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Abstract

We study regime-specific systematic comovement between two large panels of variables that

exhibit an approximate factor structure. Within each panel, we identify threshold-type regimes

through shifts in the factor loadings. For the resulting regimes, and with regard to the re-

lation between any two variables in different panels, we define as “systematic” the comove-

ment that is generated by the common components of the variables. In our setup, changes

in comovement are identified by regime shifts in the loadings. After constructing measures

of systematic comovement between the two panels, we propose estimators for these measures

and derive their asymptotic properties. We develop inferential procedures to formally test for

changes in systematic comovement between regimes. The empirical analysis of two large panels

of U.S. and international equity returns shows that their systematic comovement increases when

U.S. macroeconomic uncertainty is high as determined by our estimation procedure.
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1 Introduction

Comovement is paramount in economics and finance. The cross-sectional variation among macroe-

conomic variables is valuable to study business cycle fluctuations, see e.g. Forni and Reichlin (1998),

Stock and Watson (2002b), and Cheng, Liao, and Schorfheide (2016). Comovement among asset

returns has implications for portfolio diversification, see e.g. Ang and Timmermann (2012), and

deepens the understanding of the global financial integration, see e.g. Miranda-Agrippino and Rey

(2020). When a large number of variables is involved, these are likely to exhibit a dense structure

that reflects common sources of variation, as argued in Giannone, Lenza, and Primiceri (2021). It

is thus appealing to assume an underlying approximate factor structure, in which a small number

of common factors drives the cross-sectional systematic variation among the variables in a panel

through the common components, see Stock and Watson (2010), and references therein. Analysis

of comovement in large dimensional factor models has mainly looked at a single panel of variables,

which means that it has focused on comovement within the group. We depart from this scenario

and consider a more general group-factor structure involving two distinct panels of variables, each

of which admits a common factor representation, and study comovement between the groups. We

further allow for time variation in comovement induced by discrete changes in the factor load-

ings. We thus study comovement subject to possible discrete time variation between two groups of

variables, each of which allows for an approximate factor structure. Our paper makes three main

contributions: it develops a suitable econometric model; it proposes valid measures of systematic

comovement; it illustrates the usefulness of our methodological framework through an extensive

empirical analysis.

Factor representations are widely used to model comovement within large panels of financial

and economic data. Seminal contributions studying static or dynamic frameworks are Connor and

Korajczyk (1986, 1988), Forni, Hallin, Lippi, and Reichlin (2000, 2004), Bai and Ng (2002), Stock

and Watson (2002a,b), Bai (2003), and Forni, Hallin, Lippi, and Zaffaroni (2015, 2017). All these

studies focus on factor models as applied to one group of variables and assume that both loadings

and number of factors remain constant over time. These assumptions impose restrictions along

both the cross-sectional and the time series dimensions of the underlying data generating process,

and such restrictions may not always be accurate in empirically relevant scenarios. The one-group

restriction implies that all factors are pervasive. However, as argued in Goyal, Pérignon, and Villa

(2008), there may arise situations in which it is necessary to distinguish between common factors,
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which affect variables in all groups, and group-specific factors, which affect only variables within a

given group. Factor loadings may also be time-varying, as argued for example in Bekaert, Hodrick,

and Zhang (2009) in the context of analyzing international equity return comovement. An accurate

analysis of comovement should consider these two features within a unifying framework, otherwise

the empirical results may lead to misleading conclusions.

Multi-level factor models have been the focus of attention in a number of contributions. Goyal,

Pérignon, and Villa (2008) study the factor structure between two groups of returns from stocks

on NYSE and Nasdaq, and develop a procedure to determine the number of common factors.

Breitung and Eickmeier (2016), and Choi, Kim, Kim, and Kwark (2018), propose a canonical

correlation estimator for multi-level factor models. Ando and Bai (2017), and Han (2021), focus

upon shrinkage-based estimation. Hallin and Liska (2011) extend the dynamic factor model to

the case of a finite number of groups; their model is then applied in Barigozzi and Hallin (2016,

2017), and Barigozzi, Hallin, and Soccorsi (2019). Andreou, Gagliardini, Ghysels, and Rubin (2019)

formally propose a test for the number of common factors between two groups of variables. All

these contributions focus on linear factor representations and do not consider the possibility of

potentially time-dependent loadings.

There now exists a vast literature studying time variation in the loadings in large dimensional

factor models. Bates, Plagborg-Moller, Stock, and Watson (2013) study the robustness properties

of the asymptotic principal components estimator as applied to a misspecified linear factor model

when the true underlying data generating process exhibits time-varing loadings. Breitung and

Eickmeier (2011), Corradi and Swanson (2014), Chen, Dolado, and Gonzalo (2014), Han and Inoue

(2015), Yamamoto and Tanaka (2015), Massacci (2020), and Barigozzi and Trapani (2021), develop

inferential procedures to detect discrete shifts in factor loadings. Cheng, Liao, and Schorfheide

(2016), Baltagi, Kao, and Wang (2017, 2021), Su and Wang (2017), Massacci (2017), Ma and

Su (2018), Pelger and Xiong (2018), Zaffaroni (2019), and Kelly, Pruitt, and Su (2020), propose

model specifications that allow for either discrete or continuous shifts in the factor loadings. These

contributions work under the one-group maintained assumption, which implies that all factors are

pervasive for the observable variables.

We fill the existing gap in the literature by developing a group-factor model that allows for time

variation in the factor loadings: this is the first contribution of our paper. In order to ease the

exposition, we propose a two-group specification, although the model can be extended to a finite
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number of groups. Each group admits an underlying approximate static factor representation in

which the loadings exhibit two discrete regimes. Within each group, the shift between states is

modeled through the threshold principle of Pearson (1900): at a given point in time, the factor

loadings depend on the relative position of an observable state variable with respect to the cor-

responding unknown threshold parameter. This general set up extends the existing literature by

allowing for regime-specific group-factor structure. We propose to estimate our threshold group-

factor model by least squares: following Bai and Ng (2002) and Stock and Watson (2002a), we

implement a group-by-group estimator based on asymptotic principal components to estimate fac-

tors, loadings and threshold value. This approach is appealing since it allows to estimate each

group independently and therefore does not require any restriction across the groups.

Given our threshold group-factor model, we propose regime-specific measures of systematic co-

movement between the groups: this is the second contribution of our paper. The building block

is the pairwise common component, which is defined as the product between the common compo-

nents of two cross-sectional units that belong to different groups. As a generalization of the common

components analyzed in Bai (2003), the pairwise common component captures the instantaneous

comovement between a pair of cross-sectional units. Based on the pairwise common components, we

formally develop two regime-specific measures of comovement, namely average systematic covari-

ance and correlation. The former is obtained as the within-regime weighted average of the pairwise

common components; the latter is constructed in an analogous way by suitably standardizing the

pairwise common components so that the absolute value of the resulting measure lies within the

unit interval. Our measures of comovement require assigning a priori weights to the cross-sectional

units within each group; the comovement between each pair is then obtained by specifying suitable

weighting schemes. We motivate our measures of comovement by showing that the average system-

atic correlation has an upper bound that depends on the canonical correlations among the factors in

the two groups and the pervasiveness of the factors within each group, as measured by the R-square

of the factors. We propose valid estimators for the pairwise common components and for the mea-

sures of systematic comovement and we analytically derive their asymptotic distributions based on

a set of empirically plausible assumptions. We further strengthen our methodology by advancing

formal inferential procedures to detect changes in systematic comovement among the regimes: our

test statistics are easily implementable and we prove their asymptotically normal distribution.1 We

1We develop tests for changes in systematic comovement between the regimes identified and estimated by the
threshold factor model. Nevertheless, it is easy to show that the same tests can be applied for any two regimes
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corroborate the validity of our theoretical results through a comprehensive Monte Carlo analysis,

which shows the excellent finite sample performance of estimators and test statistics.

Finally, we employ our theoretical results to study comovement in global equity market returns:

this is the third contribution of our paper. We consider two large groups of equity portfolio

returns, namely U.S. and international, over the sample period running between January 1991 and

December 2019. As a common state variable driving the regimes we opt for the U.S. macroeconomic

uncertainty index of Jurado, Ludvigson, and Ng (2015): our model thus allows to identify low and

high uncertainty regimes within each group. Interestingly, our estimates show that the regimes are

perfectly synchronized across the groups, with a sample split occurring at an estimated value equal

to the 77th percentile of the empirical distribution of the U.S. macroeconomic uncertainty index.

Notice that this first result of the two equity markets switching at the same time between low and

high uncertainty regimes is achieved without imposing any restrictions on the estimation procedure

and thus is a genuine feature of the data. We further show that the first estimated factor within each

group is highly correlated with the first factor of Miranda-Agrippino and Rey (2020): therefore,

the dynamics of equity returns within each group follow those of the global financial cycle discussed

in Rey (2018). Our empirical analysis thus investigates the dynamics of systematic comovement

in global equity markets over the course of the global financial cycle. In particular, we show that

both pairwise and average systematic comovement between the two groups is significantly higher

during periods of high U.S. macroeconomic uncertainty as compared to times of low uncertainty.

To the best of our knowledge, this result has not been previously documented.

The rest of the paper is organized as follows. Section 2 introduces the econometric model,

the measures of systematic comovement, and the related hypotheses about their changes across

regimes. Section 3 discusses estimation of the model and measures of systematic comovement.

Section 4 collects all asymptotic results. Section 5 presents the main findings of an extensive

Monte Carlo study. Section 6 covers the empirical analysis, and Section 7 concludes. Appendix A

states all Assumptions. Appendix B provides the estimators for the asymptotic variances appearing

in Theorems 1 through 5 in Section 4. The Online Appendix C includes the proofs of Proposition 1

and of all Theorems, together with technical Lemmas. The Online Appendix D collects the tables

of results for the Monte Carlo experiments. The Supplementary Material (henceforth SM) collects

additional Monte Carlo and empirical results.

identified exogenously by the econometrician.
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2 Threshold group-factor model and systematic comovement

2.1 Model

We are interested in the threshold group-factor model

x1i1t = I (z1t ≤ θ1)λ′1Li1f1Lt + I (z1t > θ1)λ′1Hi1f1Ht + e1i1t ,

x2i2t = I (z2t ≤ θ2)λ′2Li2f2Lt + I (z2t > θ2)λ′2Hi2f2Ht + e2i2t ,
(1)

where I(·) denotes the indicator function. For g = 1, 2, ig = 1, . . . , Ng, and t = 1, . . . , T , xgigt is

the observable dependent variable. The threshold variable zgt is observable, with corresponding

unknown threshold value θg: zgt and θg are further discussed in Section 2.1.1 below. For jg = L,H,

the Kgjg × 1 vector fgjgt =
[
fgjg1t, ..., fgjgKgjg t

]′
collects the latent factors, with corresponding

Kgjg × 1 vector of loadings λgjgig =
[
λgjgig1, . . . , λgjgigKgjg

]′
. Finally, egigt is the idiosyncratic

component, with features given in Assumption A.4.

2.1.1 Regimes

The model in (1) generally allows for group-specific threshold variable and value zgt and θg, re-

spectively, for g = 1, 2. Four regimes arise within this general framework, namely: (i) {z1t ≤ θ1} ∩

{z2t ≤ θ2}; (ii) {z1t ≤ θ1}∩{z2t > θ2}; (iii) {z1t > θ1}∩{z2t ≤ θ2}; (iv) {z1t > θ1}∩{z2t > θ2}. Our

set up also allows for a more restrictive scenario in which the threshold variable z1t = z2t = zt is com-

mon across the groups. In this case, the model generates three regimes, that is: (i) zt ≤ min {θ1, θ2};

(ii) min {θ1, θ2} < zt ≤ max {θ1, θ2}; (iii) zt > max {θ1, θ2}. In the latter scenario, if θ1 = θ2 = θ,

than the model has only two regimes: (i) zt ≤ θ and (ii) zt > θ.

In what follows, we deal with the general case in which the threshold variables are group-specific:

the case z1t = z2t = zt is nested within this scenario. The threshold values θ1 and θ2 are generally

unknown: we thus do not impose any restriction on them.

2.1.2 Common and group-specific factors

Following Andreou, Gagliardini, Ghysels, and Rubin (2019), we allow for both common and group

specific factors within each regime. Formally, we let the pervasive factors fgjgt be defined as fgjgt =

[f c′j1j2t,f
s′
gjgt

]′, where f cj1j2t and f sgjgt are Kc
j1j2
×1 and Ks

gjg
×1 vectors of common and group-specific

factors, respectively, such that either Kc
j1j2

> 0 or Ks
gjg

> 0 (or both), and Kc
j1j2

+ Ks
gjg

= Kgjg :
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the model only has group-specific factors within regime jg if Kc
j1j2

= 0 ; the common factors are

the only drivers of comovement both within and across groups if Ks
gjg

= 0. Importantly, we do not

impose ex-ante the pervasive factors to be common in the two groups, in either regime.

