108 1.101 1.493 | -0.204 -0.116 1.120 1.532 | -0.243 -0.145 1.131 1.485
100 500 | -0.082 -0.034 1.082 1.468 | -0.113 -0.060 1.054 1.438 | -0.099 -0.048 1.082 1.486 | -0.151 -0.092 1.084 1.424
300 100 | -0.216 -0.126 1.120 1.521 | -0.207 -0.123 1.145 1.562 | -0.266 -0.169 1.173 1.499 | -0.313 -0.178 1.220 1.604
300 200 | -0.151 -0.082 1.082 1.475 | -0.153 -0.080 1.113 1.472 | -0.238 -0.133 1.157 1.476 | -0.200 -0.080 1.127 1.488
300 500 | -0.102 -0.052 1.081 1.451 | -0.099 -0.038 1.089 1.467 | -0.162 -0.102 1.103 1.497 | -0.162 -0.101 1.102 1.459
500 100 | -0.221 -0.132 1.138 1.532 | -0.238 -0.164 1.153 1.512 | -0.317 -0.177 1.214 1.595 | -0.283 -0.141 1.202 1.555
500 500 | -0.091 -0.083 1.070 1.436 | -0.091 -0.050 1.076 1.448 | -0.143 -0.091 1.105 1.483 | -0.141 -0.066 1.071 1.464
500 1000 | -0.062 -0.020 1.084 1.476 | -0.090 -0.077 1.070 1.446 | -0.087 -0.062 1.055 1.380 | -0.078 -0.018 1.078 1.453

This table reports the mean (m.), the median (med.), standard deviation (std.) and interquartile range (igr.) of the empirical distribution of the recentered

and standardized statistic ¢;, jyw, w, in Theorem 2 defined as: VT (é,-lhwlw? — c?ljw,le) /\/ th (w1, w2), with wy = [1,0,0, ...,0] and w2 = [1,0,0,...,0].
The standardized statistic is computed for different sample sizes (N1, N2, T') and different values of the DGP parameters (Designs 1 - 8). The asymptotic
distribution of the statistic is N(0,1) under the Assumptions of Theorem 2 and has interquartile ~ 1.349. The empirical distributions are obtained by

recomputing the statistics with 4000 Monte Carlo simulations.
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Table D.3 — Empirical size and power of the test of change in comovement based on 7.7 in Theorem 5 with 79 = 0.75 and 79 = 0.50

J1J2J7J5 wiws
mo = 0.75 Design 1 Design 2 Design 3 Design 4
size power size power size power size power
N1 = N> T 1% 5% 10% 5% 1% 5% 10% 5% 1% 5% 10% 5% 1% 5% 10% 5%

30 100 | 0.030 0.090 0.154 0.699 0.045 0.113 0.168 0.700 0.049 0.119 0.179 0.668 0.049 0.120 0.188 0.668
30 200 | 0.018 0.062 0.121 0.929 0.019 0.068 0.128 0.934 0.028 0.084 0.151 0.823 0.029 0.090 0.151 0.873
30 500 | 0.012 0.059 0.112 0.999 0.013 0.051 0.107 1.000 0.019 0.066 0.128 0.991 0.021  0.067 0.127 0.995
50 100 | 0.031 0.097 0.157 | 0.680 0.038 0.110 0.175 0.712 0.044 0.113 0.188 0.674 | 0.052 0.126 0.185 0.709
50 200 | 0.019 0.071 0.125 0.893 0.023 0.071 0.130 0.927 0.028 0.086 0.142 0.827 | 0.028 0.090 0.157 0.893
50 500 | 0.017 0.070 0.124 0.997 | 0.017 0.063 0.115 0.999 0.021 0.075 0.127 0.999 0.020 0.076 0.137 0.998
100 100 | 0.031 0.093 0.154 0.688 0.035 0.094 0.150 0.720 0.044 0.121 0.185 0.675 0.050 0.120 0.192 0.698
100 200 | 0.026 0.072 0.128 0.889 0.018 0.067 0.118 0.916 0.028 0.095 0.162 0.864 | 0.032 0.087 0.144 0.891
100 500 | 0.014 0.061 0.113 1.000 0.014 0.058 0.113 0.999 0.019 0.067 0.129 0.998 0.021 0.072 0.127 0.999
300 100 | 0.032 0.101 0.161 0.691 0.042 0.104 0.163 0.727 0.046 0.129 0.194 0.637 | 0.052 0.124 0.191 0.704
300 200 | 0.015 0.069 0.128 0.879 0.020 0.072 0.119 0.919 0.031 0.096 0.153 0.869 0.028 0.090 0.152 0.888
300 500 | 0.013 0.061 0.116 0.998 0.015 0.062 0.116 1.000 0.018 0.072 0.124 0.996 0.016 0.064 0.120 1.000
500 100 | 0.033 0.089 0.144 0.677 0.038 0.100 0.157 0.717 0.052 0.121 0.191 0.659 0.050 0.127 0.192 0.687
500 500 | 0.013 0.058 0.111 0.999 0.013 0.058 0.107 | 0.999 0.017 0.064 0.117 0.997 | 0.019 0.071 0.124 0.999
500 1000 | 0.013 0.051 0.105 1.000 0.012 0.052 0.105 1.000 0.012 0.059 0.117 1.000 0.013 0.062 0.122 1.000

7o = 0.50 Design 1 Design 2 Design 3 Design 4
size power size power size power size power
N1 = N2 T 1% 5% 10% 5% 1% 5% 10% 5% 1% 5% 10% 5% 1% 5% 10% 5%

30 100 | 0.018 0.068 0.124 0.804 0.026 0.070 0.128 0.879 0.037 0.103 0.170 0.746 0.034 0.104 0.170 0.817
30 200 | 0.013 0.059 0.108 0.976 0.017 0.066 0.124 0.986 0.026 0.086 0.144 0.920 0.024 0.084 0.142 0.965
30 500 | 0.014 0.061 0.113 1.000 0.011 0.052 0.108 1.000 0.021 0.077 0.126 1.000 0.021 0.074 0.133 1.000
50 100 | 0.017 0.071 0.131 0.805 0.021 0.077 0.133 0.843 0.036 0.101 0.168 0.775 0.036 0.103 0.165 0.821
50 200 | 0.015 0.056 0.107 | 0.914 0.014 0.057 0.116 0.992 0.021 0.079 0.141 0.916 0.025 0.086 0.144 0.965
50 500 | 0.012 0.054 0.100 1.000 0.011 0.055 0.104 1.000 0.015 0.073 0.132 0.999 0.016 0.070 0.128 1.000
100 100 | 0.021 0.071 0.122 0.812 0.024 0.071 0.135 0.899 0.040 0.104 0.169 0.710 0.032 0.105 0.166 0.852
100 200 | 0.011 0.061 0.112 0.975 0.015 0.057 0.115 0.989 0.024 0.084 0.148 0.946 0.026 0.082 0.142 0.984
100 500 | 0.014 0.055 0.105 1.000 0.010 0.051 0.101 1.000 0.018 0.067 0.127 1.000 0.020 0.072 0.122 1.000
300 100 | 0.021 0.065 0.121 0.798 0.019 0.073 0.126 0.861 0.033 0.094 0.161 0.741 0.038 0.106 0.172 0.822
300 200 | 0.014 0.059 0.111 0.970 0.016 0.060 0.114 0.987 0.027 0.085 0.148 0.930 0.027 0.084 0.145 0.964
300 500 | 0.011 0.049 0.105 1.000 0.012 0.055 0.107 1.000 0.017 0.075 0.130 0.999 0.016 0.067 0.124 1.000
500 100 | 0.019 0.074 0.130 0.770 0.020 0.070 0.120 0.865 0.035 0.100 0.157 0.727 | 0.041 0.105 0.162 0.826
500 500 | 0.013 0.057 0.105 1.000 0.013 0.058 0.105 1.000 0.021 0.069 0.126 1.000 0.018 0.068 0.129 1.000
500 1000 | 0.011 0.049 0.099 1.000 0.008 0.053 0.113 1.000 0.017 0.068 0.122 1.000 0.015 0.064 0.118 1.000

This table reports the empirical size and power of the two-tailed test of a change in comovement across regimes based on the test statistic TR in Theorem

1723755 w1 w2
5, with wy = [1/Ny,...,1/N1] and wa = [1/Na,...,1/N2]. The statistic is computed for different sample sizes (N1, N2, T') and different values of the DGP parameters
under the null hypothesis of no change in comovement (Designs 1 Hg - 4 Hg) and under the alternative of change in comovement (Designs 1 Hy - 4 Hy1). The empirical
size is assessed at the a levels of 1%, 5% and 10% using Designs 1 Hg - 4 Hp, while the empirical power is assessed at the a level of 5% using Designs 1 Hj - 4 Hy. The

empirical distributions are obtained by recomputing the statistics with 4000 MC simulations.
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E Monte Carlo: Additional Results

This section provides additional MC results.