2.1.3 Further notation

In what follows, xgt =
[
xg1t, ..., xgNgt

]′
is the Ng × 1 vector of observable dependent variables

within each group. The Ng × Kgjg matrix Λgjg =
[
λgjg1, . . . ,λgjgNg

]′
collects the loadings. The

Ng×1 vector of idiosyncratic components is egt =
[
eg1t, ..., egNgt

]′
. We define IgLt(θg) = I(zgt ≤ θg)

and IgHt(θg) = I(zgt > θg). We let θ0
g , f

0
gjgt

, and Λ0
gjg

, be the true values of θg, fgjgt, and Λgjg ,

respectively.

2.2 Systematic comovement

2.2.1 Pairwise common components

Let c0
gjgigt

be the common component within group g = 1, 2, and regime jg = L,H, for cross-

sectional unit ig = 1, . . . , Ng, at time period t = 1, . . . , T . Following Bai and Ng (2002), c0
gjgigt

is

defined as

c0
gjgigt := λ0′

gjgigf
0
gjgt. (2)

The common component in (2) naturally extends the common component defined in linear large

dimensional factor models to allow for groups and regimes: see Bai (2003) for an analysis of common

components in linear large dimensional factor models. Based on (2), the common component within

group g = 1, 2, for ig = 1, . . . , Ng, and t = 1, . . . , T , may be written as

c0
gigt = IgLt

(
θ0
g

)
c0
gLigt + IgHt

(
θ0
g

)
c0
gHigt = IgLt

(
θ0
g

)
λ0′
gLigf

0
gLt + IgHt

(
θ0
g

)
λ0′
gHigf

0
gHt . (3)

The common component in (3) reduces to the one in (2) within each regime jg = L,H. The

common components in (2) and (3) apply to an individual cross-sectional unit ig within group

g. They also allow to construct pairwise common components between the two groups. Formally,

from (2) we define the pairwise common component between cross-sectional units i1 and i2 within

regimes j1 and j2 as

c0
j1j2i1i2t := c0

1j1i1t · c
0
2j2i2t = λ0′

1j1i1f
0
1j1tf

0′
2j2tλ

0
2j2i2 . (4)
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Similarly, from (3) we define the pairwise common component between cross-sectional units i1 and

i2 unconditional upon the regime as

c0
i1i2t = c0

1i1t · c
0
2i2t =

∑
j1=L,H

∑
j2=L,H

I1j1t
(
θ0

1

)
I2j2t

(
θ0

2

)
λ0′

1j1i1f
0
1j1tf

0′
2j2tλ

0
2j2i2 . (5)

2.2.2 Measuring systematic comovement

From the pairwise common component in (5) we define measures of systematic comovement between

two cross-sectional units conditional upon the regimes. Formally, for g = 1, 2, jg = L,H, and

ig = 1, . . . , Ng, we define the systematic covariance between the i1-th element of x1t and the i2-th

element of x2t within regimes j1 and j2 as

c0
j1j2i1i2 := E

[
c0
i1i2t|I1j1t

(
θ0

1

)
= I2j2t

(
θ0

2

)
= 1
]

= λ0′
1j1i1E

[
f0

1j1tf
0′
2j2t

]
λ0

2j2i2 : (6)

c0
j1j2i1i2

measures the degree of comovement between x1i1t and x2i2t in regime j1 and j2 as induced

by the pervasive factors f0
1j1t

and f0
2j2t

; as such, it is a measure of systematic comovement.

The systematic covariance in (6) measures comovement between two individual cross-sectional

units. In some instances, it may be useful to quantify the average comovement between the two

groups: for example, if x1t and x2t are returns from assets that belong to two separate portfolios,

this is informative about the comovement between the average returns from the two portfolios. To

this purpose, for g = 1, 2, consider the Ng × 1 vector of weights w′g =
[
wg1, . . . , wgNg

]
such that

ι′Ngwg = 1, where ιNg is the Ng × 1 vector of ones. Given the unconditional pairwise common

component c0
i1i2t

in (5), we define the average unconditional pairwise common component as

c0
w1w2t =

N1∑
i1=1

N2∑
i2=1

w1i1w2i2c
0
i1i2t. (7)

We then define the average systematic covariance between the groups in regime j1 and j2 as

c0
j1j2w1w2

= E
[
c0
w1w2t|I1j1t

(
θ0

1

)
= I2j2t

(
θ0

2

)
= 1
]

= λ0′
1j1(w1) · E

[
f0

1j1tf
0′
2j2t

]
· λ0

2j2(w2) , (8)

with λ0
gjg

(wg) =
∑Ng

ig=1wgigλ
0
gjgig

with g = 1, 2. If the ig-th element of wg is equal to one and all

other elements are equal to zero, for g = 1, 2, equation (8) reduces to equation (6); c0
j1j2w1w2

thus

is a general measure of systematic covariance.
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The quantity c0
j1j2i1i2

defined in (6) is not standardized. Let

σ0
xgj1j2ig =

√
Var

[
xgigt|I1j1t

(
θ0

1

)
= I2j2t

(
θ0

2

)
= 1
]

be the standard deviation of xgigt conditional upon j1 and j2. We define the systematic correlation

between x1i1t and x2i2t in regime j1 and j2 as the standardized version of c0
j1j2i1i2

in (6), namely

R0
j1j2i1i2 =

c0
j1j2i1i2

σ0
x1j1j2i1

σ0
x2j1j2i2

: (9)

by construction, −1 < R0
j1j2i1i2

< 1. We can then measure the average systematic correlation

between the groups as

R0
j1j2w1w2

=

N1∑
i1=1

N2∑
i2=1

w1i1w2i2R
0
j1j2i1i2 . (10)

When the ig-th element of wg is equal to one and all other elements are equal to zero, for g = 1, 2,

then R0
j1j2w1w2

becomes equal to R0
j1j2i1i2

.

The vectors of weights w1 and w2 in (8) and (10) are a priori chosen. For example, if x1t and

x2t contain returns from financial assets, a natural choice is the equal weighting scheme, namely

wg = ιNg/Ng, for g = 1, 2: in portfolio choice, this is advocated in DeMiguel, Garlappi, and Uppal

(2009). Alternatively, one could follow Bekaert, Hodrick, and Zhang (2009), and make the weights

depend upon the market capitalization of the underlying assets.

2.2.3 Testing for changes in systematic comovement

The quantities c0
j1j2w1w2

and R0
j1j2w1w2

defined in (8) and (10), respectively, allow to construct tests

for changes in systematic comovement between regimes. In the case of the systematic covariance

c0
j1j2w1w2

, for g = 1, 2, and (j1, j2) 6= (j∗1 , j
∗
2), this requires testing the null hypothesis

Hc0 : c0
j1j2w1w2

= c0
j∗1 j
∗
2w1w2

(11)

against the alternative

Hc1 : c0
j1j2w1w2

6= c0
j∗1 j
∗
2w1w2

. (12)

Similarly, we can construct a test for changes in systematic correlation R0
j1j2w1w2

by testing the

null hypothesis HR0 : R0
j1j2w1w2

= R0
j∗1 j
∗
2w1w2

against the alternative HR1 : R0
j1j2w1w2

6= R0
j∗1 j
∗
2w1w2

.
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When the i1-th element of w1 and the i2-th element of w2 are equal to one and all other

elements are equal to zero, the tests for c0
j1j2w1w2

and R0
j1j2w1w2

become tests for c0
j1j2i1i2

and

R0
j1j2i1i2

, respectively. In the case of c0
j1j2w1w2

, the null and alternative hypotheses in (11) and (12)

become Hc0 : c0
j1j2i1i2

= c0
j∗1 j
∗
2 i1i2

and Hc1 : c0
j1j2i1i2

6= c0
j∗1 j
∗
2 i1i2

, respectively. Analogous considerations

hold for R0
j1j2w1w2

.

2.2.4 Interpreting systematic comovement

We now show that the systematic correlation is related to both the canonical correlations among

the factors in the two panels and the pervasiveness of the factors within each panel. Denote by

R2
gj1j2ig

the R-square of the factors fgjgt for the cross-sectional unit ig in group g, regime (j1, j2):

R2
gj1j2ig :=

Var
[
λ′gjgigfgjgt | I1j1t

(
θ0

1

)
= I2j2t

(
θ0

2

)
= 1
]

Var
[
xgigt|I1j1t

(
θ0

1

)
= I2j2t

(
θ0

2

)
= 1
] . (13)

Let φj1j2,1 be the largest canonical correlation between f1j1t and f2j2t, that is the maximum cor-

relation achievable among a linear combination of f1j1t and another linear combination of f2j2t in

the generic regime (j1, j2). More generally, let φj1j2,` be the ` − th largest canonical correlation

between f1j1t and f2j2t. By definition 1 ≥ φj1j2,1 ≥ φj1j2,2 ≥ ... ≥ φj1j2,min(K1j1
,K2j2

) ≥ 0, while

φj1j2,` = 0 for ` > min(K1j1 ,K2j2). The next proposition determines the relationship among our

measure of systematic correlation R0
j1j2w1w2

, the largest canonical correlation among the factors

φj1j2,1, and the cross-sectional averages of the square roots of R2
gj1j2ig

, with g = 1, 2.

PROPOSITION 1. Let all the weights wgig ≥ 0 be such that
∑Ng

ig=1wgig = 1, for ig = 1, ..., Ng

and g = 1, 2. Under Assumptions A.1 - A.3, A.10 and further assuming that the factors and the

errors are uncorrelated within and across groups we have:∣∣∣R0
j1j2w1w2

∣∣∣ ≤ φj1j2,1 ·
(∑N1

i1=1w1i1

√
R2

1j1j2i1

)
·
(∑N2

i2=1w2i2

√
R2

2j1j2i2

)
.

Proof. See Section C.1 in Appendix C.

The average of the square root of the R-squares in each group, namely
∑Ng

ig=1wgig

√
R2
gj1j2ig

, is a

measure of pervasiveness of the factors fgjgt within group g only, for g = 1, 2. Proposition 1 shows

that neither
∑Ng

ig=1wgig

√
R2
gj1j2ig

, nor their products across groups, are sufficient to determine the

level of systematic correlation between the two groups g = 1, 2. The same consideration holds for the

largest canonical correlation among the pervasive factors in the two groups, φj1j2,1. Using the defi-

nition of canonical correlation, Proposition 1 also implies
∣∣∣R0

j1j2w1w2

∣∣∣ ≤ (∑min(K1j1
,K2j2

)

`=1 φj1j2,`

)
·
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(∑N1
i1=1w1i1

√
R2

1j1j2i1

)
·
(∑N2

i2=1w2i2

√
R2

2j1j2i2

)
. Therefore, neither φj1j2,1, nor

∑min(K1j1
,K2j2

)

`=1 φj1j2,`,

are sufficient to characterize changes in systematic correlation across two large groups of observa-

tions when taken as stand-alone measures.2 On the other hand, our measure R0
j1j2w1w2

efficiently

summarizes in one number the information from both the pervasiveness of the factors within each

group and the factor correlation across groups.

2.3 Comovement within group

We conclude this section by noting that although the definitions c0
w1w2t and R0

j1j2w1w2
of systematic

comovement involve (averages of) individual observations in different groups, these measures can be

easily adapted to include only individuals within the same group. The same consideration extends

to the theorems and tests for change in systematic comovement derived in the following sections.

3 Estimation

3.1 Least squares estimation of the model

Following Massacci (2017), we estimate model (1) by group-by-group least squares. For g = 1, 2

and jg = L,H, we assume the true number of factors K0
gjg

is known. Otherwise θ0
g can be estimated

by choosing a number of factors K̄gjg such that K̄gjg ≥ K0
gjg

. Given the estimate of θ0
g , K

0
gjg

can

be consistently determined using standard model selection criteria for static factor models, such as

those proposed in Bai and Ng (2002), Alessi, Barigozzi, and Capasso (2010), Ahn and Horenstein

(2013), and Caner and Han (2014): these require the convergence rate CNgT := min(
√
Ng,
√
T ),

which holds for the principal components estimators for factors and loadings.3

2For instance, finding that the average explanatory power of the factors in their own panel (
∑Ng

ig=1 wgig

√
R2
gj1j2ig

)

is high does not imply a high systematic correlation if all the factors are not much correlated, i.e when their maximum

canonical correlation is small, or when the sum of all the canonical correlations
∑min(K1j1

,K2j2
)

`=1 φj1j2,` is small.
Symmetrically, either finding Kc

j1j2 > 0 common factors - that is Kc
j1j2 canonical correlation equal to 1 between the

pervasive factors of the two panels in regime (j1, j2), or finding that there is a high degree of comovement between

(some of) the factors as measured by
∑min(K1j1

,K2j2
)

`=1 φj1j2,`, is not enough to generate an increase in the systematic
across-panel correlation R0

j1j2w1w2
with respect to another regime with fewer common factors, or less comovement

among the factors. For example, if the Kc
j1j2 common factors have very small loadings (relatively to the other factors)

in one of the two panel, their contribution to the overall R-squared in that panel is small, and the average systematic
correlation between variables x1j1i1 and x2j2i2 could be low. Therefore, relatively high values of the pervasiveness
of the factors are also needed to generate non-negligible systematic correlation between two individuals belonging to
two groups.

3We conjecture that other procedures to determine the number of factors in large dimensional static linear factor
models, such as Kapetanios (2010), Onatski (2010), and Trapani (2018), may be suitably generalized to become
applicable to the model in (1).
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Let θ̂g, Λ̂gjg and f̂gjgt be the estimators for θ0
g , Λ0

gjg
and f0

gjgt
, respectively. For a given value

of θg, define

Σ̂xgjg (θg) = (NgT )−1
T∑
t=1

Igjgt (θg)xgtx
′
gt, g = 1, 2, jg = L,H. (14)

Under the identification assumption N−1
g

(
Λ′gjgΛgjg

)
= IK0

gjg
, the estimator θ̂g for θ0

g is

θ̂g = arg minθg (NgT )−1
T∑
t=1
x′gt

INg −N−1
g

 IgLt (θg) Λ̂gL (θg) Λ̂gL (θg)
′

+IgHt (θg) Λ̂gH (θg) Λ̂gH (θg)
′

xgt, g = 1, 2,

where Λ̂gjg (θg) is the estimator for Λ0
gjg

for given θg: Λ̂gjg (θg) is equal to
√
Ng times the Ng×K0

gjg

matrix of eigenvectors of Σ̂xgjg (θg) in (14) corresponding to its K0
gjg

largest eigenvalues. Given

θ̂g, the estimator for Λ0
gjg

is Λ̂gjg = Λ̂gjg

(
θ̂g

)
. The estimator for f0

gjgt
is then obtained as f̂gjgt =

N−1
g Λ̂gjg

(
θ̂g

)′
xgt, for g = 1, 2, t = 1, . . . , T , and Igjgt

(
θ̂g

)
= 1.

3.2 Estimating systematic comovement

Given θ̂g, Λ̂gjg and f̂gjgt, the common components c0
i1i2t

in (5) may be estimated as

ĉi1i2t =
∑

j1=L,H

∑
j2=L,H

I1j1t
(
θ̂1

)
I2j2t

(
θ̂2

)
λ̂′1j1i1 f̂1j1tf̂

′
2j2tλ̂

0
2j2i2 . (15)

For g = 1, 2, jg = L,H, and ig = 1, . . . , Ng, given ĉi1i2t in (15) we estimate c0
j1j2i1i2

in (6) as

ĉj1j2i1i2 = Tj1j2

(
θ̂1, θ̂2

)−1
[

T∑
t=1

I1j1t
(
θ̂1

)
I2j2t

(
θ̂2

)
ĉi1i2t

]
, (16)

where Tj1j2 (θ1, θ2) :=
T∑
t=1

I1j1t (θ1) I2j2t (θ2). It follows thatR0
j1j2i1i2

in (9) may be estimated through

its empirical counterpart as

R̂j1j2i1i2 =
ĉj1j2i1i2

σ̂x1j1j2i1 σ̂x2j1j2i2

, (17)

where

σ̂xgj1j2ig =

√
σ̂2
xgj1j2ig

(
θ̂1, θ̂2

)
, (18)
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and

σ̂2
xgj1j2ig (θ1, θ2) := Tj1j2 (θ1, θ2)−1

[
T∑
t=1

I1j1t (θ1) I2j2t (θ2)x2
gigt

]
.

Finally, the average systematic covariance between the groups in (8) may be estimated as

ĉj1j2w1w2 =

N1∑
i1=1

N2∑
i2=1

w1i1w2i2 ĉj1j2i1i2 ; (19)

similarly, the estimator for the average systematic correlation in (10) is

R̂j1j2w1w2 =

N1∑
i1=1

N2∑
i2=1

w1i1w2i2R̂j1j2i1i2 . (20)

4 Asymptotic results

In what follows we define CNT := min(
√
N,
√
T ), with N := min (N1, N2).

4.1 Limiting distribution of estimator for pairwise common component

The following theorem provides the asymptotic distribution of the estimator ĉi1i2t for the pairwise

systematic component c0
i1i2t

defined in (15) and (5), respectively.

THEOREM 1. Let Assumptions A.1−A.9 hold . Then as CNT →∞

CNT
(
ĉi1i2t − c0

i1i2t

) d→ N
(
0,Q0

i1i2t

)
,

for g = 1, 2, ig = 1, . . . , Ng, and t = 1, . . . , T , with asymptotic variance Q0
i1i2t

defined as

Q0
i1i2t =

∑
j1=L,H

∑
j2=L,H

I1j1t(θ0
1)I2j2t(θ0

2)Q0
j1j2i1i2t ,

where Q0
j1j2i1i2t =

(
c0

1j1i1t

)2 (
µ2
N2
V 0

2j2i2t + µ2
TW

0
2j2i2t

)
+
(
c0

2j2i2t

)2 (
µ2
N1
V 0

1j1i1t + µ2
TW

0
1j1i1t

)
, for jg =

L,H, with µNg = limN,T→∞
CNT√
Ng

, µT = limN,T→∞
CNT√
T

,

V 0
gjgigt

= λ0′
gjgig

(
D0

Λgjg

)−1
Γ0
gjgt

(
D0

Λgjg

)−1
λ0
gjgig

, W 0
gjgigt

= f0′
gjgt

(
Σ0
fgjg

)−1
Ω0
gjgig

(
Σ0
fgjg

)−1
f0
gjgt

,

and where Σ0
fgjg

= Σ0
fgjg

(
θ0
g

)
. Matrices Σ0

fgjg

(
θ0
g

)
, D0

Λgjg
, Γ0

gjgt
and Ω0

gjgig
are defined in As-

sumptions A.1, A.2, A.7 and A.8, respectively.
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Proof. See Section C.2 in Appendix C.

Theorem 1 shows that the estimator for the pairwise common components is asymptotically normal,

with convergence rate CNT accounting for the cross-sectional dimensions of the two groups of

variables x1t and x2t. No restriction on the relationship between N and T is required to achieve

asymptotic normality. The variance Q0
i1i2t

is made of the four mutually exclusive terms Q0
j1j2i1i2t

,

each corresponding to one of the four regimes described in Section 2.1.1. Each term Q0
j1j2i1i2t

consists of two additive parts, which are proportional to the asymptotic variance of the estimators

for the unit-specific common components c0
1j1i1t

and c0
2j2i2t

: these asymptotic variances are equal to

µ2
N2
V 0

2j2i2t
+µ2

TW
0
2j2i2t

and µ2
N1
V 0

1j1i1t
+µ2

TW
0
1j1i1t

, respectively, and are analogous to the asymptotic

variance of the common components estimator in linear factor models as derived in Theorem 3 in

Bai (2003). The following corollary describes two special cases.

COROLLARY 1. Let the assumptions of Theorem 1 hold and recall Q0
i1i2t

from the same theorem.

Then, for g = 1, 2, jg = L,H, ig = 1, . . . , Ng, and t = 1, . . . , T :

(a) if N/T → 0, then
√
N
(
ĉi1i2t − c0

i1i2t

) d→ N
(
0,Q0

i1i2t

)
, with Q0

j1j2i1i2t =
(
c0

1j1i1t

)2 N

N2
V 0

2j2i2t +(
c0

2j2i2t

)2 N

N1
V 0

1j1i1t ;

(b) if T/N → 0, then
√
T
(
ĉi1i2t − c0

i1i2t

) d→ N
(
0,Q0

i1i2t

)
, with Q0

j1j2i1i2t =
(
c0

1j1i1t

)2
W 0

2j2i2t +(
c0

2j2i2t

)2
W 0

1j1i1t.

Corollary 1 states the asymptotic distribution of ĉi1i2t when either N/T → 0 or T/N → 0. However,

the general result in Theorem 1 does not require any restriction on the limits of N/T and T/N .

4.2 Limiting distribution of estimators for systematic comovement

The theorem below states the asymptotic distribution of ĉj1j2w1w2 , defined in equation (19), as an

estimator for the systematic covariance c0
j1j2w1w2

defined in equation (8).

THEOREM 2. Let Assumptions A.1 - A.3 and A.5 - A.11 hold, with CNT →∞ and
√
T/N → 0.

Then for g = 1, 2, and jg = L,H,

√
T
(
ĉj1j2w1w2 − c0

j1j2w1w2

) d→ N
(

0 , Q0
j1j2(w1,w2)

)
,
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with

Q0
j1j2(w1,w2) =

T 2

Tj1j2(θ0
1, θ

0
2) · Tj∗1 j∗2 (θ0

1, θ
0
2)
·
[

Ψ0
j1j2,j1j2(w1,w2)

+Q0
12j1j2,j1j2(w1,w2;w1,w2) +Q0

21j1j2,j1j2(w1,w2;w1,w2)

]
,

where

Ψ0
j1j2,j∗1 j

∗
2
(w1,w2) = lim

N1,N2,T→∞

1

T

T∑
t=1

T∑
v=1

Cov
[
I1j1t

(
θ01
)
I2j2t

(
θ02
)
c0w1w2t , I1j∗1v

(
θ01
)
I2j∗2v

(
θ02
)
c0w1w2v

]
is computed for (j∗1 , j

∗
2) = (j1, j2). Moreover, for a vector of weights w∗g potentially different from

wg, let

Q0
12j1j2,j∗1 j

∗
2
(w1,w2;w∗1 ,w

∗
2) = lim

N1,N2,T→∞
λ0′
1j1(w1)Σ0

f12j1j2

(
Σ0

f2j2

)−1
Ω0

2j2j∗2
(w2,w

∗
2)
(
Σ0

f2j∗2

)−1
Σ0′

f12j∗1 j
∗
2
λ0
1j∗1

(w∗1),

Q0
21j1j2,j∗1 j

∗
2
(w1,w2;w∗1 ,w

∗
2) = lim

N1,N2,T→∞
λ0′
2j2(w2)Σ0

f21j1j2

(
Σ0

f1j1

)−1
Ω0

1j1j∗1
(w1,w

∗
1)
(
Σ0

f1j∗1

)−1
Σ0′

f21j∗1 j
∗
2
λ0
2j∗2

(w∗2),

where c0
w1w2t is defined in equation (7), and

Ω0
gjgj∗g

(wg,w
∗
g) =

Ng∑
ig=1

Ng∑
lg=1

wgigw
∗
glg

{
1

T

T∑
t=1

T∑
v=1

E
[
Igjgt

(
θ0g
)
Igj∗gv

(
θ0g
)
f0gjgtf

0′
gj∗gv

egigteglgv

]}
,

with Σfgjg = Σfgjg (θg). Matrices Σfgjg (θg) and Σf12j1j2 are defined in Assumptions A.2 and

A.10, respectively.

Proof. See Section C.3 in Appendix C.

The asymptotic varianceQ0
j1j2

(w1,w2) of ĉj1j2w1w2 is made of three terms. The first term Ψ0
j1j2,j1j2

(·)

depends on the fourth cross-moments of factors f0
1j1t

and f0
2j2v

and is due to the estimation of the

true cross-covariance matrix of the factors, Σ0
f12j1j2

. It would be present even if the true loadings

λ0
gjgwg

and the time series of the true factors fgjgt, t = 1, ..., T were known. The second and third

terms, Q0
12j1j2,j1j2

(·) and Q0
21j1j2,j1j2

(·), originate from the estimation of the loadings λ0
1j2i1

and

λ0
2j2i2

, respectively. These two terms are exactly zero when all the factors f0
1j1t

of the first group

are uncorrelated with all the factors of the second group f0
2j2t

, that is when Σ0
f12j1j2

= 0.4 The

rate of convergence of ĉj1j2w1w2 is
√
T , since it is estimated as the time average of the product

of the (estimated) common components ĉ1j1i1t and ĉ2j2i2t, and we assume N,T → ∞ such that

4This is a special case of interest in group-factor models, as it corresponds to two groups not sharing any common
factor and whose group-specific factors are also uncorrelated across groups.
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√
T/N → 0 as customary in approximate factor models, see e.g. Bai and Ng (2006). Notice that

Assumption A.11 only requires the absolute summability of the weights. This ensures that the

asymptotic variance of ĉj1j2w1w2 , which is defined as a generic average across all individuals in

groups 1 and 2 with generic weights w1i1 and w2i2 converges as N1, N2 → ∞. This assumption

accommodates the two most interesting cases (i) wgig = 1/Ng , ∀ig, and (ii) wgig = 1 when ig = i∗g,

while wgig = 0 ∀ig 6= i∗g, with g = 1, 2.

Theorem 3 provides the asymptotic distribution of R̂j1j2w1w2 , the estimator of the systematic

correlation R0
j1j2w1w2

.

THEOREM 3. Let Assumptions A.1 - A.3 and A.5 - A.11 hold, and CNT →∞ with
√
T/N → 0.