Table E.1 — Parameters of Monte Carlo simulation designs for Theorems 1 and 2

Design / Param. | K¢ = K§ | Ki = K§ 65, =05, | cgy B ap a. o

Design 9 0 3 0.25 1.0 0 0 0 0.75
Design 10 0 3 1.00 1.0 0 0 0 0.75
Design 11 0 3 0.25 05| 0.2 0 0 0.75
Design 12 0 3 1.00 0.5 0.2 | 0 0 0.75
Design 13 0 3 0.25 0.5 0 0 0 0.50
Design 14 0 3 1.00 0.5 0 0 0 0.50
Design 15 0 3 0.25 0.5 0 0 0.50 | 0.75
Design 16 0 3 1.00 0.5 0 0 0.50 | 0.75
Design 17 0 1 0.25 0.5 0 0 0 0.75
Design 18 0 1 1.00 0.5 0 0 0 0.75
Design 19 1 0 0.25 0.5 0 0 0 0.75
Design 20 1 0 1.00 0.5 0 0 0 0.75

Table E.1 provides values of the parameters in the DGP described in Section 5 for each of the MC simulation
designs considered in the Online Appendix and used to assess the properties of the statistics in Theorems 1 and
2. In all simulation designs we also set og; = 0,; = 1 and o = 1. In Designs 9 - 16, &} = diag(0.4, 0.2, 0.1)
and ®3 = diag(0.8, 0.4, 0.2). In Designs 17 - 18, ®7 and ®% reduce to two scalar parameters that we assume

to be @7 = 0.4, &3 = 0.8. In Designs 19 - 20, &7 and P% are empty matrices.



Table E.2 — Finite sample distribution of the recentered and standardized statistic ﬁjl jawiw, i Theorem 3 with mo = 0.75

ar =0 Design 1 Design 2 Design 3 Design 4
N1 = N2 T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.
30 100 | 0.008 0.010 1.057 1.413 | -0.011 -0.013 1.062 1.407 | -0.019 -0.014 1.080 1.394 | -0.039 -0.023 1.068 1.449
30 200 | 0.003 -0.017 1.032 1.358 | -0.024 -0.041 1.043 1.407 | -0.012 0.006 1.027 1.384 | -0.026 -0.004 1.035 1.355
30 500 | 0.005 -0.001 1.015 1.346 | 0.008 -0.001 1.025 1.370 | -0.031 -0.042 0.997 1.356 | -0.015 -0.007 1.029 1.393
50 100 | 0.013 0.014 1.064 1.381 | -0.034 -0.016 1.062 1.396 | -0.052 -0.037 1.090 1.418 | -0.018 0.037 1.067 1.350
50 200 | -0.011 -0.002 1.053 1.388 | 0.002 -0.018 1.025 1.375 | -0.000 0.006 1.035 1.381 | -0.003 -0.003 1.036 1.442
50 500 | 0.027 0.027 1.015 1.343 | -0.003 0.023 1.005 1.368 | -0.015 -0.026 1.017 1.348 | -0.017 -0.026 1.023 1.333
100 100 | -0.027 -0.020 1.081 1.430 | -0.009 0.021 1.071 1.423 | -0.043 -0.034 1.076 1.447 | -0.069 -0.049 1.067 1.362
100 200 | -0.005 0.016 1.026 1.346 | 0.007 0.023 1.056 1.407 | -0.019 -0.008 1.035 1.378 | -0.022 -0.006 1.023 1.351
100 500 | -0.013 -0.021 1.038 1.433 | 0.008 -0.011 1.020 1.379 | -0.010 -0.017 1.025 1.383 | -0.033 -0.020 1.026 1.356
300 100 | -0.001 0.009 1.063 1.427 | 0.006 0.025 1.043 1.388 | -0.011 -0.002 1.064 1.405 | -0.008 0.000 1.074 1.359
300 200 | 0.019 0.022 1.033 1.369 | -0.031 -0.036 1.036 1.441 | -0.035 -0.044 1.030 1.351 | -0.031 -0.015 1.039 1.368
300 500 | 0.027 0.013 1.025 1.387 | -0.004 -0.020 1.024 1.372 | -0.004 0.014 1.001 1.345 | -0.007 0.004 1.016 1.374
500 100 | -0.018 -0.000 1.071 1.397 | 0.019 0.012 1.053 1.428 | -0.049 -0.031 1.082 1.406 | -0.029 0.007 1.098 1.456
500 500 | -0.016 -0.020 1.024 1.355 | -0.029 -0.015 1.021 1.378 | -0.010 -0.010 1.009 1.400 | -0.021 -0.025 1.015 1.332
500 1000 | 0.015 -0.006 1.020 1.336 | -0.008 -0.014 1.017 1.375 | -0.014 0.009 1.020 1.362 | 0.002 0.014 1.016 1.378
ar = 0.5 Design 5 Design 6 Design 7 Design 8
N1 = Na T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.
30 100 | -0.048 -0.044 1.199 1.566 | -0.004 0.005 1.199 1.550 | -0.078 -0.061 1.201 1.564 | -0.079 -0.039 1.206 1.572
30 200 | -0.002 0.004 1.133 1.518 | -0.049 -0.043 1.120 1.467 | -0.046 -0.014 1.116 1.515 | -0.032 -0.017 1.129 1.512
30 500 | -0.026 -0.012 1.089 1.425 | 0.006 0.022 1.102 1.477 | -0.045 -0.035 1.107 1.508 | -0.025 -0.011 1.088 1.461
50 100 | -0.014 -0.038 1.203 1.580 | -0.024 -0.042 1.198 1.587 | -0.107 -0.094 1.194 1.526 | -0.106 -0.078 1.203 1.577
50 200 | -0.048 -0.027 1.148 1.529 | -0.017 -0.008 1.140 1.507 | -0.060 -0.033 1.145 1.522 | -0.048 -0.048 1.139 1.526
50 500 | 0.011 0.022 1.074 1451 | -0.035 -0.010 1.104 1.529 | -0.055 -0.038 1.102 1.502 | -0.023 -0.023 1.091 1.455
100 100 | 0.004 -0.014 1.210 1.628 | -0.007 -0.024 1.210 1.566 | -0.058 -0.044 1.194 1.588 | -0.084 -0.051 1.209 1.535
100 200 | -0.011 0.001 1.151 1.525 | -0.016 -0.016 1.144 1.504 | -0.072 -0.081 1.142 1.516 | -0.036 0.009 1.126 1.515
100 500 | -0.036 -0.027 1.079 1.455 | 0.033 0.025 1.068 1.477 | -0.013 -0.012 1.096 1.473 | -0.005 0.028 1.067 1.438
300 100 | -0.051 -0.040 1.233 1.634 | -0.010 -0.013 1.229 1.612 | -0.093 -0.065 1.201 1.523 | -0.071 -0.035 1.234 1.607
300 200 | -0.043 -0.039 1.148 1.558 | -0.003 -0.002 1.138 1.500 | -0.033 0.006 1.159 1.538 | -0.047 -0.023 1.134 1.500
300 500 | -0.002 -0.022 1.083 1.440 | -0.021 -0.023 1.081 1.444 | -0.047 -0.024 1.093 1.465 | -0.035 -0.028 1.077 1.468
500 100 | 0.022 0.036 1.211 1.594 | -0.043 -0.018 1.216 1.589 | -0.080 -0.041 1.213 1.532 | -0.076 -0.035 1.216 1.569
500 500 | -0.032 -0.010 1.067 1.415 | -0.021 -0.007 1.091 1.483 | -0.019 -0.006 1.092 1.470 | -0.057 -0.067 1.091 1.474
500 1000 | 0.003 0.029 1.061 1.414 | -0.016 -0.018 1.069 1.449 | -0.044 -0.041 1.067 1.430 | -0.038 -0.033 1.041 1.367

This table reports the mean (m.), the median (med.), standard deviation (std.) and interquartile range (igr.) of the empirical distribution of the recentered

and standardized statistic §j1j2w1w2 in Theorem 3 defined as: VT (ﬁjljzwle — Rgljzu,le) /\/QAR,]-U-2 (Wo,1j1 49> Wo,241 j2 )» With w1 = [1/N1, ..., 1/N1] and

wz = [1/N2,...,1/N3]. The standardized statistic is computed for different sample sizes (N1, Nz, T') and different values of the DGP parameters (Designs 1
- 8). The asymptotic distribution of the statistic is N (0, 1) under the Assumptions of Theorem 3 and has interquartile & 1.349. The empirical distributions
are obtained by recomputing the statistics with 4000 Monte Carlo simulations.
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Table E.3 — Finite sample distribution of the test statistic 7° in Theorem 4 with mg = 0.75

J1J2J7J5 wiws
Design 1 Hp Design 2 Hyp Design 3 Hp Design 4 Hyp
N1 = Na T m med. std. iqr. m med. std. iqr. m med. std. iqr. m med. std. iqr.

30 100 | -0.037 -0.036 1.024 1.448 | -0.006 -0.004 1.014 1.426 | 0.007 -0.002 1.075 1.523 | -0.021 -0.017 1.083 1.546
30 200 | -0.005 -0.013 0.987 1.345 | 0.013 0.014 1.005 1.378 | 0.003 0.029 1.050 1.476 | -0.011 -0.003 1.063 1.492
30 500 | -0.030 -0.024 0.979 1.276 | -0.015 -0.013 0.996 1.335 | -0.014 0.005 1.046 1.450 | 0.004 0.017 1.031 1.404
50 100 | -0.011 -0.020 1.006 1.421 | -0.036 -0.053 1.027 1.443 | -0.019 -0.016 1.089 1.510 | -0.017 0.004 1.079 1.508
50 200 | -0.007 0.010 1.010 1.363 | -0.004 -0.016 0.999 1.387 | -0.031 -0.039 1.054 1.455 | -0.000 -0.005 1.046 1.459
50 500 | 0.008 0.006 1.013 1.391 | -0.001 -0.016 1.018 1.417 | -0.026 -0.025 1.041 1.395 | 0.011 0.018 1.030 1.391
100 100 | 0.041 0.039 1.003 1.383 | -0.008 0.014 1.014 1434 | 0.024 0.016 1.061 1.510 | 0.006  0.003 1.070 1.519
100 200 | 0.004 -0.003 1.003 1.365 | 0.022 0.035 1.013 1.368 | 0.010 -0.007 1.029 1.391 | 0.014 0.003 1.051 1.446
100 500 | 0.024 0.034 0997 1.319 | 0.032 0.065 0.997 1.323 | -0.034 -0.029 1.057 1.475 | 0.016 0.042 1.032 1.426
300 100 | 0.015 0.005 0.999 1.435 | -0.003 0.003 1.007 1.409 | 0.000 0.000 1.053 1.404 | -0.003 -0.004 1.083 1.537
300 200 | -0.010 -0.005 1.000 1.418 | 0.004 0.020 1.005 1.397 | 0.006 -0.007 1.056 1.446 | -0.006 -0.004 1.058 1.455
300 500 | -0.000 0.026 0.983 1.335 | 0.015 0.024 0.988 1.330 | 0.007 0.025 1.039 1.372 | -0.006 -0.021 1.031 1.397
500 100 | -0.020 -0.028 1.021 1.439 | -0.009 -0.008 1.007 1.418 | -0.014 -0.021 1.081 1.515 | 0.022 0.009 1.068 1.524
500 500 | 0.014 0.013 1.013 1.386 | 0.016 -0.006 0.997 1.355 | -0.016 -0.026 1.045 1.433 | 0.001 0.000 1.014 1.359
500 1000 | 0.011 0.022 0.989 1.326 | 0.006 0.011 0.998 1.357 | -0.016 -0.049 1.015 1.403 | 0.018 0.014 1.011 1.400

This table reports the mean (m.), the median (med.), standard deviation (std.) and interquartile range (igr.) of the empirical distribution of the test statistic
ﬁcljzjfjé‘wlwz in Theorem 4, with w; = [1,0,0,...,0] and w2 = [1,0,0, ...,0]. The statistic is computed for different sample sizes (N1, N2, T') and different
values of the DGP parameters under the null hypothesis of no change in comovement across regimes (Designs 1 Ho - 4 Hp). The asymptotic distribution
of the statistic is N(0,1) under the Assumptions of Theorem 4 and has interquartile ~ 1.349. The empirical distributions are obtained by recomputing the

statistics with 4000 MC simulations.



Table E.4 — Empirical size and power of the test of change in comovement based on 7;-1 Jagtjiwiws

~
(&

in Theorem 4 with g = 0.75

Design 1 Hy , Hy Design 2 Hy , Hy Design 3 Hp , H1 Design 4 Hy , H1
size power size power size power size power
N1 = N- T | 1% 5% 10% 5% 1% 5% 10% 5% 1% 5% 10% 5% 1% 5% 10% 5%

30 100 | 0.009 0.050 0.105 | 0.428 | 0.008 0.051 0.104 | 0.504 | 0.014 0.066 0.122 | 0.424 | 0.012 0.067 0.128 | 0.516

30 200 | 0.006 0.050 0.098 | 0.799 | 0.008 0.047 0.103 | 0.868 | 0.011 0.059 0.114 | 0.761 | 0.016 0.059 0.113 | 0.835

30 500 | 0.009 0.043 0.096 | 0.995 | 0.009 0.050 0.100 | 0.999 | 0.015 0.059 0.114 | 0.993 | 0.012 0.058 0.111 | 0.998

50 100 | 0.007 0.050 0.098 | 0.456 | 0.008 0.051 0.108 | 0.522 | 0.016 0.067 0.130 | 0.421 | 0.011 0.066 0.127 | 0.518

50 200 | 0.009 0.053 0.104 | 0.805 | 0.008 0.050 0.097 | 0.869 | 0.012 0.060 0.117 | 0.764 | 0.010 0.061 0.115 | 0.825

50 500 | 0.009 0.051 0.107 | 0.998 | 0.010 0.051 0.107 | 1.000 | 0.015 0.061 0.115| 0.993 | 0.010 0.057 0.112 | 0.997

100 100 | 0.007 0.045 0.102 | 0.438 | 0.005 0.050 0.105 | 0.528 | 0.012 0.060 0.123 | 0.429 | 0.010 0.065 0.122 | 0.515

100 200 | 0.009 0.051 0.103 | 0.797 | 0.007 0.047 0.108 | 0.870 | 0.012 0.054 0.112 | 0.764 | 0.010 0.061 0.122 | 0.840

100 500 | 0.008 0.051 0.100 | 0.997 | 0.009 0.049 0.099 | 0.999 | 0.014 0.064 0.120 | 0.995 | 0.011 0.057 0.110 | 0.998

300 100 | 0.005 0.042 0.095 | 0.444 | 0.009 0.046 0.102 | 0.535 | 0.011 0.061 0.121 | 0.426 | 0.011 0.067 0.134 | 0.499

300 200 | 0.005 0.043 0.098 | 0.818 | 0.008 0.046 0.095 | 0.873 | 0.012 0.065 0.122 | 0.760 | 0.015 0.059 0.118 | 0.846

300 500 | 0.008 0.042 0.094 | 0.998 | 0.007 0.050 0.097 | 1.000 | 0.014 0.061 0.114 | 0.993 | 0.010 0.053 0.112 | 0.999

500 100 | 0.008 0.047 0.103 | 0.439 | 0.007 0.045 0.101 | 0.525 | 0.013 0.066 0.127 | 0.431 | 0.010 0.060 0.120 | 0.512

500 500 | 0.010 0.053 0.102 | 0.996 | 0.009 0.050 0.102 | 0.998 | 0.011 0.053 0.121 | 0.994 | 0.011 0.051 0.105 | 0.999

500 1000 | 0.009 0.049 0.098 | 1.000 | 0.007 0.051 0.100 | 1.000 | 0.010 0.050 0.105 | 1.000 | 0.007 0.052 0.107 | 1.000

This table reports the empirical size and power of the two-tailed test of a change in comovement across regimes based on the test statistic '7?‘1 2733 wiws in

Theorem 4, with w; = [1,0,0,...,0] and w2 = [1,0,0,...,0]. The statistic is computed for different sample sizes (N1, N2, T') and different values of the DGP
parameters under the null hypothesis of no change in comovement (Designs 1 Hy - 4 Ho) and under the alternative of change in comovement (Designs 1 H;
-4 Hy). The empirical size is assessed at the a levels of 1%, 5% and 10% using Designs 1 Hy - 4 Hoy, while the empirical power is assessed at the a level of

5% using Designs 1 Hy - 4 Hy. The empirical distributions are obtained by recomputing the statistics with 4000 MC simulations.



~

Table E.5 — Finite sample distribution of the test statistic 7° in Theorem 4 with mg = 0.75

J1J2J7J5 wiws
Design 1 Hp Design 2 Hyp Design 3 Hp Design 4 Hyp
N1 = Na T m med. std. iqr. m med. std. iqr. m med. std. iqr. m med. std. iqr.