Define the Ng × 1 vector of rescaled weights wσ,gj1j2 = [wσ,gj1j2ig , ..., wσ,gj1j2ig ]
′, with wσ,gj1j2ig =

wgig/σ
0
xgj1j2ig

, ig = 1, ..., Ng. Then for g = 1, 2, and jg = L,H,

√
T
(
R̂j1j2w1w2 −R0

j1j2w1w2

)
d→ N

(
0 , Q0

R,j1j2

)
,

where Q0
R,j1j2

= Q0
R,j1j2,j1j2

(wσ,1j1j2 ,wσ,2j1j2), and

Q0
R,j1j2,j∗1 j

∗
2
(wσ,1j1j2 ,wσ,2j1j2)

=
T 2

Tj1j2(θ0
1, θ

0
2) · Tj∗1 j∗2 (θ0

1, θ
0
2)
·
[
Ψ0
R,j1j2,j∗1 j

∗
2
(wσ,1j1j2 ,wσ,2j1j2 ;wσ,1j1j2 ,wσ,2j1j2)

+Q0
12j1j2,j1j2(wσ,1j1j2 ,wσ,2j1j2 ;wσ,1j1j2 ,wσ,2j1j2)

+Q0
21j1j2,j1j2(wσ,1j1j2 ,wσ,2j1j2 ;wσ,1j1j2 ,wσ,2j1j2) + 2 ·Ξ0

1,j1j2,j1j2 + 2 ·Ξ0
2,j1j2,j1j2

]
,

with

Ψ0
R,j1j2,j∗1 j

∗
2
(wσ,1j1j2 ,wσ,2j1j2 ;wσ,1j∗1 j∗2 ,wσ,2j∗1 j∗2 )

= lim
N1,N2,T→∞

1

T

T∑
t=1

T∑
v=1

Cov
[
I1j1t

(
θ01
)
I2j2t

(
θ02
)
c0R,j1j2t(wσ,1j1j2 ,wσ,2j1j2) ,

I1j∗1v
(
θ01
)
I2j∗2v

(
θ02
)
c0R,j∗1 j∗2v(wσ,1j

∗
1 j
∗
2
,wσ,2j∗1 j∗2 )

]
,

being computed for (j∗1 , j
∗
2) = (j1, j2). Moreover,

c0R,j1j2t(wσ,1j1j2 ,wσ,2j1j2) =

N1∑
i1=1

N2∑
i2=1

wσ,1j1j2i1wσ,2j1j2i2c
0
j1j2i1i2

[
c0j1j2i1i2t
c0j1j2i1i2

−
x21i1t

2(σ0
x1j1j2i1

)2
−

x22i2t
2(σ0

x2j1j2i2
)2

]
,
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the quantities Q0
12,j1j2,j∗1 j

∗
2
(·, ·) and Q0

21,j1j2,j∗1 j
∗
2
(·, ·) are defined in Theorem 2, and

Ξ0
1,j1j2,j∗1 j

∗
2

= lim
N1,N2,T→∞

1

T

T∑
t=1

T∑
v=1

Cov

(
I1j1t

(
θ01
) N1∑
i1=1

N2∑
i2=1

wσ,1j1j2i1wσ,2j1j2i2λ
0′
2j2i2

×Σ0′
f12j1j2

(
Σ0

f1j1

)−1
f0
1j1te1i1t , I1j∗1v

(
θ01
)
I2j∗2v

(
θ02
) N1∑
i′1=1

N2∑
i′2=1

wσ,1j∗1 j∗2 i′1wσ,2j∗1 j∗2 i′2

c0j∗1 j∗2 i′1i′2
(σ0
x1j∗1 j

∗
2 i
′
1
)2
λ′1j∗1 i′1f1j

∗
1v
e1,i′1v

 ,

Ξ0
2,j1j2,j∗1 j

∗
2

= lim
N1,N2,T→∞

1

T

T∑
t=1

T∑
v=1

Cov

(
I2j1t

(
θ01
) N1∑
i1=1

N2∑
i2=1

wσ,1j1j2i1wσ,2j1j2i2λ
0′
1j2i2

×Σ0
f12j1j2

(
Σ0

f2j2

)−1
f0
2j2te2i2t , I1j∗1v

(
θ01
)
I2j∗2v

(
θ02
) N1∑
i′1=1

N2∑
i′2=1

wσ,1j∗1 j∗2 i′1wσ,2j∗1 j∗2 i′2

c0j∗1 j∗2 i′1i′2
(σ0
x2j∗1 j

∗
2 i
′
2
)2
λ′2j∗2 i′2f2j

∗
2v
e2,i′2v

 ,

are also computed for (j∗1 , j
∗
2) = (j1, j2).

Proof. See Section C.4 in Appendix C.

Compared to Theorem 1, we derive Theorems 2 and 3, as well as Theorems 4 and 5 below,

by replacing Assumption A.4, which only imposes within-group weak dependence between factors

and idiosyncratic components, with the stronger Assumption A.12, which requires independence

between factors and idiosyncratic components both within and between groups. Assumption A.12

may be generalized by imposing some worm of weak dependence between factors and idiosyncratic

components, as in Andreou, Gagliardini, Ghysels, and Rubin (2019), at the expense of a higher

final degree of complexity induced by the presence of cross-moments of order three or higher in the

asymptotic variances of those theorems.

4.3 Limiting distributions of tests for changes in systematic comovement

The following theorems allow to construct tests for the null of no change in the comovement defined

as a change either in the systematic covariance (Theorem 4), or in the systematic correlation

(Theorem 5).

THEOREM 4. For g = 1, 2, and jg, j
∗
g = L,H, with either j1 6= j∗1 , or j2 6= j∗2 (or both), consider

the test statistic

T̂ cj1j2j∗1 j∗2w1w2
=
√
T

(
ĉj1j2w1w2 − ĉj∗1 j∗2w1w2

)√
Q̂∆
j1j2j∗1 j

∗
2

,
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where Q̂∆
j1j2j∗1 j

∗
2
, defined in equation (B.6) in Appendix B, is a consistent estimator for

Q∆,0
j1j2j∗1 j

∗
2

= Q0
j1j2(w1,w2) +Q0

j∗1 j
∗
2
(w1,w2)− 2 · T 2

Tj1j2(θ0
1, θ

0
2) · Tj∗1 j∗2 (θ0

1, θ
0
2)
·
[
Ψ0
j1j2,j∗1 j

∗
2
(w1,w2)

+ Q0
12j1j2,j∗1 j

∗
2
(w1,w2) +Q0

21j1j2,j∗1 j
∗
2
(w1,w2)

]
with (jg, j

∗
g ) = (H,L) or (L,H), and all quantities in the last equation are defined in Theorem

2. Let the assumptions of Theorem 2 hold, then T̂ cj1j2j∗1 j∗2w1w2
is such that as N1, N2, T → ∞: (i)

T̂ cj1j2j∗1 j∗2w1w2

d→ N (0, 1) under Hc0 : c0
j1j2w1w2

= c0
j∗1 j
∗
2w1w2

; and (ii) P
(
|T̂ cj1j2j∗1 j∗2w1w2

| > κ
)
→ 1

for any constant κ ∈ R under Hc1 : c0
j1j2w1w2

6= c0
j∗1 j
∗
2w1w2

.

Proof. See Section C.5 in Appendix C.

THEOREM 5. For g = 1, 2, and jg, j
∗
g = L,H, with either j1 6= j∗1 , or j2 6= j∗2 (or both), consider

the test statistic

T̂ Rj1j2j∗1 j∗2w1w2
=
√
T

(
R̂j1j2w1w2 − R̂j∗1 j∗2w1w2

)
√
Q̂∆
R,j1j2j∗1 j

∗
2

,

where Q̂∆
R,j1j2j∗1 j

∗
2

defined in equation (B.7) in Appendix B is a consistent estimator for

Q∆,0
R,j1j2j∗1 j

∗
2

= Q0
R,j1j2 +Q0

R,j∗1 j
∗
2

− 2 · T 2

Tj1j2(θ0
1, θ

0
2) · Tj∗1 j∗2 (θ0

1, θ
0
2)
×
[
Ψ0
R,j1j2,j∗1 j

∗
2
(wσ,1j1j2 ,wσ,2j1j2 ;wσ,1j∗1 j

∗
2
,wσ,2j∗1 j

∗
2
)

+ Q0
12j1j2,j∗1 j

∗
2
(wσ,1j1j2 ,wσ,2j1j2 ;wσ,1j∗1 j

∗
2
,wσ,2j∗1 j

∗
2
)

+ Q0
21j1j2,j∗1 j

∗
2
(wσ,1j1j2 ,wσ,2j1j2 ;wσ,1j∗1 j

∗
2
,wσ,2j∗1 j

∗
2
)

+ Ξ0
1,j1j2,j∗1 j

∗
2

+ Ξ0
2,j1j2,j∗1 j

∗
2

+ Ξ0
1,j∗1 j

∗
2 ,j1j2

+ Ξ0
2,j∗1 j

∗
2 ,j1j2

]
,

with (jg, j
∗
g ) = (H,L) or (L,H), and where Q0

R,j1j2
, Q0

R,j∗1 j
∗
2

Ψ0
R,j1j2,j∗1 j

∗
2
(·), Ξ0

1,j1j2,j∗1 j
∗
2
, and Ξ0

2,j1j2,j∗1 j
∗
2

are defined in Theorem 3, while Q0
12j1j2,j∗1 j

∗
2
(·) and Q0

21j1j2,j∗1 j
∗
2
(·) are defined in Theorem 2. Let the

assumptions of Theorem 2 hold, then T̂ Rj1j2j∗1 j∗2w1w2
is such that as N1, N2, T →∞: (i) T̂ Rj1j2j∗1 j∗2w1w2

d→

N (0, 1) under HR0 : R0
j1j2w1w2

= R0
j∗1 j
∗
2w1w2

; and (ii) P
(
|T̂ Rj1j2j∗1 j∗2w1w2

| > κ
)
→ 1 for any constant

κ ∈ R under Hc1 : R0
j1j2w1w2

6= R0
j∗1 j
∗
2w1w2

.

Proof. See Section C.6 in Appendix C.

As noted in the Introduction, all Theorems 1 - 5 have been derived in the context of the

threshold-group factor model (1) where the Thresholds θ1 and θ2 need to be estimated. It turns

18



out that the estimation error of the thresholds does not affect the asymptotic distribution of the

comovement measures. Therefore, the results of all our Theorems 1 - 5 can be applied also in the

case of threshold values exogenously chosen by the econometrician. For instance, if zt = t/T , the

values of the threshold could be set a priori in order to test for a change in comovement across

groups between two distinct periods of time. This can be seen as a formalization of the approach

in Bekaert, Hodrick, and Zhang (2009), who study changes in systematic comovement across non-

overlapping time widows.

5 Monte Carlo

We conduct Monte Carlo experiments to study the finite sample properties of the estimators and

testing procedures proposed in the previous sections. Section 5.1 describes the simulations designs

while Section 5.2 presents the results. We denote with 0A×B the A×B dimensional matrix of zeros,

and with 1A the A× 1 vector of ones.

5.1 Simulation Designs

We simulate data from the following Data Generating Process (DGP):

x1i1t = I (zt ≤ θ) ·
[
λc′1Li1f

c
Lt + λs′1Li1f

s
1,Lt

]
+ I (zt > θ) ·

[
λc′1Hi1f

c
Ht + λs′1Hi1f

s
1,Ht

]
+ e1i1t ,

x2i2t = I (zt ≤ θ) ·
[
λc′2Li2f

c
Lt + λs′2Li2f

s
2,Lt

]
+ I (zt > θ) ·

[
λc′2Hi2f

c
Ht + λs′2Hi2f

s
2,Ht

]
+ e2i2t ,

for i1 = 1, ..., N1,i2 = 1, ..., N2, t = 1, ..., T . This is a constrained version of model (1) where,

compatibly with the findings of the empirical analysis, the threshold variable zt and the threshold

value are the same across the two groups, that is zt = z1t = z2t and θ = θ1 = θ2. All dates

when zt ≤ θ are denoted as regime L, while all dates when zt > θ are denoted as regime H.

Table 1 (resp. Table 2) displays the number of factors and the values of the other DGP parameters

characterizing each MC design used with respect to Theorems 1, 2 and 3 (resp. Theorems 4 and

5). The number of MC replications used for each design is 4000.

The vectors of factors f cL,t, f
c
H,t, f

s
L,1t, f

s
L,2t, f

s
H,1t and f sH,2t have dimensions Kc

L, Kc
H , Ks

L, Ks
L,

Ks
H , and Ks

H respectively. Since Ks
L := Ks

1L = Ks
2L (resp Ks

H := Ks
1H = Ks

2H), we are imposing

that the number of group-specific factors in regime L (resp. regime H) is the same for group 1 and

group 2. Furthermore, in all simulation designs we assume that the number of common factors

(resp. group-specific factors) is the same in both regimes, that is Kc
L = Kc

H (resp. Ks
L = Ks

H). Let
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Table 1 – Parameters of Monte Carlo simulation designs for Theorems 1, 2 and 3

Design / Param. KC
L = KC

H Ks
L = Ks

H δcig = δsig c∗gj β aF az π0

Design 1 0 3 0.25 0.5 0 0 0 0.75
Design 2 0 3 1.00 0.5 0 0 0 0.75

Design 3 1 3 0.25 0.5 0 0 0 0.75
Design 4 1 3 1.00 0.5 0 0 0 0.75

Design 5 0 3 0.25 0.5 0 0.5 0 0.75
Design 6 0 3 1.00 0.5 0 0.5 0 0.75

Design 7 1 3 0.25 0.5 0 0.5 0 0.75
Design 8 1 3 1.00 0.5 0 0.5 0 0.75

Table 1 provides values of the parameters in the DGP described in Section 5 for each of the MC simulation designs used
to assess the properties of the statistics in Theorems 1, 2 and 3. In all simulation designs we also set σcgj = σsgj = 1,
α = 1, ΦsL = diag(0.4, 0.2, 0.1) and ΦsH = diag(0.8, 0.4, 0.2).