30 100 | -0.018 -0.029 1.063 1.446 | -0.004 0.010 1.085 1.522 | -0.004 -0.008 1.127 1.572 | -0.007 -0.013 1.139 1.573
30 200 | 0.005 -0.017 1.016 1.402 | 0.008 0.012 1.041 1.405 | 0.029 0.036 1.097 1.495 | 0.007 0.007 1.084 1.483
30 500 | -0.025 -0.023 1.020 1.387 | 0.007 0.003 1.030 1.388 | -0.011 -0.008 1.046 1.442 | -0.003 -0.013 1.042 1.360
50 100 | 0.006 -0.012 1.061 1.441 | 0.015 0.030 1.059 1.465 | 0.010 0.047 1.145 1.549 | 0.016 -0.014 1.126 1.556
50 200 | 0.002 -0.010 1.028 1.363 | 0.010 0.018 1.027 1.416 | -0.018 -0.019 1.085 1.459 | 0.008 -0.015 1.086 1.476
50 500 | 0.005 -0.002 1.010 1.371 | -0.034 -0.044 1.006 1.382 | 0.004 -0.003 1.065 1.443 | 0.001 -0.002 1.040 1.391
100 100 | 0.003 0.004 1.058 1.447 | -0.005 -0.004 1.100 1.484 | 0.001 0.014 1.158 1.600 | -0.032 -0.029 1.129 1.572
100 200 | -0.006 0.011 1.037 1.443 | -0.010 0.004 1.030 1.426 | -0.004 -0.004 1.106 1.515 | -0.025 -0.038 1.097 1.512
100 500 | -0.017 -0.014 1.014 1.361 | 0.019 0.038 1.013 1.354 | -0.009 -0.016 1.052 1.405 | -0.004 -0.040 1.030 1.398
300 100 | -0.005 -0.021 1.051 1.445 | 0.017 0.003 1.079 1473 | -0.012 -0.022 1.166 1.616 | 0.001 -0.000 1.149 1.578
300 200 | -0.005 -0.010 1.028 1.412 | 0.006 0.034 1.051 1.452 | 0.031 0.031 1.094 1.482 | -0.005 0.012 1.072 1.473
300 500 | -0.005 -0.003 1.016 1.380 | 0.006 0.010 1.014 1.328 | -0.001 0.020 1.060 1.409 | -0.014 -0.020 1.073 1.426
500 100 | -0.002 -0.003 1.052 1.432 | -0.005 -0.010 1.085 1.466 | -0.011 -0.001 1.133 1.534 | -0.024 -0.018 1.149 1.610
500 500 | -0.002 0.019 0.999 1.366 | 0.028 0.021 1.036 1.386 | -0.007 -0.008 1.060 1.403 | -0.002 -0.007 1.061 1.436
500 1000 | -0.016 -0.012 0.995 1.362 | -0.006 -0.015 1.028 1.427 | 0.005 0.020 1.039 1.419 | -0.024 -0.029 1.035 1.407

This table reports the mean (m.), the median (med.), standard deviation (std.) and interquartile range (igr.) of the empirical distribution of the test

Ajcljzjl*j;wle in Theorem 4, with wy = [1/Ny,...,1/N1] and w2 = [1/N2, ..., 1/Ns]. The statistic is computed for different sample sizes (N1, N2, T)
and different values of the DGP parameters under the null hypothesis of no change in comovement across regimes (Designs 1 Ho - 4 Hp). The asymptotic
distribution of the statistic is N(0,1) under the Assumptions of Theorem 4 and has interquartile ~ 1.349. The empirical distributions are obtained by
recomputing the statistics with 4000 MC simulations.

statistic



Table E.6 — Empirical size and power of the test of change in comovement based on 7;-1 Jagtjiwiws

~
(&

in Theorem 4 with g = 0.75

Design 1 Hy , Hy Design 2 Hy , Hy Design 3 Hp , H1 Design 4 Hy , H1
size power size power size power size power
N1 = N- T | 1% 5% 10% 5% 1% 5% 10% 5% 1% 5% 10% 5% 1% 5% 10% 5%

30 100 | 0.014 0.065 0.124 | 0.512 | 0.013 0.070 0.128 | 0.661 | 0.021 0.077 0.141 | 0.544 | 0.022 0.083 0.144 | 0.585

30 200 | 0.009 0.0564 0.103 | 0.781 | 0.011 0.060 0.112 | 0.894 | 0.017 0.072 0.135 | 0.831 | 0.018 0.066 0.127 | 0.842

30 500 | 0.012 0.057 0.105 | 0.994 | 0.013 0.058 0.113 | 1.000 | 0.013 0.060 0.119 | 0.988 | 0.014 0.064 0.118 | 0.999

50 100 | 0.015 0.059 0.120 | 0.589 | 0.014 0.061 0.119 | 0.590 | 0.027 0.086 0.145 | 0.474 | 0.022 0.078 0.147 | 0.530

50 200 | 0.013 0.060 0.110 | 0.885 | 0.009 0.053 0.107 | 0.916 | 0.019 0.072 0.128 | 0.740 | 0.017 0.072 0.130 | 0.911

50 500 | 0.010 0.052 0.100 | 0.999 | 0.011 0.050 0.096 | 1.000 | 0.014 0.066 0.124 | 0.983 | 0.012 0.058 0.114 | 1.000

100 100 | 0.014 0.060 0.120 | 0.616 | 0.017 0.074 0.135 | 0.599 | 0.022 0.087 0.155 | 0.514 | 0.022 0.079 0.139 | 0.642

100 200 | 0.014 0.054 0.107 | 0.850 | 0.011 0.054 0.108 | 0.933 | 0.018 0.074 0.140 | 0.832 | 0.018 0.072 0.131 | 0.858

100 500 | 0.010 0.052 0.103 | 0.999 | 0.012 0.054 0.103 | 1.000 | 0.014 0.066 0.114 | 0.995 | 0.014 0.054 0.105 | 1.000

300 100 | 0.012 0.061 0.118 | 0.589 | 0.015 0.068 0.129 | 0.638 | 0.026 0.095 0.155 | 0.535 | 0.021 0.085 0.155 | 0.628

300 200 | 0.014 0.056 0.106 | 0.901 | 0.015 0.061 0.111 | 0.926 | 0.018 0.072 0.134 | 0.833 | 0.016 0.069 0.124 | 0.898

300 500 | 0.012 0.051 0.102 | 0.999 | 0.014 0.057 0.105 | 0.999 | 0.017 0.066 0.124 | 0.996 | 0.019 0.066 0.129 | 0.998

500 100 | 0.012 0.058 0.115 | 0.562 | 0.014 0.071 0.130 | 0.628 | 0.022 0.085 0.145 | 0.549 | 0.020 0.087 0.153 | 0.590

500 500 | 0.010 0.049 0.105 | 0.999 | 0.012 0.061 0.120 | 1.000 | 0.018 0.067 0.121 | 0.997 | 0.015 0.062 0.116 | 0.998

500 1000 | 0.007 0.044 0.097 | 1.000 | 0.014 0.052 0.104 | 1.000 | 0.015 0.060 0.109 | 1.000 | 0.009 0.059 0.116 | 1.000

This table reports the empirical size and power of the two-tailed test of a change in comovement across regimes based on the test statistic ,?}Lll]'zjfj;wl’wz

in Theorem 4, with wy = [1/N1,...,1/N1] and we = [1/Na,...,1/N2]. The statistic is computed for different sample sizes (N1, N2, T') and different values
of the DGP parameters under the null hypothesis of no change in comovement (Designs 1 Hy - 4 Hp) and under the alternative of change in comovement
(Designs 1 Hy - 4 Hy). The empirical size is assessed at the « levels of 1%, 5% and 10% using Designs 1 Ho - 4 Hyp, while the empirical power is assessed
at the « level of 5% using Designs 1 Hy - 4 Hi. The empirical distributions are obtained by recomputing the statistics with 4000 MC simulations.




Table E.7 — Finite sample distribution of the test statistic TR in Theorem 5 with mg = 0.75

J1J2J7J5 wiws
Design 1 Hp Design 2 Hyp Design 3 Hp Design 4 Hyp
N1 = Na T m med. std. iqr. m med. std. iqr. m med. std. iqr. m med. std. iqr.

30 100 | -0.045 -0.043 1.159 1.500 | -0.009 0.003 1.238 1.520 | -0.022 -0.022 1.271 1.606 | 0.006  0.007 1.284 1.602
30 200 | 0.004 0.009 1.068 1.447 | 0.004 0.010 1.089 1.458 | -0.020 -0.017 1.156 1.543 | -0.029 -0.027 1.157 1.539
30 500 | 0.006 0.016 1.043 1.406 | 0.011 0.011 1.016 1.328 | -0.011 -0.014 1.081 1.489 | -0.006 -0.013 1.075 1.430
50 100 | 0.028 0.010 1.166 1.518 | 0.020 -0.001 1.226 1.549 | 0.018 0.032 1.261 1.629 | -0.040 -0.042 1.307 1.655
50 200 | 0.023 0.015 1.079 1453 |-0.014 -0.021 1.096 1.390 | -0.007 -0.005 1.146 1.508 | 0.001 -0.002 1.166 1.526
50 500 | 0.014 0.021 1.069 1.428 | 0.005 -0.016 1.048 1.383 | 0.004 0.016 1.074 1.436 | -0.010 0.012 1.115 1.471
100 100 | 0.003 0.009 1.180 1.508 | -0.004 -0.020 1.187 1.487 | -0.019 -0.035 1.268 1.679 | -0.000 -0.011 1.299 1.623
100 200 | 0.033 0.031 1.084 1.360 | 0.033 0.030 1.070 1.417 | -0.008 -0.005 1.168 1.503 | 0.021 0.035 1.150 1.478
100 500 | -0.023 -0.018 1.036 1.374 | 0.003 0.000 1.038 1.370 | 0.013 0.021 1.087 1.469 | 0.002 0.017 1.087 1.442
300 100 | 0.014 0.007 1.186 1.566 | 0.030 0.038 1.233 1.553 | 0.017 0.021 1.292 1.693 | -0.029 -0.021 1.297 1.619
300 200 | 0.046 0.057 1.068 1.420 | 0.002 0.007 1.091 1.474 | -0.012 -0.012 1.177 1.532 | 0.035 0.046 1.158 1.475
300 500 | 0.020 0.025 1.032 1.354 | -0.005 -0.007 1.041 1.368 | 0.033 0.025 1.077 1.412 | 0.002 0.008 1.072 1.430
500 100 | 0.012 0.009 1.156 1.486 | 0.015 0.008 1.195 1.481 | -0.013 0.001 1.282 1.616 | 0.040 0.028 1.315 1.650
500 500 | -0.003 -0.009 1.032 1.356 | 0.026 0.007 1.031 1.367 | -0.044 -0.032 1.061 1.428 | -0.004 -0.033 1.083 1.444
500 1000 | -0.011 -0.006 1.014 1.369 | -0.035 -0.052 1.020 1.372 | -0.025 -0.001 1.052 1.435 | -0.002 0.011 1.055 1.442