Table 2 – Parameters of Monte Carlo simulation designs for Theorems 4 and 5

Design / Param. KC
L = KC

H Ks
L = Ks

H δcig = δsig c∗gj β aF az π0

Design 1 H0 0 3 0.25 0.5 0 0 0 0.75 or 0.5
Design 1 H1 0 3 0.25 0.5 0 0 0 0.75 or 0.5

Design 2 H0 0 3 1.00 0.5 0 0 0 0.75 or 0.5
Design 2 H1 0 3 1.00 0.5 0 0 0 0.75 or 0.5

Design 3 H0 0 3 0.25 0.5 0 0.5 0 0.75 or 0.5
Design 3 H1 0 3 0.25 0.5 0 0.5 0 0.75 or 0.5

Design 4 H0 0 3 1.00 0.5 0 0.5 0 0.75 or 0.5
Design 4 H1 0 3 1.00 0.5 0 0.5 0 0.75 or 0.5

Table 2 provides values of the parameters in the DGP described in Section 5 for each of the MC simulation designs
used with respect to Theorems 4 and 5. Designs 1 H0 to 4 H0, where data is simulated under the null hypothesis
of no change in comovement across regimes by setting ΦsL = ΦsH = 03×3, are used to assess the properties of the
statistics and the size of the tests in Theorems 4 and 5. Designs 1 H1 to 4 H1, where data is simulated under the
alternative hypothesis of change in comovement across regimes by setting ΦsL = 03×3 and ΦsH = diag(0.8, 0.4, 0.2),
are used to assess the power of the tests in Theorems 4 and 5. In all simulation designs we also set σcgj = σsgj = 1
and α = 1. For all designs we consider π0 = 0.5 only for Theorem 5.

K∗ := Kc
L+Kc

H+2·Ks
L+2·Ks

H , theK∗-dimensional vector ft := [f c ′L,t, f
c ′
H,t, f

s ′
L,1t, f

s ′
L,2t, f

s ′
H,1t, f

s ′
H,2t]

′

follows an autoregressive process: ft = aFft−1 +
√

1− a2
F ηt, where the scalar aF is an AR(1) co-

efficient common to all factors. The innovation vector ηt := [ηc ′L,t, η
c ′
H,t, η

s ′
L,1t, η

s ′
L,2t, η

s ′
H,1t, η

s ′
H,2t]

′

is simulated such that ηt ∼ i.i.N(0,Ση), with

Ση =



IKc
L

0 0 0 0 0

0 IKc
H

0 0 0 0

0 0 IKs
L

ΦsL 0 0

0 0 ΦsL IKs
L

0 0

0 0 0 0 IKs
H

ΦsH

0 0 0 0 ΦsH IKs
H


,
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where Φs
L = diag(φsL,1, ..., φL,Ks

L
) and Φs

H = diag(φsH,1, ..., φH,Ks
H

) are (Ks
L ×Ks

L) and (Ks
H ×Ks

H)

diagonal matrices, respectively. The scalar parameters in the main diagonal of Φs
L (resp. Φs

H) are

such that 1 ≥ φsL,1 ≥ φsL,2 ≥ ... ≥ φL,Ks
L
≥ 0 (resp. 1 ≥ φsH,1 ≥ φsH,2 ≥ ... ≥ φH,Ks

H
≥ 0), and

generate correlation between the first specific factor in group 1 and the first specific factor in group

2 in regime L (resp. H), the second specific factor in group 1 and the second specific factor in

group 2 in regime L (resp. H), and so on. By definition, they are the ordered non-zero canonical

correlations between the group specific factors in group 1 and 2 in regime L (resp. H). In Designs

1 - 8 of Table 1, we let Φs
L = diag(0.4, 0.2, 0.1) and Φs

H = diag(0.8, 0.4, 0.2). In Designs 1

H0 - 4 H0 of Table 2, which refer to data simulated under the null hypothesis of no change in

comovement across regimes, Φs
L = Φs

H = 03×3. In Designs 1 H1 - 4 H1 of Table 2, which refer

to data simulated under the the alternative hypothesis of change in comovement across regimes,

Φs
L = 03×3 and Φs

H = diag(0.8, 0.4, 0.2). The initial values of the factors are drawn from their

stationary distributions, and their paths are re-sampled in each MC simulation.

For each group g = 1, 2, the first Kc
min = min(Kc

L, K
c
H) common factors loadings are drawn

for the L regime as λcgLig = σcgλ̃
c
gLig

, with λ̃cgLig ∼ i.i.N
(

1Kc
min

, IKc
min

)
; the first Ks

min =

min(Ks
L,K

s
H) group-specific factors loadings are drawn for the L regime as λsgLig = σsgλ̃

s
gLig

,

λ̃sgLig ∼ i.i.N
(

1Ks
min

, IKs
min

)
; the first Kc

min common factors loadings are generated for the

H regime as λc1Hi1 = λc1Li1 + δci11Kc
min

; the first Ks
min group-specific factor loadings are gen-

erated for the H regime as λsgHig = λsgLig + δsig1Ks
min

. If Kc
H > Kc

L, the additional ∆Kc :=

Kc
H − Kc

L common factor loadings in regime H are drawn from λc1Li1 = σc1λ̃
c
1Li1

, with λ̃c1Li1 ∼

i.i.N
(

1∆Kc(1 + δci1), I∆Kc

)
. If Kc

H < Kc
L, the additional ∆Kc := Kc

L − Kc
H common factor

loadings in regime L are drawn from λc1Li1 = σc1λ̃
c
1Li1

, with λ̃c1Li1 ∼ i.i.N ( 1∆Kc , I∆Kc ). If

Ks
H > Ks

L, the additional ∆Ks := Ks
H −Ks

L group-specific factor loadings in regime H are drawn

from λs1Hi1 = σs1λ̃
s
1Hi1

, with λ̃s1Hi1 ∼ i.i.N
(

1∆Ks(1 + δsi1), I∆Ks

)
. Finally, if Ks

H < Ks
L, the addi-

tional ∆Ks := Ks
L−Ks

H group-specific factor loadings in regime L are drawn from λsgLig = σsgλ̃
s
gLig

,

with λ̃sgLig ∼ i.i.N ( 1∆Ks , I∆Ks ) with:

δcig > 0 for i1 = 1, ..., [Nα
g ], δcig = 0 for ig = [Nα

g ] + 1, ..., Ng,

δsig > 0 for i1 = 1, ..., [Nα
g ], δsig = 0 for ig = [Nα

g ] + 1, ..., Ng,

where [·] denotes the integer part of the argument, and the scalars σc1, σc2, σs1, and σs2 determine

the contribution of each factor to the overall variability of the “common component”, that is the
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variance of the observables due to all the pervasive factors for each group g = 1, 2, and regime

j = L,H. Finally, we set σc1 = σc2 = 0, if Kc
L = 0, and σs1 = σs2 = 0, if Ks

L = 0. For each

design and sample sizes combination the loading matrices are the same across all MC simulations.

The idiosyncratic innovations vector egt = [egigt, ..., egNgt]
′ has dimension Ng, with g = 1, 2. We

define the (N1 +N2)-dimensional vector et := [e′1t, e
′
2t]
′, and assume the following AR(1) process:

eigt = aeeigt−1 +
(
c∗gj · ce,igt ·

√
1− a2

e

)
vigt ,

where ae is a common AR(1) scalar coefficient for groups g = 1, 2, and

c2
e,igt =


2Kc

Lσ
c2
g + 2Ks

Lσ
s2
g if zt ≤ θg

Kc
H

[
(σcg + δcig)

2 + (σcg)
2
]

+Ks
H

[
(σsg + δsig)

2 + (σsg)
2
]

if zt > θg

.

Let vgt := [v1t, ..., vigt, ..., vNgt]
′, then the (N1+N2)-dimensional vector vt := [v′1t, v

′
2t]
′ is simulated as

vt ∼ i.i.N(0,Σv), where Σv = {β|i−j|}ij , for i, j = 1, ..., N1+N2, The scalar β in [0, 1) induces cross-

sectional dependence among the idiosyncratic innovations, similarly to Bates, Plagborg-Moller,

Stock, and Watson (2013). The variance of the idiosyncratic part is c∗gj times the variance of the

common component in group g and state j.5 The initial values of the idiosyncratic innovations are

drawn from their stationary distributions, and all the innovations paths are re-sampled in each MC

simulation.

The DGP for the threshold variable is an AR(1) process: zt = azzt−1+
√

1− a2
z vz,t , where vz,t ∼

i.i.N(0, 1). Let Φ(θ) be the cumulative distribution function of the Standard Normal computed in

θ ∈ R, and π0 = P (zt ≤ θ0) = Φ(θ0) be the unconditional probability of observing a value of zt ≤ θ0,

then θ0 = Φ−1(π0). We report simulation results for all Theorems setting az = 0 and π0 = 0.75

(corresponding to θ0 ≈ 0.6745). Only for the test in Theorem 5, we also report the simulated size

and power for the combination of parameters az = 0.0 and π0 = 0.5 (corresponding to θ0 = 0).

Additionally, in the SM we report results for all Theorems for az = 0.5 and/or π0 = 0.50. The

initial values of zt are drawn from its stationary distribution, and its sample paths are re-sampled

in each MC simulation. The innovations of factors, errors, threshold variable, and loadings are

drawn as mutually independent.

5When c∗gj = 1 for g = 1, 2 and j = L,H, then the scalar ce,igt is defined so that the variance of the idiosyncratic
part is equal to the variance of the common component within each group g = 1, 2 and state H,L.
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5.2 Monte Carlo results

In order to save space, in Appendix D we only display Tables D.1 and D.2 with the first two

moments, median and interquantile range of the simulated distributions for Theorems 1, 2, respec-

tively, and Table D.3 in the same appendix with the empirical size and power of the test of Theorem

5. Analogously, Figure 1 reports the histograms of the simulated distributions for Theorems 1 and

2, and the distribution under the null of no change in systematic correlation for the test is Theorem

5, only for two combination of sample sizes, namely: N1 = N2 = 50 (resp. 500), and T = 200

(resp. 1000). In Section E of the SM we report analogous tables and figures for all the remaining

Theorems. As it can be seen from the moments and the quantiles reported in Tables D.1 - D.3,

from the histograms in Figure 1, and from the results in Section E of the SM, for all the Theorems

1 - 5 and also for relatively small sample sizes (with the smallest ones being N1 = N2 = 30 and

T = 100) the simulated distributions approximate well a Gaussian distribution with zero mean and

variance equal to the estimated asymptotic variance form each theorem.

Table D.3 displays the empirical size of the tests for the null hypotheses of no change in system-

atic correlation across all individuals in the two groups corresponding to nominal sizes of 1%, 5%,

and 10%. It also reports the empirical power of the same test performed on a DGP corresponding

to the alternative hypothesis, with a significance level of 5%. The null hypothesis is imposed in the

two regimes by simulating group-specific factors with zero correlations across groups, which implies

that the systematic covariance and correlation across groups are zero in both regimes. The alterna-

tive hypothesis is imposed by simulating group-specific factors with correlation structure changing

from one regime to the other, as described above. We observe that the asymptotic Gaussian dis-

tribution provides an overall very good approximation for the tails of the feasible test statistics of

Theorems 4 and 5 under the null. For the vast majority of sample sizes and simulation designs,

the size distortions range from 0.1% to 5%. The largest size distortions and the lowest values of

the power (that is around 70%) are observed for the smallest value of T , that is T = 100, and

for the designs where π0 = 0.75. As expected, when the sample sizes increase the size distortions

monotonically disappear, and the power approaches 1. By comparing Tables D.3 (a) and (b), we

notice that decreasing π0 from 0.75 to 0.5 (that is reducing the threshold value θ0 from 0.6745 to

0) also substantially improves the size and the power of the test in Theorem 5. Analogous consid-

erations can be made by looking at the results in Section E of the SM for all the other Theorems

and simulation designs.
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Figure 1 – Finite sample distribution of statistics in Theorems 1, 2 and 5, with π0 = 0.75

(a) Design 2, N1 = N2 = 50, T = 200
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(b) Design 2, N1 = N2 = 500, T = 1000
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(c) Design 2, N1 = N2 = 50, T = 200
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(d) Design 2, N1 = N2 = 500, T = 1000
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(e) Design 2, N1 = N2 = 50, T = 200
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(f) Design 2, N1 = N2 = 500, T = 1000

−4 −3 −2 −1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

This figure shows the simulated empirical distribution of relevant statistics obtained with 4000 Monte Carlo simula-
tions and computed for different sample sizes (N1, N2, T ) and for the values of the DGP parameters in Design 2 of
Tables 1 and 2 with π0 = 0.75. Panels (a) and (b) refer to the recentered and standardized statistic ĉi1i2t in Theorem

1 defined as: CNT
(
ĉi1i2t − c

0
i1i2t

)
/

√
Q̂i1i2t . Panels (c) and (d) refer to the recentered and standardized statis-

tic ĉj1j2w1w2 in Theorem 2 defined as:
√
T
(
ĉj1j2w1w2 − c

0
j1j2w1w2

)
/

√
Q̂j1j2(w1,w2) , with w1 = [1, 0, 0, ..., 0] and

w2 = [1, 0, 0, ..., 0]. Panels (e) and (f) refer to the test statistic T̂ Rj1j2j∗1 j∗2w1w2
in Theorem 5, withw1 = [1/N1, ..., 1/N1]

and w2 = [1/N2, ..., 1/N2]. Under the Assumptions of Theorems 1, 2 and 5, the asymptotic distribution of the three
statistics is standard Gaussian (solid red line).