This table reports the mean (m.), the median (med.), standard deviation (std.) and interquartile range (igr.) of the empirical distribution of the test
statistic ﬁ?jzj;j;wle in Theorem 5, with wy = [1/Ny,...,1/N1] and w2 = [1/Na, ..., 1/Na]. The statistic is computed for different sample sizes (N1, N2, T')
and different values of the DGP parameters under the null hypothesis of no change in comovement across regimes (Designs 1 Ho - 4 Hp). The asymptotic
distribution of the statistic is N(0,1) under the Assumptions of Theorem 4 and has interquartile ~ 1.349. The empirical distributions are obtained by

recomputing the statistics with 4000 MC simulations.



Table E.8 — Finite sample distribution of the test statistic TR in Theorem 5 with my = 0.5

J1J2J7J5 wiws
Design 1 Hp Design 2 Hyp Design 3 Hp Design 4 Hyp
N1 = Na T m med. std. iqr. m med. std. iqr. m med. std. iqr. m med. std. iqr.

30 100 | 0.001 -0.027 1.065 1.379 | 0.029 0.046 1.092 1.396 | -0.002 -0.008 1.211 1.567 | -0.013 -0.015 1.206 1.595
30 200 | -0.017 -0.022 1.031 1.386 | -0.003 -0.015 1.060 1.404 | 0.022 0.003 1.129 1.515 | 0.011 0.006 1.125 1.480
30 500 | -0.010 -0.031 1.039 1.401 | 0.007 0.005 1.015 1.333 | 0.003 -0.007 1.091 1.460 | 0.013 0.014 1.099 1.467
50 100 | 0.002 0.008 1.086 1.437 | 0.004 0.031 1.109 1.447 | 0.001 -0.001 1.197 1.571 | -0.001 -0.001 1.204 1.546
50 200 | -0.024 -0.014 1.032 1.359 | -0.012 -0.010 1.040 1.399 | 0.005 -0.011 1.102 1.444 | 0.020 0.028 1.131 1.490
50 500 | 0.008 -0.001 0.998 1.323 | -0.001 0.011 1.009 1.333 | -0.018 -0.022 1.088 1.469 | 0.006 -0.003 1.077 1.427
100 100 | -0.014 -0.025 1.072 1.381 | -0.004 0.004 1.102 1.437 | -0.010 0.009 1.211 1.585 | 0.017 0.037 1.207 1.601
100 200 | 0.003 0.007 1.030 1.387 | -0.013 -0.015 1.039 1.392 | -0.001 0.006 1.130 1.496 | 0.007 0.014 1.130 1.465
100 500 | -0.002 0.011 1.023 1.365 | 0.004 0.009 1.002 1.348 | 0.024 0.014 1.071 1.423 | 0.008 0.007 1.090 1.461
300 100 | -0.002 -0.010 1.069 1.370 | 0.026 0.022 1.081 1.433 | 0.015 0.016 1.178 1.542 | -0.015 -0.004 1.226 1.592
300 200 | -0.003 -0.014 1.029 1.337 | -0.014 -0.016 1.046 1.393 | -0.046 -0.034 1.143 1.550 | 0.004 0.005 1.133 1.479
300 500 | -0.005 -0.013 1.010 1.401 | -0.007 -0.006 1.010 1.363 | 0.007 0.023 1.092 1.445 | -0.003 0.015 1.082 1.476
500 100 | 0.014 0.008 1.093 1.430 | 0.025 0.033 1.064 1.389 | 0.004 0.001 1.188 1.558 | 0.008 0.011 1.233 1.590
500 500 | -0.007 -0.002 1.017 1.363 | 0.016 0.021 1.024 1.381 | -0.003 0.012 1.077 1.415 | 0.010 0.012 1.087 1.468
500 1000 | 0.001 0.004 1.008 1.359 | 0.014 0.033 1.008 1.339 | -0.002 -0.004 1.077 1.450 | 0.005 -0.012 1.057 1.416

This table reports the mean (m.), the median (med.), standard deviation (std.) and interquartile range (igr.) of the empirical distribution of the test
statistic ’?}?jzj;j;wle in Theorem 5, with wy = [1/Ny,...,1/N1] and w2 = [1/Na, ..., 1/Na]. The statistic is computed for different sample sizes (N1, N2, T')
and different values of the DGP parameters under the null hypothesis of no change in comovement across regimes (Designs 1 Ho - 4 Hp). The asymptotic
distribution of the statistic is N(0,1) under the Assumptions of Theorem 4 and has interquartile ~ 1.349. The empirical distributions are obtained by

recomputing the statistics with 4000 MC simulations.



Table E.9 — Finite sample distribution of the recentered and standardized statistic ¢;,;,+ in Theorem 1

Design 9

Design 10

Design 11

Design 12

N1 = N>

T

m.

med.

std.

iqr.

m.

med.

std.

iqr.

m.

med.

std.

iqr.

m.

med.

std.

iqr.

30
30
30

100
200
500

-0.062 -0.055 1.352

1.590

1.465

-0.009

0.002

1.234

-0.066 -0.040 1.233

1.468

-0.067
-0.045
-0.053

-0.032
-0.015
-0.071

1.312
1.474
1.682

1.554
1.534
1.501

0.008 -0.013

1.303

-0.007 -0.007 1.176

-0.009

0.003

1.250

1.638
1.461
1.658

-0.003

0.001 1.277 1.464

-0.024 -0.051

0.020

0.027

1.229
1.232

1.557
1.505

50
50
50

100
200
500

-0.007 0.003

1.233

-0.078
0.034

-0.045 1.378
-0.002 1.164

1.539
1.453
1.330

-0.006
-0.041
-0.004

-0.001
-0.011
-0.019

1.303

1.524

0.004

0.016

1.144 1.391

-0.020 -0.013

1.201
1.202

1.290

1.434

-0.044 -0.047 1.136

1.520
1.549
1.432

-0.047 -0.014 1.466
-0.037 -0.033 1.136

0.005

0.021

1.138

1.597
1.493
1.492

100
100
100

100
200
500

-0.039
-0.038
0.047

-0.010 1.348
-0.036 1.129

0.040

1.063

1.523
1.371
1.359

-0.028
-0.040
-0.031

-0.015
-0.023
-0.018

1.336
1.190
1.075

1.439
1.430
1.363

-0.004 -0.019 1.144

1.464

-0.024 -0.005

0.002

0.012

1.224 1.475
1.077 1.415

-0.037 -0.027 1.296

-0.017
-0.029

-0.008 1.122

-0.015

1.082

1.529
1.432
1.415

300
300
300

100
200
500

-0.018
-0.026
0.004

0.006
0.002
0.008

1.276
1.066
1.042

1.427
1.392
1.326

-0.026
-0.014
0.006

-0.006
0.014
-0.014

1.306
1.096
1.069

1.378
1.436
1.421

-0.023 -0.016
-0.006 -0.011
-0.014 -0.004

1.158
1.079
1.070

1.438
1.412
1.441

-0.023
-0.030
-0.000

-0.026 1.130
-0.038 1.060
0.000 1.059

1.461
1.417
1.430

500
500
500

100
500
1000

-0.025
0.008
0.011

-0.021
0.012
0.038

1.174
1.045
1.023

1.420
1.386
1.372

-0.042
-0.043
-0.005

-0.026
-0.032
-0.014

1.204

1.439

-0.035 -0.025

1.044 1.393

1.055

1.383

0.043
0.001

0.055
-0.003

1.172
1.086
1.070

1.421
1.397
1.459

-0.019
-0.016
-0.022

-0.014 1.075

-0.001
-0.002

1.086
1.050

1.426
1.460
1.410

Design 13

Design 14

Design 15

Design 16

Ni; = N>

med.

std.

iqr.

med.

std.

iqr.

m.

med.

std.

iqr.

m.

med.

std.

iqr.