6 Systematic Comovement over the Global Financial Cycle

There exists empirical evidence that increasing financial integration has led to the emergence of a

global financial cycle: see Rey (2018). As documented in Miranda-Agrippino and Rey (2020), and

further in Habib and Venditti (2019), one of the main drivers of the global financial cycle is U.S.
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monetary policy. Given the misalignment between countries’ specific macroeconomic conditions

and the global financial cycle discussed in Rey (2018), it is unclear how the comovement of asset

returns evolve over the latter when the former change. We thus use the tools developed in this

paper to study systematic comovement in global equity markets over the financial cycle depending

on the state of U.S. macroeconomic uncertainty. Section 6.1 describes the data and the empirical

specification. Section 6.2 deals with estimation and model selection. Section 6.3 presents the

empirical findings about systematic comovement. Section 6.4 discusses the results.

6.1 Data and Empirical Specification

We consider monthly data and study the period running between January 1991 and December

2019, a total of T = 348 time series observations. Financial data are obtained from Kenneth

French website.6 In the case of the U.S., we consider the following N1 = 100 value-weighted

portfolios: 25 portfolios sorted by size and book-to-market ratio; 25 portfolios sorted by size and

operating profitability; 25 portfolios sorted by size and investment; 25 portfolios sorted by size and

momentum. We then consider the N2 = 100 homologous portfolios for international equity markets:

these are a subset of the portfolios considered in Fama and French (2012) and ensure that U.S. and

international portfolios are obtained through the same sorting schemes.7 Notice that, unlike higher

frequency returns such as daily or weakly, lower frequency monthly returns mitigate the effect on

our comovement measure that may be induced by the fact that markets in different countries may

be open at different times. All returns are in U.S. dollars and are computed in excess of the U.S.

risk-free rate at the end of each month: this is defined as the 1-month U.S. treasury bill rate and

reflects the cost of short term funding in the U.S. dollar market. Therefore, we conduct our analysis

from the perspective of a U.S. investor. As a measure of U.S. macroeconomic uncertainty we take

the one month ahead index developed in Jurado, Ludvigson, and Ng (2015) and available from

Sydney Ludvigson website, which we denote by UM
t .8

Given the theoretical model in (1), we let g = 1 and g = 2 denote the groups of U.S. and

international portfolios, respectively: x1i1t is the excess return on the U.S. portfolio i1 at time t;

6See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html .
7International (ex-U.S.) portfolios are formed from the set of individual stock returns from the following 22

countries: Australia, Austria, Belgium, Canada, Switzerland, Germany, Denmark, Spain, Finland, France, Great
Britain, Greece, Hong Kong, Ireland, Italy, Japan, Netherlands, Norway, New Zealand, Portugal, Sweden, Singapore.

8U.S. macroeconomic uncertainty data are kindly made available at https://www.sydneyludvigson.com/

data-and-appendixes .

25

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://www.sydneyludvigson.com/data-and-appendixes
https://www.sydneyludvigson.com/data-and-appendixes


similarly, x2i2t is the excess return on the international portfolio i2 at time t. The threshold variable

is defined as zt = UM
t . Our empirical model thus allows us to measure changes in systematic

comovement induced by contemporaneous values of U.S. macroeconomic uncertainty.

6.2 Estimation and Model Selection

We apply to each individual group the test proposed in Massacci (2020) to detect threshold-type

regime changes in the loadings: the test is robust to factor heteroskedasticity, a key feature of factor

models applied to financial returns as pointed out in Baele, Bekaert, and Inghelbrecht (2010).9 In

both U.S. and international portfolios, the null hypothesis is rejected at the 1% significance level:

this strong rejection of the null provides evidence in favor of regime changes in the loadings.10

We estimate the model as detailed in Section 3.1. In order to span the true factor space, for

g = 1, 2 we estimate θ0
g by imposing an upper bound Kmax

g on the number of factors in each panel

within each regime such that Kmax
g is greater than or equal to the true number of factors. We set

Kmax
1 = Kmax

2 = 10: following Fama and French (2018) and Fama and French (2012), this is greater

than the number of factors expected to drive the cross-sectional variation in U.S. and international

equity returns, respectively. The estimated threshold values are identical to each other and are

equal to θ̂1 = θ̂2 = 0.674, which corresponds to the 77th-percentile of the empirical distribution of

UM
t : this is illustrated in Figure 2, which displays θ̂1 = θ̂2 = θ̂, the time series of UM

t , and gray bars

denoting the event UM
t > θ̂.

Notice that we obtain identical values for θ̂1 and θ̂2 without imposing any restriction on the es-

timation procedure, as we separately estimate the models for U.S. and international equity returns.

This result implies that, according to our model, regimes changes in the cross-sectional variation of

U.S. and international returns that are induced by U.S. macroeconomic uncertainty are perfectly

synchronized. It also implies that our empirical model identifies two regimes as a whole: this is

perfectly consistent with the description of the regimes provided in Section 2.1.1.11 Given θ̂1 and

θ̂2, we estimate the number of factors driving the cross-sectional variations of returns. Within

each group our model lets the number of factors change between the regimes and we adopt the

9We conduct the test on demeaned variables. The test requires an estimate of the number of factors in the
linear model under the null. We estimate this by applying the ICp2 information criterion of Bai and Ng (2002), for
which we impose an upper bound equal to 10 factors in both panels. The results of the test are unaffected by the
choice of the maximum number of factors. As for the auxiliary threshold regression needed to implement the test,
we use an equal-weighting scheme to obtain cross-sectional averages of U.S. and international returns. Finally, we
approximate the asymptotic distribution of the test statistic using the fixed regressor bootstrap of Hansen (1996)
with 1000 replications.

10Additional details about inference on the number of regimes are available upon request.
11Following Theorem 3.4 in Massacci (2017), the estimator for θ0g is T -consistent, for g = 1, 2, which prevents us

from using standard inferential procedures to test the null hypothesis θ01 = θ02.

26



Figure 2 – Time series of Macroeconomic Uncertainty Index and estimated thresholds
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Figure 2 displays the end-of-month values of the macroeconomic uncertainty index (UM) constructed by Jurado,

Ludvigson, and Ng (2015) and used as threshold variable (zt) in the threshold group-factor model. The sample

period is January 1991 to December 2019. The red line corresponds to the estimated threshold value θ̂1 = θ̂2 = 0.674

for the panel of monthly U.S. and international equity excess returns.

following two-step approach. For g = 1, 2, we first estimate the factors in each regime using the

ICp2
(
Kgjg ,Kgjg

)
criterion of Massacci (2017). This suitably extends the ICp2 selection criterion

of Bai and Ng (2002) by making it robust to the threshold effect in the factor loadings: it gives a

consistent estimator for the number of factors if this does not change between the regimes; and it

provides an upper bound to the number of factors when this varies between the regimes since the

factor space needs to be fully spanned for the criterion to be minimized. In the second step we

estimate the number of factors by applying the ICp2 selection criterion of Bai and Ng (2002) within

each group and regime and taking as an upper bound the number factors estimated through the

ICp2
(
Kgjg ,Kgjg

)
criterion of Massacci (2017). Following this strategy we estimate 5 factors within

each regime and group: formally, this means that K̂gjg = 5, for g = 1, 2 and jg = L,H. Therefore,

the number of estimated factors does not change across regimes and groups; it is also important

to stress that this result is a genuine feature of the data and it is not obtained by imposing any a

priori restriction, since estimation of K̂gjg is run independently for each group and regime.
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6.3 Systematic Comovement

We now study how global equity market comovement changes between the periods of low and

high U.S. macroeconomic uncertainty identified by our model, namely UM
t ≤ θ̂ and UM

t > θ̂,

respectively. Given the interpretation of systematic comovement in Section 2.2.4, we focus on

the average systematic correlation R0
j1j2w1w2

defined in (10): for specific combinations of assets i1

and i2 belonging to U.S. and international portfolios, respectively, this reduces to the systematic

correlation R0
j1j2i1i2

defined in (9). Since regimes are synchronized across groups then j1 = j2.

We first look at the correlation matrix of excess returns between the two groups in low and

high uncertainty regimes: these are displayed in the top-left and top-right panels of Figure 3,

respectively. During periods of high uncertainty, the average sample correlation between U.S. and

international returns is higher than in periods of low uncertainty and it is equal to 0.707 and 0.543,

respectively.

We then investigate to what extent this increase in correlation is due to systematic comovement.

To this purpose, we estimate R0
j1j2i1i2

through R̂j1j2i1i2 defined in (17): this is displayed in the

bottom-left and bottom-right panels of Figure 3, respectively. A visual inspection shows that

systematic comovement increases during periods of high uncertainty. This can be more clearly seen

from the top panel of Figure 4, which displays the difference (R̂HHi1i2 − R̂LLi1i2) for each pair of

returns i1 and i2: all the 100 × 100 = 10, 000 entries are positive, with the exception of only 10

of them. These results are confirmed by running the inferential procedure detailed in Theorem

5: in the bottom panel of Figure 4, 80.14% and 57.04% of the differences (R̂HHi1i2 − R̂LLi1i2) are

greater than zero in a one-sided test with significance level of 10% and 5%, respectively. We also

apply the test in Theorem 5 to R̂j1j2w1w2 defined in (20): the equal-weighted average difference

R̂HHw1w2 − R̂LLw1w2 = 0.165 results in a test statistic T̂ RHHLLw1w2
= 2.431, and the one-sided test

for the null hypothesis on no positive change in correlation is significant at 1% level.

We can thus conclude that our results clearly show that systematic comovement in global equity

markets increases during periods of high U.S. macroeconomic uncertainty.

6.4 Discussion

Our empirical results may be interpreted through the lens of the global financial cycle (GFC)

discussed in Rey (2018), and Miranda-Agrippino and Rey (2020). Figure 5 plots the cumulated

values of the first factor, that is the first principal component (PC), in group 1, and of the first
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factor in group 2.

Figure 3 – Actual and systematic correlations across panels and in different regimes

Actual overall correlations : ĉorr(x1,i1,t, x2,i2,t | I1j1t(θ̂1) = I2j2t(θ̂2) = 1)
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The figure displays the actual overall and estimated systematic correlations across panels of monthly excess returns
on the U.S. (Group 1) and the international (Group 2) equity portfolios when zt ≤ θ̂1 = θ̂2, that is for all dates that
UM ≤ 0.674, and when zt > θ̂1 = θ̂2, that is for all dates that UM > 0.674.

29



Figure 4 – Difference of systematic correlations across panels between the two regimes

(a) R̂HHi1i2 − R̂LLi1i2
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(b) R̂HHi1i2 − R̂LLi1i2 : p-value of signif. test
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Panel (a) displays the difference, between high and low Macroeconomic Uncertainty regimes, of the estimated sys-
tematic correlations computed for each pair of returns i1 and i2, with i1 from the panel of U.S. portfolios and i2 from
the panel of international (ex U.S.) portfolios. Panel (b) displays the p-value of the one-sided test of significance for
each of the individual differences displayed in Panel (a). A gray square indicates a p-value > 10%, a blue square
indicates a p-value between 5% and 10%, a green square indicates a p-value between 1% and 5%, and a red square
indicates a p-value < 1%. In both panels, each column corresponds to a U.S. portfolio, while each row corresponds
to an international (ex U.S.) portfolio.
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As we have two regimes and all PCs are estimated separately for each group and regime, we

need to choose a suitable standardization of either factors or loadings, and their signs, in order to

represent them graphically.12

For all groups and regimes we impose the estimated loading matrices to be such that:

N−1
g

(
Λ̂′gjgΛ̂gjg

)
= IKg , therefore we standardize the scale of the loadings across all groups, regimes

and factors. Moreover, for all dates in regime L, the sign of the first PC in group 1 (resp. group

2) is fixed such that the majority of the loadings of the returns in group 1 (resp. group 2) with

respect to the PC are positive. The same procedure is used to compute the factors in each group

for all dates in regime H.13 From Figure E.5 in the SM we notice that all the loadings are positive

in each regime and group, so the first factors can be interpreted as “Market factors” for the

two geographical regions. For each group, we construct the unique time series of demeaned excess

returns of the two factors, and we show the cumulated version of these two time series starting from

the value 0 in December 1990. As the original non-cumulated factors are estimated from a panel

of demeaned (within each regime) excess returns of individual assets, they are themselves (linear

combinations of) demeaned excess returns, and thus have zero mean within each regime. Therefore,

the cumulated factors can be interpreted as cyclical variations along long-run factor-specific trend,

and no long-run linear trend appears when plotting them. To ease factor interpretation, Figure 5

also shows the dynamics of the Miranda-Agrippino and Rey (2020)’s GFC factor estimated from

world-wide cross section of risky asset prices.14

The two groups of equity returns we consider follow a group-specific cycle, which is highly cor-

related, although not perfectly synchronized, with the global financial cycle.15 This provides the

empirical foundation for our analysis based on a group-factor model. Our empirical specification

thus sheds light on the dynamics of systematic comovement as induced by changes in U.S. macroe-

conomics uncertainty for two sets of equity portfolio returns that follow group-specific cycles. Our

12These standardizations have no effect on the fit of the model, and on the values of the common components and
of our measures of systematic comovement.