30
30
30

100
200
500

-0.003
0.005
-0.015

-0.018
-0.002

1.387 1.546

1.152

-0.007 1.150

1.513
1.436

-0.000
-0.009
-0.016

-0.005
-0.010
0.001

1.199
1.139
1.118

1.515
1.447
1.441

-0.003

0.005

-0.042 -0.011
-0.005 -0.019

1.230
1.239
1.210

1.507
1.442
1.456

-0.049
-0.007
-0.015

-0.042
0.011

1.173
1.132

-0.014 1.175

1.479
1.497
1.487

50
50
50

100
200
500

-0.084
-0.016
-0.027

-0.046

1.340

-0.007 1.169
-0.010 1.096

1.457
1.385
1.391

-0.039
-0.009
-0.044

-0.029
0.000

1.136
1.095

1.445
1.408

-0.047 1.097 1.426

0.014
-0.008

0.013
0.009

1.156
1.098

-0.010 -0.017 1.122

1.448
1.348
1.402

-0.033
0.001
0.002

-0.008 1.125

0.002
0.016

1.131
1.119

1.441
1.464
1.448

100
100
100

100
200
500

0.015
-0.003
-0.010

0.006
0.017
0.001

1.136
1.069
1.050

1.419
1.404
1.394

-0.032
0.009
0.013

-0.032
0.006
0.028

1.113
1.091
1.046

1.392
1.418
1.371

-0.026 -0.007 1.140

-0.017 -0.032

0.010

-0.008

1.068
1.072

1.407
1.426
1.391

-0.023
-0.016
-0.008

0.002
-0.035

1.493

1.456

1.067 1.417

-0.014 1.065

1.414

300
300
300

100
200
500

-0.013
0.005
-0.011

0.002
0.009
0.007

1.130
1.045
1.033

1.473
1.407
1.364

-0.008
0.026
-0.009

-0.009
0.049
0.005

1.115

1.391

0.023

0.033

1.057 1.409

1.032

1.365

-0.043 -0.033
-0.012 -0.012

1.111
1.045
1.026

1.462
1.356
1.374

-0.023
-0.035
0.014

-0.028 1.141
-0.009 1.062

0.021

1.042

1.438
1.385
1.369

500
500
500

100
500
1000

-0.003
0.002
0.006

-0.000
0.010
0.016

1.133
1.008
1.019

1.452
1.369
1.363

-0.017
-0.012
0.038

-0.012
-0.023
0.039

1.109
1.042

1.472
1.404

1.017 1.337

0.010
-0.011
-0.021

0.012
0.001
-0.039

1.127 1.400

1.048

1.395

1.014 1.365

-0.032
-0.023
0.024

-0.022

1.100

-0.036 1.015

0.040

1.215

1.417
1.370
1.373

Design 17

Design 18

Design 19

Design 20

Ni = N>

T

m.

med.

std.

iqr.

m.

med.

std.

iqr.

m.

med.

std.

iqr.

m.

med.

std.

iqr.

30
30
30

100
200
500

-0.028
-0.032
-0.027

-0.005
0.007
-0.018

1.163
1.341
1.110

1.470
1.446
1.400

-0.052
-0.066
-0.008

-0.044

1.319

1.419

-0.183

-0.108

-0.044 1.154 1.421

-0.157 -0.062

0.013

1.097 1.464

0.226

0.113

1.137
1.188
1.222

1.401
1.428
1.385

-0.226
-0.170
-0.161

-0.112
-0.115
-0.098

1.275

1.365

1.354 1.364
1.144 1.318

50
50
50

100
200
500

0.014

0.007

1.128

-0.076 -0.064 1.065

-0.007 0.009

1.050

1.366
1.405
1.366

-0.003
0.083
-0.039

0.009
0.050
-0.016

1.083
1.099
1.066

1.361
1.409
1.406

-0.196 -0.086

1.274 1.430

-0.157 -0.060 1.334 1.350

0.137

0.061

1.099

1.370

0.162
-0.158
-0.116

0.075
-0.079
-0.055

1.202
1.080
1.073

1.383
1.335
1.352

100
100
100

100
200
500

0.016

0.003

-0.028 -0.015

0.018

0.015

1.406
1.106
1.041

1.419
1.385
1.372

-0.030
-0.021
-0.026

-0.009
-0.009
-0.028

1.000
1.051
1.026

1.321
1.375
1.356

-0.133 -0.072

1.077 1.379

-0.124 -0.067 1.102
-0.120 -0.050 1.073

1.416
1.330

0.057
0.037
-0.105

0.027
0.042
-0.056

1.145
1.075
1.010

1.386
1.371
1.321

300
300
300

100
200
500

0.003
-0.051
0.010

0.027
-0.001
0.013

1.044
1.069
1.018

1.353
1.368
1.377

-0.007 0.017

1.057 1.369

-0.031

-0.018

1.051

1.386

-0.131
-0.081

-0.102
-0.039

1.131

1.422

1.124 1.356

-0.007 -0.028

0.997 1.314

-0.075 -0.052

1.029

1.360

-0.109
-0.072
-0.082

-0.063

1.057 1.358

-0.017 1.072

-0.038

1.035

1.358
1.335

500
500

100
500

0.026

-0.001

1.052

1.351

-0.025 0.004

1.100 1.434

-0.094 -0.032

1.061

1.356

500 1000

0.006 -0.011
-0.031 -0.035

1.011 1.369
1.011 1.338

-0.007 0.002 1.014

0.023

0.038 1.003

1.356
1.350

-0.069 -0.050 1.024 1.370

0.070

0.036

1.026

1.340

-0.073
-0.086
0.047

-0.017

1.068

-0.047 1.050

0.022

1.018

1.423
1.408
1.358

This table reports the mean (m

distribution of the recentered and standardized statistic ¢;;i,¢ in Theorem 1 defined as: cyr (cqlgt -
standardized statistic is computed for different sample sizes (N1, N2,
9 - 20). The asymptotic distribution of the statistic is N(0,1) under the Assumptions of Theorem 1 and has interquartile
~ 1.349. The empirical distributions are obtained by recomputing the statistics with 4000 Monte Carlo simulations.
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.), the median (med.), standard deviation (std.) and interquartile range (iqr.) of the empirical

i) 4 The

T') and different values of the DGP parameters (Designs



Table E.10 - Finite sample distribution of recentered and standardized statistic ¢;, jyap,w, in Theorem 2

Design 9

Design 10

Design 11

Design 12

N1 = N>

T

m. med.

std.

iqr.

m.

med. std.

iqr.

m. med.

std. iqr.

m

med. std.

iqr.

30
30
30

100
200
500

-0.211 -0.142
-0.186 -0.117
-0.134 -0.097

1.035
1.055
1.028

1.384
1.407
1.371

-0.226
-0.164
-0.112

-0.130
-0.121
-0.042

1.042
1.041
1.054

1.373
1.383
1.418

-0.132
-0.075
-0.098

-0.050
-0.020
-0.065

1.035 1.408
1.009 1.339
1.024 1.368

-0.164
-0.086
-0.121

-0.104
-0.042
-0.088

1.029
1.009
0.997

1.408
1.325
1.344

50
50
50

100
200
500

-0.209 -0.131
-0.161 -0.091
-0.095 -0.025

1.034
1.050
1.034

1.397
1.426
1.395

-0.217
-0.157
-0.121

-0.112
-0.066
-0.057

1.069
1.033
1.028

1.380
1.383
1.412

-0.159
-0.080
-0.054

-0.082
-0.010
-0.029

1.032 1.382
1.021 1.380
1.007 1.346

-0.156
-0.115
-0.098

-0.096
-0.092
-0.051

1.040
1.006
1.006

1.358
1.348
1.335

100
100
100

100
200
500

-0.203 -0.102
-0.155 -0.069
-0.106 -0.061

1.031
1.010
1.008

1.383
1.368
1.347

-0.192
-0.171
-0.098

-0.116
-0.099
-0.054

1.036
1.037
0.998

1.385
1.348
1.333

-0.155
-0.100
-0.063

-0.078
-0.053
-0.018

1.025 1.366
1.035 1.401
1.015 1.383

-0.160
-0.101
-0.065

-0.085
-0.073
-0.055

1.041
1.013
1.004

1.400
1.359
1.360

300
300
300

100
200
500

-0.207 -0.108
-0.145 -0.067
-0.114 -0.069

1.032
1.022
1.010

1.382
1.337
1.355

-0.246
-0.150
-0.088

-0.169
-0.065
-0.049

1.026
1.030
1.007

1.358
1.380
1.352

-0.113
-0.115
-0.040

-0.039
-0.081
0.013

1.041 1.410
1.016 1.372
1.009 1.409

-0.116
-0.070
-0.026

-0.060
-0.012
0.001

1.038
1.001
0.995

1.381
1.319
1.337

500
500
500

100
500
1000

-0.183 -0.075
-0.092 -0.037
-0.081 -0.036

1.021
1.025
0.981

1.360
1.371
1.354

-0.204
-0.089
-0.081

-0.119
-0.010 1.015
-0.031 1.002

1.020

1.344
1.326
1.338

-0.155
-0.034
-0.010

-0.100
0.021
0.011

1.042 1.456
0.999 1.348
1.024 1.363

-0.156
-0.062
-0.046

-0.083
-0.039 0.993
-0.023 1.022

1.041

1.387
1.301
1.384

Design 13

Design 14

Design 15

Design 16

N1 = N>

T

m. med.

std.

iqr.

m

med. std.

iqr.

m med.

std. iqr.

m

med. std.

iqr.

30
30
30

100
200
500

-0.116 -0.062
-0.112 -0.055
-0.074 -0.025

1.039
1.017
1.009

1.437
1.391
1.323

-0.196
-0.103
-0.066

-0.133
-0.021
-0.052

1.053
1.048
1.025

1.371
1.426
1.351

-0.159 -0.086
-0.094 -0.044
-0.057 -0.038

1.026
1.034
1.009

1.386
1.410
1.372

-0.117
-0.089
-0.046

-0.043
-0.039
-0.027

1.032
1.013
1.020

1.404
1.340
1.398

50
50
50

100
200
500

-0.151 -0.052
-0.133 -0.090
-0.073 -0.045

1.072
1.023
1.016

1.406
1.390
1.393

-0.163
-0.115
-0.072

-0.077
-0.055
-0.041

1.062
1.011
0.993

1.424
1.394
1.337

-0.134 -0.089
-0.127 -0.071
-0.076 -0.040

1.022
1.013
1.023

1.352
1.356
1.378

-0.146
-0.086
-0.076

-0.054
-0.057
-0.038

1.039
1.004
1.025

1.383
1.378
1.382

100
100
100

100
200
500

-0.175 -0.101
-0.115 -0.044
-0.066 -0.022

1.032
1.035
1.010

1.372
1.382
1.319

-0.185
-0.129
-0.071

-0.109
-0.061
-0.033

1.056
1.019
1.015

1.421
1.415
1.389

-0.130 -0.059
-0.099 -0.046
-0.015 0.014

1.051
1.043
0.999

1.397
1.364
1.353

-0.154
-0.107
-0.061

-0.069
-0.067
-0.041

1.053
1.030
1.003

1.419
1.383
1.357

300
300
300

100
200
500

-0.162 -0.086
-0.114 -0.040
-0.080 -0.036

1.058
1.047
1.023

1.428
1.417
1.392

-0.162
-0.111
-0.097

-0.083
-0.040
-0.069

1.059
1.017
1.006

1.408
1.391
1.348

-0.139 -0.048
-0.108 -0.038
-0.065 -0.044

1.057
1.034
1.021

1.414
1.381
1.376

-0.140
-0.084
-0.074

-0.078
-0.015
-0.040

1.021
1.046
1.006

1.372
1.470
1.363

500
500
500

100
500
1000

-0.124 -0.042
-0.079 -0.041
-0.085 -0.061

1.043
1.020
1.006

1.415
1.364
1.328

-0.143
-0.050
-0.059

-0.064
-0.005 0.998
-0.024 0.992

1.046

1.425
1.350
1.349

-0.128 -0.070
-0.070 -0.038
-0.064 -0.052

1.022
1.021
1.004

1.396
1.374
1.359

-0.171
-0.084
-0.069

-0.105
-0.066 1.005
-0.058 1.003

1.052

1.414
1.339
1.364

Design 17

Design 18

Design 19

Design 20

Ni = N>

T

m. med.

std.

iqr.

m

med. std.

iqr.

m med.

std. iqr.

m

med. std.

iqr.

30
30
30

100
200
500

-0.235 -0.116
-0.150 -0.096
-0.104 -0.041

1.103
1.043
1.030

1.467
1.381
1.390

-0.209
-0.150
-0.078

-0.131
-0.099
-0.036

1.070
1.058
1.021

1.409
1.414
1.374

-0.252 -0.124
-0.159 -0.080

-0.086 -0.048

1.120
1.054
1.011

1.419
1.406
1.366

-0.275
-0.169
-0.113

-0.161
-0.082
-0.037

1.115
1.038
1.055

1.414
1.389
1.436

50
50
50

100
200
500

-0.256 -0.131
-0.155 -0.100
-0.112 -0.056

1.117
1.042
1.044

1.434
1.407
1.372

-0.205
-0.178
-0.066

-0.115
-0.101
0.001

1.076
1.078
1.035

1.374
1.404
1.401

-0.267 -0.156
-0.145 -0.076
-0.118 -0.052

1.107
1.084
1.026

1.430
1.421
1.360

-0.275
-0.124
-0.103

-0.165
-0.040
-0.041

1.146
1.053
1.030

1.458
1.367
1.390

100
100
100

100
200
500

-0.237 -0.156
-0.124 -0.047
-0.084 -0.033

1.103
1.037
1.047

1.396
1.349
1.410

-0.226
-0.118
-0.072

-0.134
-0.036
-0.028

1.094
1.030
1.034

1.407
1.350
1.388

-0.268 -0.162
-0.185 -0.105
-0.113 -0.064

1.119
1.075
1.038

1.445
1.427
1.374

-0.243
-0.180
-0.122

-0.143
-0.074
-0.072

1.107
1.070
1.032

1.379
1.367
1.393

300
300
300

100
200
500

-0.229 -0.113
-0.134 -0.054
-0.086 -0.032

1.110
1.035
1.028

1.456
1.390
1.361

-0.218
-0.129
-0.107

-0.126
-0.081
-0.067

1.101
1.040
1.026

1.433
1.379
1.344

-0.251 -0.135
-0.184 -0.074
-0.105 -0.068

1.138
1.074
1.005

1.469
1.389
1.328

-0.259
-0.188
-0.096

-0.136
-0.111
-0.031

1.121
1.072
1.003

1.420
1.391
1.334

500
500
500

100
500
1000

-0.202 -0.095
-0.112 -0.074
-0.060 -0.036

1.103
1.005
1.019

1.445
1.372
1.357

-0.228
-0.074
-0.074

-0.118
-0.025
-0.050

1.113
0.997
1.011

1.416
1.341
1.364

-0.248 -0.132
-0.110 -0.046
-0.061 -0.025

1.117
1.052
1.014

1.418
1.377
1.340

-0.233
-0.089
-0.073

-0.110
-0.039
-0.005

1.130
1.035
1.035

1.441
1.388
1.362

This table reports the mean

(igr.)

ﬁ(éjlj2wl'w2 - C,(y?l.ilewg)/ lejz (wlaw2)7 with w; = [1:0707“-70} and w»

(m.),

the median (med.),
of the empirical distribution of the recentered standardized statistic ¢;,jow,w, in Theorem 2 defined as:

[1,0,0,...,0].
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standard deviation (std.)

and

interquartile

range

The standardized statis-
tic is computed for different sample sizes (N1, N2, T') and different values of the DGP parameters (Designs 9 - 20). The
asymptotic distribution of the statistic is N(0,1) under the Assumptions of Theorem 2 and has interquartile ~ 1.349. The
empirical distributions are obtained by recomputing the statistics with 4000 MC simulations.




Figure E.1 - Finite sample distribution of the recentered and standardized statistic ¢é;,;,+ in Theorem 1
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(a) Design 2, Ny = N2 =30, T = 100
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(c¢) Design 2, Ny = N = 100, T = 200

e 6 8
(e) Design 2, N1 = N2 = 500, T' = 500
-6 6

(b) Design 2, N1 = N2 = 50, T' = 200
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(d) Design 2, N» = N2, = 300, T = 200
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(f) Design 2, N1 = N, = 500, T = 1000
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This figure shows the simulated empirical distribution of the recentered and standardized statistic ¢;,:,¢ in

Theorem 1 defined as: Cnr (Giyize — Chyine) / Qi,ir: - The standardized statistic is computed for different

sample sizes (N7, Na, T) and for the values of the DGP parameters in Design 2 of Table 1. Under the

Assumptions of Theorem 1, the asymptotic distribution of the statistic is N(0,1) (solid red line). The

empirical distributions are obtained by recomputing the statistics with 4000 Monte Carlo simulations.
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Figure E.2 — Finite sample distribution of recentered and standardized statistic ¢;, j,w,w, in Theorem 2

(a) Design 2, Ny = N2 =30, T = 100 (b) Design 2, N1 = N =50, T' = 200
0.40 -
041 0.35 -
0.30
0.3 1
0.25
02 0.20
0.15
014 0.10 1
0.05 A
0.0 0.00 -
(c¢) Design 2, Ny = N = 100, T = 200 (d) Design 2, N» = N2, = 300, T = 200
0.40 1 0.40
0.35 0.357
0.30 1 0.30
0.25 A 0.25
0.20 0.20
0.15 0.15 1
0.10 0.10 1
0.05 0.05 -
0.00 - 0.00
(e) Design 2, Ny = N» = 500, T = 500 (f) Design 2, Ny = N = 500, T = 1000
0.40 0.40 -
0.35 0.35 1
0.30 0.30 1
0.25 0.25
0.20 0.20 1
0.15 0.15 1
0.10 0.10 1
0.05 0.05 A
0.00 - 0.00 -