13Our standardization also implies that large (resp. small) changes in absolute value of the factor in a date
correspond to average large changes (resp. small) across most of the excess returns of individual assets in each group.
Moreover, the order of magnitude of these effects are comparable across regimes and groups simply by looking at
trajectories of the factors themselves.

14More specifically, we show the global common factor of Miranda-Agrippino and Rey (2020) as extended by
Miranda-Agrippino, Nenova, and Rey (2020) to cover the time period up to April 2019 and to reflect a larger and
richer set of price series and compositional changes in global markets with the inclusion of Chinese stocks. Data have
been downloaded from Silvia Miranda-Agrippino’s website http://silviamirandaagrippino.com/code-data/.

15The correlation of the first U.S. (resp. International) not-cumulated factor with the non-cumulated global finan-
cial cycle of Miranda-Agrippino and Rey (2020) is 0.80 (resp. 0.86).
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Figure 5 – Cumulative returns of First PCs in both panels
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This figure plots the estimates of the cumulated global factor of Miranda-Agrippino and Rey (2020) together with
those of the cumulated first factor for U.S. and international equity markets obtained according to the empirical
specification detailed in Section 6.1. All cumulated factors have been standardized to have zero mean and unit
variance to ease their comparison. Light gray areas correspond to the high macroeconomic uncertainty regimes,
while the dark gray areas correspond to the NBER recession rates. All the NBER recessions coincide also with high
macroeconomic uncertainty regimes, but the opposite is not true.

results show that, within those fluctuations, the two underlying factor models experience synchro-

nized changed in the loadings that allow to identify variations in systematic comovement between

the two groups: these are such that both pairwise and average systematic comovement are higher

during periods of high macroeconomic uncertainty.

Our results have implications for investors and policy makers. From a portfolio choice per-

spective, our findings suggest that the benefits from global diversification are not constant over

time and become weaker during periods of high U.S. macroeconomic uncertainty; they also imply

that investors may have to rebalance their portfolios depending on how macroeconomic uncertainty

affects factor loadings.16 As shown in Ang and Chen (2002), correlations between asset returns

tend to increase during market downturns: our results thus imply that periods of potential market

instability are associated with high U.S. macroeconomic uncertainty. This suggests that regulators

16See Lehmann and Modest (2005) for a discussion on the link between factor loadings and portfolio weights in
latent factor models.
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may find it useful to track this indicator to monitor stability in global financial markets.

7 Conclusions

We develop measures of pairwise and average systematic comovement for high dimensional approx-

imate group-factor models. We propose consistent estimators for these measures and analytically

derive their asymptotic distributions. We further build formal procedures to test for changes in

systematic comovement induced by threshold-type discrete shifts in the factor loadings. A com-

prehensive Monte Carlo analysis shows the good finite sample properties of our estimators and

test statistics. An empirical analysis of U.S. and international large equity portfolios shows that

measures of both pairwise and average comovement between the groups increase during periods of

high U.S. macroeconomic uncertainty over the course of the global financial cycle.

Our work can be extended along several directions. On the methodological side, it would be

interesting to have continuous variation in the factor loadings to allow for corresponding continuous

dynamics in systematic comovement. Our framework is valid under the maintained assumption

that the two groups are made of balanced panels: the case of unbalanced panels is definitely worth

exploring. From an empirical perspective, our results may be useful to shed light on the systematic

degree of, and comovement between, different classes of financial variables, which could provide

valuable information for macroprudential policy implementation. These issues are high in our

research agenda.
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Appendices

We use the following notation. Let ‖A‖=
√
tr(A′A) denote the Frobenius norm of matrix A.

A Assumptions

Assumption A.1. For g = 1, 2 and jg = L,H: E[Igjgt(θ0
g)f

0
gjgt

] = 0; for all θg and some K0
gjg
×

K0
gjg

positive definite matrix Σ0
fgjg

(θg), T
−1
∑T

t=1 Igjgt(θ0
g)Igjgt(θg)f0

gjgt
f0′
gjgt

p→ Σ0
fgjg

(θg) as T →

∞; E
∥∥∥f0

gjgt

∥∥∥4
<∞.

Assumption A.2. For g = 1, 2, jg = L,H and ig = 1, . . . , Ng,
∥∥∥λ0

gjgig

∥∥∥ ≤ λ̄ < ∞ and∥∥∥N−1
g Λ0′

gjg
Λ0
gjg
−D0

Λgjg

∥∥∥→ 0 as Ng →∞ for some K0
gjg
×K0

gjg
positive definite matrix D0

Λgjg
.

Assumption A.3. There exists a positive M <∞ such that for g = 1, 2, jg = L,H, for all θg and

for all (Ng, T ),

1. E
(
egigt

)
= 0 and E

∣∣egigt∣∣8 ≤M ;

2. E
[
Igjgt(θg)Igjgv(θg)egigtegigv

]
= τgjgigtv(θg) with

∣∣τgjgigtv(θg)∣∣ ≤ ∣∣τgjgigtv∣∣ for some τgjgigtv and

for all ig, and T−1
∑T

t=1

∑T
v=1

∣∣τgjgigtv∣∣ ≤M .

3. E
[
T−1

∑T
t=1 Igjgt(θg)egigteglgt

]
= σgjgiglg (θg),

∣∣σgjglglg (θg)
∣∣ ≤M for all lg, and

N−1
g

∑Ng
ig=1

∑Ng
lg=1

∣∣σgjglglg (θg)
∣∣ ≤M ;

4. E
∣∣∣T−1/2

∑T
t=1 Igjgt (θg) egigteglgt − E

[
Igjgt (θg) egigteglgt

]∣∣∣4 ≤M , for every (ig, lg).

Assumption A.4. There exists some positive constant M < ∞ such that for all θg and for all

(Ng, T ),

E

{
N−1
g

∑Ng
ig

∥∥∥T−1/2
[∑T

t=1 Igjgt (θg)f
0
gjgt

egigt

]∥∥∥2
}
< M, g = 1, 2, jg = L,H.

Assumptions A.1-A.4 are the natural extensions of Assumptions A-D in Bai and Ng (2002) and

ensure consistency of the least squares estimator as applied to the model in (1).

Assumption A.5. For g = 1, 2 and ig = 1, . . . , bNα0
g

g c with 0.5 < α0
g ≤ 1, λ0

gHig
6= Lλ0

gLig
for any

K0
gL ×K0

gL full rank matrix L.
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For g = 1, 2, Assumption A.5 is sufficient to identify the threshold factor model from a linear

specification. Following Massacci (2020), it requires that enough cross-sectional units experience

a synchronized threshold effects within each group. If this condition fails to hold, the principal

components estimator as applied to the misspecified linear model would achieve the convergence

ratemin(
√
Ng,
√
T ) derived in Bai and Ng (2002) for correctly specified linear factor models and the

threshold effect would not be identified. Assumption A.5 is trivially satisfied if K0
gL 6= K0

gH : in this

case the change in the number of factors identifies the regime shift. If K0
gL = K0

gH then Assumption

A.5 holds provided that λgHig is not obtained as the rotation of λgLig induced by the same matrix

L, for ig = 1, . . . , bNα0
g

g c: if this is not the case, the model becomes observationally equivalent

to a linear model with a regime change in the covariance structure of the true factors, which is

consistent with Assumption A in Bai and Ng (2002). Assumption A.5 orders the cross-sectional

units for expositional purposes only: this condition can be relaxed without any consequence.

For g = 1, 2 and jg = L,H, define δ0
fgig

(θg) = E

[(
f0′
gHtλ

0
2Hig

− f0′
gLtλ

0
1Lig

)2
|zgt = θg

]
and let

fZg (zgt) be the density function of zgt.

Assumption A.6. For g = 1, 2 and jg = L,H:

1.
{
f0
gLt,f

0
gHt, zgt, egt

}T
t=1

is strictly stationary, ergodic and ρ−mixing, with ρ−mixing coeffi-

cients satisfying
∑∞

m=1 ρ
1/2
gm <∞;

2. for all θg, E

(∥∥∥f0
gjgt

eigt

∥∥∥4
|zgt = θg

)
≤ C and E

(∥∥∥f0
gjgt

∥∥∥4
|zgt = θg

)
≤ C for some C < ∞

and for ig = 1, . . . , Ng, and fZg (θg) ≤ f̄ <∞;

3. δ0
fgig

(θg) and fZg (zgt) are continuous at θg = θ0
g ;

4. δ0
fgig

(θg) > 0, for ig = 1, . . . , bNα0
gc and 0.5 < α0

g ≤ 1; fZg (zgt) > 0 for all θg.

Assumption A.6 suitably extends Assumption 1 in Hansen (2000), to which we refer to for further

comments: it is required to derive the convergence rates of the estimators for θ0
1 and θ0

2 and thus

of the principal components estimators for factors and loadings.

Assumption A.7. For g = 1, 2, jg = L,H, and t = 1, . . . , T , as Ng →∞,

1√
Ng

Ng∑
ig=1

Igjgt(θ0
g)λgjgigegigt

d→ N
(
0,Γ0

gjgt

)
,

where Γ0
gjgt

= limNg→∞
1

Ng

∑Ng
ig=1

∑Ng
lg=1 λ

0
gjgig

λ0′
gjglg

E
[
Igjgt(θ0

g)egigteglgt
]
.
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Assumption A.8. For g = 1, 2, jg = L,H, and i = 1, . . . , Ng, as T →∞,

1√
T

T∑
t=1

Igjgt(θ0
g)fgjgtegigt

d→ N
(
0,Ω0

gjgig

)
,

where

Ω0
gjgig = lim

T→∞

1

T

T∑
t=1

T∑
v=1

E
[
Igjgt(θ0

g)Igjgv(θ0
g)f

0
gjgtf

0′
gjgvegigtegigv

]
.

Assumptions A.7 and A.8 are analogous to the central limit theorems in Assumption F in Bai

(2003): they allow to obtain the asymptotic distribution of the principal components estimators

for factors and loadings.

Assumption A.9. For g = 1, 2, ig = 1, . . . , Ng, and t, v = 1, . . . , T , the idiosyncratic components

e1i1t and e2i2v are mutually independent.

Assumption A.10. For g = 1, 2, and jg = L,H, T−1
∑T

t=1 I1j1t(θ0
1)I2j2t(θ0

2)f0
1j1t
f0′

2j2t
p→ Σ0

f12j1j2

as T →∞, for some K0
1j1
×K0

2j2
matrix Σ0

f12j1j2
.

Assumptions A.9 and A.10 impose conditions on the idiosyncratic components and the factors,

respectively, that hold across the two groups.

Assumption A.11. The sequence of weights {wgig}ig=1,...,Ng is such that limNg→∞
∑Ng

ig=1|wgig |≤

C, where C is a strictly positive finite constant, for g = 1, 2.

Assumption A.11 ensures that the asymptotic variances of the systematic covariance and correla-

tions, which are defined as averages with generic weights wgig across individuals in the two groups,

converge as N1, N2 → +∞. For both g = 1, 2, this assumption accommodates the two most inter-

esting cases (i) wgig = 1/Ng , ∀ig, and (ii) wgig = 1 when ig = i∗g, while wgig = 0 ∀ig 6= i∗g. Note

that to ensure the convergence of the variances of the systematic covariance and correlations it is

not necessary to assume that
∑Ng

ig=1wgig = 1.

Assumption A.12. Factors f0
gjgt

and idiosyncratic components eg∗ig∗v are mutually independent

for all t, v = 1, . . . , T , jg = L,H, g, g∗ = 1, 2.
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B Covariances estimators

In this section we provide consistent estimators of the asymptotic variance-covariance matrices

appearing in Theorems 1 - 5.

B.1 Estimators for Theorem 1

Similarly to Bai (2003), our Assumption A.9 implies cross-sectional independence of the errors

within each group g = 1, 2 and in each regime jg. In this case, matrix Γgjgt defined in Assump-

tion A.7 simplifies to: Γ0
gjgt = lim

Ng→∞

1

Ng

Ng∑
ig=1

λ0
gjgigλ

0′
gjgigE

[
Igjgt(θ0

g)e
2
gigt

]
. Let êg,igt be residual

estimated at time t for individual ig in group g as:

êg,igt = Igjgt(θ̂g)(xg,ig ,t − ĉg,igt), t = 1, ..., T, ig = 1, .., Ng, g = 1, 2.