This figure shows the simulated empirical distribution of the recentered and standardized statistic ¢;, j,w, ws
in Theorem 2 defined as: VT (&, jywiws — Coh jowwa) /\ @irja (W1, w2) , With wy = [1,0,0,...,0] and wy =
[1,0,0,...,0]. The statistic is computed for different sample sizes (N1, N2, T) and for the values of the DGP
parameters in Design 2 of Table 1. Under the Assumptions of Theorem 2, the asymptotic distribution of the

statistic is N(0,1) (solid red line). The empirical distributions are obtained with 4000 MC simulations.
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Figure E.3 - Finite sample distribution of recentered and standardized statistic ﬁjl jowrw, i Theorem 3

(a) Design 2, Ny = N, = 30, T = 100 (b) Design 2, Ny = Ny = 50, T = 200
0.40 A
0.35 A
0.30 A
0.25 A
0.20 A
0.15 A
0.10 A
0.05 A
o 0.00 - o
(c) Design 2, Ny = N, = 100, T = 200 (d) Design 2, Ny = Ny = 300, T = 200
0.40 A 0.40 A
0.35 A 0.35 A
0.30 0.30 A
0.25 0.25 A
0.20 4 0.20 A
0.15 0.15 A
0.10 0.10 A
0.05 A 0.05 A
0.00 - o . 0.00 - T "
(e) Design 2, Ny = N = 500, T = 500 (f) Design 2, Ny = N, = 500, T = 1000

This figure shows the simulated empirical distribution of the recentered and standardized statistic fzjl Jowrws

in Theorem 3 defined as: VT (Eﬁjawlu& - RJO'1jzw1wz) /\/QR,jljz (Wo1j1 45> Wo,25145), With wy = [1/Nq,...,1/Nq]

and wy = [1/Na,...,1/Ns]. The standardized statistic is computed for different sample sizes (N1, Na, T)
and for the values of the DGP parameters in Design 2 of Table 1. Under the Assumptions of Theorem 3, the
asymptotic distribution of the statistic is N(0,1) (solid red line). The empirical distributions are obtained

by recomputing the statistics with 4000 Monte Carlo simulations.
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Figure E.4 — Finite sample distribution of the test statistic 7° in Theorem 4

J1J277 75 wiwz

(a) Design 2, Ny = N» =30, T'= 100 (b) Design 2, Ny = N2 = 50, T' = 200
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(c¢) Design 2, Ny = Np = 100, T = 200 (d) Design 2, N» = N2 = 300, T' = 200
0.40
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0.30
0.25
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(e) Design 2, Ny = N, = 500, T = 500 (f) Design 2, N1 = N, = 500, T = 1000
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0.10 0.10 1
0.05 1 0.05
0.00 0.00 - .
This figure shows the simulated empirical distribution of the test statistic Te. .. in Theorem 4, with

J1J2J7 35 wiwz

w; = [1,0,0,...,0] and wy = [1,0,0,...,0]. The test statistic is computed for different sample sizes (N7, Na,
T) and for the values of the DGP parameters in Design 2 of Table 2. Under the Assumptions of Theorem
4, the asymptotic distribution of the test statistic is N (0, 1) (solid red line). The empirical distributions are

obtained by recomputing the statistics with 4000 Monte Carlo simulations.
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Figure E.5 — Finite sample distribution of the test statistic 7° in Theorem 4

J1j2J7 5 wiws
(a) Design 2, Ny = N» =30, T'= 100 (b) Design 2, Ny = N2 = 50, T' = 200
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(c¢) Design 2, Ny = Np = 100, T = 200 (d) Design 2, N» = N2 = 300, T' = 200
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(e) Design 2, Ny = N, = 500, T = 500 (f) Design 2, N1 = N, = 500, T = 1000
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. 0.00 - .
This figure shows the simulated empirical distribution of the test statistic Te. .. in Theorem 4, with

J1J2J7 35 wiwz

wy = [1/Ny,...,1/Nq] and wg = [1/Na,...,1/Ns]. The test statistic is computed for different sample sizes
(N1, N, T) and for the values of the DGP parameters in Design 2 of Table 2. Under the Assumptions
of Theorem 4, the asymptotic distribution of the test statistic is N(0,1) (solid red line). The empirical

distributions are obtained by recomputing the statistics with 4000 Monte Carlo simulations.
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Figure E.6 — Finite sample distribution of the test statistic 7. in Theorem 5 with 7y = 0.5

J1j2J7 5 wiws
(a) Design 2, Ny = N» =30, T'= 100 (b) Design 2, Ny = N2 = 50, T' = 200
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(c¢) Design 2, Ny = Np = 100, T = 200 (d) Design 2, N» = N2 = 300, T' = 200
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(e) Design 2, N; = N = 500, T = 500 (f) Design 2, N1 = Ny = 500, T = 1000
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This figure shows the simulated empirical distribution of the test statistic 7}1 Gog s wiws

in Theorem 5, with
wy = [1/Ny,...,1/N1] and we = [1/Na,...,1/N3]. The test statistic is computed for different sample sizes
(N1, N, T) and for the values of the DGP parameters in Design 2 of Table 2. Under the Assumptions
of Theorem 5, the asymptotic distribution of the test statistic is N(0,1) (solid red line). The empirical

distributions are obtained by recomputing the statistics with 4000 Monte Carlo simulations.
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Figure E.7 — Finite sample distribution of the test statistic 7. in Theorem 5

J1j2J7 5 wiws
(a) Design 2, Ny = N» =30, T'= 100 (b) Design 2, Ny = N2 = 50, T' = 200
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(c¢) Design 2, Ny = Np = 100, T = 200 (d) Design 2, N» = N2 = 300, T' = 200
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(¢) Design 2, Ny = N» = 500, T = 500 (f) Design 2, Ny = N = 500, T' = 1000
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This figure shows the simulated empirical distribution of the test statistic 7}1 Gog s wiws

in Theorem 5, with
wy = [1/Ny,...,1/N1] and we = [1/Na,...,1/N3]. The test statistic is computed for different sample sizes
(N1, N, T) and for the values of the DGP parameters in Design 2 of Table 2. Under the Assumptions
of Theorem 5, the asymptotic distribution of the test statistic is N(0,1) (solid red line). The empirical

distributions are obtained by recomputing the statistics with 4000 Monte Carlo simulations.
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E Empirical Application: Additional Results

Figure E.1 — Actual correlations within and across panels when z; < él = 92

DEV (ex US)

DEV (ex US)
DEV (ex US)

DEV (ex US)

us

The figure displays the sample correlations within and across panels of monthly excess returns on the U.S.
equity portfolios (Group 1) and on the developed (ex US) equity portfolios (Group 2) when z < 6, = 65,

that is for all dates such that UM < 0.674. Average sample correlations are R1; = 0.802, Ris = Ry; = 0.543,

and Rys = 0.871.

19



Figure E.2 — Actual correlations within and across panels when z; > él = 92

DEV (ex US)

DEV (ex US)
DEV (ex US)

DEV (ex US)

us

The figure displays the sample correlations within and across panels of monthly excess returns on the U.S.
equity portfolios (Group 1) and the international (ex U.S.) equity portfolios (Group 2) when z; > 6, = 6o,

that is for all dates such that UM > 0.674. Average sample correlations are Ry = 0.808, Ry = Ry; = 0.707,

and RQQ = 0.917.
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Figure E.3 — Estimated systematic correlations within and across panels when z; < él = 52

DEV (ex US)

DEV (ex US)
DEV (ex US)
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us

The figure displays the estimated systematic correlations within and across panels of monthly excess returns
on the U.S. equity portfolios (Group 1) and the international (ex U.S.) equity portfolios (Group 2) when
2 < 0 = éz, that is for all dates such that UM < 0.674. Average systematic correlations are ﬁ’f’l = 0.802,

RiLw,w, = 0.543, and RY, = 0.871.
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Figure E.4 — Estimated systematic correlations within and across panels when z; > 6, = 0,

DEV (ex US)

DEV (ex US)

us

DEV (ex US)
DEV (ex US)

The figure displays the estimated systematic correlations within and across panels of monthly excess returns
on the U.S. equity portfolios (Group 1) and the international (ex U.S.) equity portfolios (Group 2) when
z > él = éz, that is for all dates such that UM > 0.674. Average systematic correlations are ﬁ’f’l = 0.808,

R Huw,w, = 0.708, and RY = 0.917.
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Figure E.5 — Return loadings on F, [(]1), the first pervasive factor of the U.S. equity portfolios.
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Figure E.6 — Return loadings on FI%, the second pervasive factor of the U.S. equity portfolios.
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Figure E.7 — Return loadings on Fg }JV, the first pervasive factor of the developed (ex US) equity portfolios.
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the second pervasive factor of the developed (ex US) equity portfol

DEV>
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Figure E.8 — Return loadings on
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The Data Analytics for Finance and Macro (DAFM) Research Centre
Forecasting trends is more important now than it has ever
been. Our quantitative financial and macroeconomic research
helps central banks and statistical agencies better understand
their markets. Having our base in central London means we
can focus on issues that really matter to the City. Our emphasis
on digitalisation and the use of big data analytics can help
people understand economic behaviour and adapt to changes
in the economy.

Find out more at kcl.ac.uk/dafm
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