The estimator of Γ0
gjgt

is: Γ̂gjgt =
1

Ng

Ng∑
ig=1

λ̂gjgig λ̂
′
gjgigIgjgt(θ̂g)ê

2
gigt , and the estimator of V 0

gjgigt

is:

V̂gjgigt = λ̂′gjgig

 1

Ng

Ng∑
ig=1

λ̂gjgig λ̂
′
gjgig

−1

Γ̂gjgt

 1

Ng

Ng∑
ig=1

λ̂gjgig λ̂
′
gjgig

−1

λ̂gjgig .

The estimator of matrix Ωgjgig is Ω̂gjgig = D̂jgig ,0 +
∑q

v=1

(
1− v

q+1

)(
D̂jgig ,v + D̂′jgig ,v

)
, where:

D̂jgig ,v =
1

T

T∑
t=v+1

Igjgt(θ̂g)Igjgt−v(θ̂g)f̂g,tf̂ ′g,t−v êg,igtêg,igt−v .

This estimator is a Newey-West estimator computed only in the dates characterized by the regime

jg, and the role of the indicator function is to exclude from the computation all the dates which

are not in regime jg. Then, the estimator of W 0
gjgigt

is:

Ŵgjgigt = Igjgt(θ̂g)f̂ ′gt
(
Σ̂fgj1j2

)−1
Ω̂gjgig

(
Σ̂fgj1j2

)−1
f̂gt ,

where Σ̂fgjg :=
1

T

T∑
t=1

I1jgt(θ̂1)I2j2t(θ̂2)f̂gtf̂
′
gt, with g = 1, 2, and the estimator of Q0

j1j2i1i2t
is:

Q̂j1j2i1i2t = (ĉ1j1i1t)
2
(
µ̂2
N2
V̂2j2i2t + µ̂2

TŴ
0
2j2i2t

)
+ (ĉ2j2i2t)

2
(
µ̂2
N1
V̂1j1i1t + µ2

TŴ1j1i1t

)
,
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with µ̂Ng = CNT /
√
Ng, and µ̂T = CNT /

√
T . Finally, the estimator of the asymptotic variance

Q0
i1i2t

is: Q̂i1i2t =
∑

j1=L,H

∑
j2=L,H I1j1t(θ̂1)I2j2t(θ̂2)Q̂j1j2i1i2t .

B.2 Estimators for Theorem 2

The estimator of Q0
j1j2

(w1,w2) is:

Q̂j1j2(w1,w2) =
T 2

Tj1j2(θ̂1, θ̂2) · Tj∗1 j∗2 (θ̂1, θ̂2)
·
[
Ψ̂j1j2,j1j2(w1,w2)

+ Q̂12j1j2,j1j2(w1,w2;w1,w2) + Q̂21j1j2,j1j2(w1,w2;w1,w2)
]
, (B.1)

where the generic terms Ψ̂j1j2,j∗1 j
∗
2
(w1,w2), Q̂12j1j2,j∗1 j

∗
2
(w1,w2;w∗1,w

∗
2), and Q̂21j1j2,j∗1 j

∗
2
(w1,w2;w∗1,w

∗
2)

are computed for (j1, j2) = (j∗1 , j
∗
2) and wg = w∗g , g = 1, 2. The more general definitions of these

three terms, allowing for generic regimes (j1, j2), (j∗2 , j
∗
1) and potentially different weights wg,w

∗
g ,

will prove convenient to simplify the formulas for the estimators used in Theorem 5. The three

terms in the square brackets of the last equations are:

Ψ̂j1j2,j∗1 j
∗
2
(w1,w2) = D̂j1j2,j∗1 j

∗
2 ,0

(w1,w2) +

q∑
v=1

2

(
1− v

q + 1

)
D̂j1j2,j∗1 j

∗
2 ,v

(w1,w2) (B.2)

with:

D̂j1j2,j∗1 j
∗
2 ,v

(w1,w2)

=
1

T

T∑
t=v+1

I1j1t(θ̂1)I2j2t(θ̂2)I1j∗1 t−v(θ̂1)I2j∗2 t−v(θ̂2)
(
ĉj1j2w1,w2t − ˆ̄cj1j2w1,w2

) (
ĉj∗1 j∗2w1,w2t−v − ˆ̄cj∗1 j∗2w1,w2

)
,

for v = 0, 1, ..., q, ĉj1j2w1,w2t =
∑N1

i1=1

∑N2
i2=1w1,i1w2,i2I1j1t(θ̂1)I2j2t(θ̂2)ĉi1i2t, and ˆ̄cj1j2w1,w2 =

1
Tj1j2 (θ̂1,θ̂2)

∑T
t=1 ĉj1j2w1,w2t . Quantity D̂j1j2,j1j2,v(w1,w2) is the estimator of the asymptotic auto-

covariance of order v the product of (averages of) common components ĉi1i2t computed only for

the dates corresponding to the regime j1 and j2. Importantly, the sample average ˆ̄cj1j2w1,w2 is

estimated only in the dates corresponding to the regime j1, j2. Moreover,

Q̂12j1j2,j∗1 j
∗
2
(w1,w2;w∗1,w

∗
2) = λ̂′1j1(w1)Σ̂f12j1j2

(
Σ̂f2j2

)−1
Ω̂2j2j∗2

(w2,w
∗
2)
(
Σ̂f2j∗2

)−1
Σ̂′f12j∗1 j

∗
2
λ̂1j∗1

(w∗1),

(B.3)
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Q̂21j1j2,j∗1 j
∗
2
(w1,w2;w∗1,w

∗
2) = λ̂′2j2(w2)Σ̂f21j1j2

(
Σ̂f1j1

)−1
Ω̂1j1j∗1

(w1,w
∗
1)
(
Σ̂f1j∗1

)−1
Σ̂′f21j1j∗2

λ̂2j∗2
(w∗2),

(B.4)

where for g = 1, 2, λ̂gjg(wg,w
∗
g) :=

Ng∑
ig=1

wgig λ̂gjgig , Σ̂f12j1j2 :=
1

T

∑T
t=1 I1j1t(θ̂1)I2j2t(θ̂2)f̂1tf̂

′
2t,

Ω̂gjgj∗g (wg,w
∗
g) = D̂jgj∗g ,0(wg,w

∗
g) +

q∑
v=1

(
1− v

q + 1

)[
D̂jgj∗g ,v(wg,w

∗
g) + D̂′jgj∗g ,v(wg,w

∗
g)

]
,

and D̂jgj∗g ,v(wg,w
∗
g) =

1

T

∑T
t=v+1 Igjgt(θ̂g)Igj∗g t−v(θ̂g)f̂g,tf̂

′
g,t−v

(∑Ng
ig=1

∑Ng
lg=1wg,igw

∗
g,lg
êg,igtêg,lgt−v

)
.

B.3 Estimators for Theorem 3

Let ŵσ,gj1j2ig =
wgig

σ̂xgj1j2ig
. The estimator of Q0

R,j1j2
is

Q̂R,j1j2(ŵσ,1j1j2 , ŵσ,2j1j2) =

(
T

Tj1j2(θ̂1, θ̂2)

)2

·
[
Ψ̂R,j1j2,j1j2(ŵσ,1j1j2 , ŵσ,2j1j2 ; ŵσ,1j1j2 , ŵσ,2j1j2)

+Q̂12j1j2,j1j2(ŵσ,1j1j2 , ŵσ,2j1j2 ; ŵσ,1j1j2 , ŵσ,2j1j2)

+Q̂21j1j2,j1j2(ŵσ,1j1j2 , ŵσ,2j1j2 ; ŵσ,1j1j2 , ŵσ,2j1j2) + 2 Ξ̂1,j1j2,j1j2 + 2 Ξ̂2,j1j2,j1j2

]
, (B.5)

where the variables inside the square brackets are defined below for the generic couple of regimes

(j1, j2), (j∗1 , j
∗
2), as it will prove convenient to simplify the formulas for the estimators used in

Theorem 5. The terms inside the square brackets are:

Ψ̂R,j1j2,j∗1 j
∗
2
(ŵσ,1j1j2 , ŵσ,2j1j2 ; ŵσ,1j∗1 j

∗
2
, ŵσ,2j∗1 j

∗
2
) = D̂∗R,j1j2,j∗1 j∗2 ,0 +

q∑
v=1

2

(
1− v

q + 1

)
D̂∗R,j1j2,j∗1 j∗2 ,v ,

with:

D̂∗R,j1j2,j∗1 j∗2 ,v =
1

T

T∑
t=v+1

I1j1t(θ̂1)I2j2t(θ̂2)I1j∗1 t−v(θ̂1)I2j∗2 t−v(θ̂2)

×
[
ĉR,j1j2t(ŵσ,1j1j2 , ŵσ,2j1j2)− ̂̄cR,j1j2(ŵσ,1j1j2 , ŵσ,2j1j2)

]
×
[
ĉR,j∗1 j∗2 t−v(ŵσ,1j∗1 j

∗
2
, ŵσ,2j∗1 j

∗
2
)− ̂̄cR,j∗1 j∗2 (ŵσ,1j∗1 j

∗
2
, ŵσ,2j∗1 j

∗
2
)

]
,
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ĉR,j1j2t(ŵσ,1j1j2 , ŵσ,2j1j2) =

N1∑
i1=1

N2∑
i2=1

ŵσ,1j1j2i1ŵσ,2j1j2i2 ĉj1j2i1i2

[
ĉj1j2i1i2t
ĉj1j2i1i2

−
x2

1i1t

2(σ̂x1j1j2i1)2
−

x2
2i2t

2(σ̂x2j1j2i2)2

]
,

and ̂̄cR,j1j2(ŵσ,1j1j2 , ŵσ,2j1j2) = 1
Tj1j2 (θ̂1,θ̂2)

∑T
t=1 ĉR,j1j2t(ŵσ,1j1j2 , ŵσ,2j1j2) . Moreover,

Q̂12j1j2,j∗1 j
∗
2
(ŵσ,1j1j2 , ŵσ,2j1j2 ; ŵσ,1j∗1 j

∗
2
, ŵσ,2j∗1 j

∗
2
), and Q̂21j1j2,j∗1 j

∗
2
(ŵσ,1j1j2 , ŵσ,2j1j2 ; ŵσ,1j∗1 j

∗
2
, ŵσ,2j∗1 j

∗
2
)

can be computed using substituting wg with ŵσ,gj1j2 , and w∗g with ŵσ,gj∗1 j
∗
2

in equations (B.3) and

(B.4), with g = 1, 2. The estimator of Ξ0
g,j1j2,j∗1 j

∗
2

is Ξ̂g,j1j2,j∗1 j
∗
2

= D̂Ξ,gj1j2,j∗1 j
∗
20+

∑q
v=1 2

(
1− v

q+1

)
D̂Ξ,gj1j2,j∗1 j

∗
2 ,v

,

where D̂Ξ,gjggj1j2,v =
1

T

∑T
t=v+1 Igjgt(θ̂g)I1j∗1 t−v(θ̂1)I2j∗2 t−v(θ̂2)ĜIgj1j2tĜ

II
gj∗1 j

∗
2 t−v

, for v = 0, 1, ..., q,

and

ĜI1j1j2t =

N1∑
i1=1

N2∑
i2=1

ŵσ,1j1j2ŵσ,2j1j2λ̂
′
2j2i2Σ̂

′
f12j1j2

(
Σ̂f1j1

)−1
f̂1j1tê1i1t ,

ĜI2j1j2t =

N1∑
i1=1

N2∑
i2=1

ŵσ,1j1j2ŵσ,2j1j2λ̂
′
1j1i1Σ̂f12j1j2

(
Σ̂f2j2

)−1
f̂2j2tê2i2t ,

ĜIIgj∗1 j∗2 t =

N1∑
i1=1

N2∑
i2=1

ŵσ,1j∗1 j
∗
2
ŵσ,2j∗1 j

∗
2

ĉj∗1 j∗2 i1i2
σ̂2
x1j∗1 j

∗
2 i1

λ̂′gj∗g ig f̂gj∗g têg,igt , g = 1, 2 .

B.4 Estimators for Theorems 4 and 5

The estimator of Q∆,0
j1j2j∗1 j

∗
2

in Theorem 4 is :

Q̂∆
j1j2j∗1 j

∗
2
(w1,w2) = Q̂j1j2(w1,w2) + Q̂j∗1 j

∗
2
(w1,w2)− 2 · T 2

Tj1j2(θ̂1, θ̂2) · Tj∗1 j∗2 (θ̂1, θ̂2)
×
[
Ψ̂j1j2j∗1 j

∗
2
(w1,w2) ,

+Q̂12j1j2,j∗1 j
∗
2
(w1,w2) + Q̂21j1j2,j∗1 j

∗
2
(w1,w2)

]
, (B.6)

where all the terms in the RHS of the last equation are defined in Section B.2.

The estimator of Q∆,0
R,j1j2j∗1 j

∗
2

in Theorem 5 is :

Q̂∆
R,j1j2j∗1 j

∗
2

= Q̂R,j1j2(ŵσ,1j1j2 , ŵσ,2j1j2) + Q̂R,j∗1 j
∗
2
(ŵσ,1j∗1 j

∗
2
, ŵσ,2j∗1 j

∗
2
)

− 2 · T 2

Tj1j2(θ̂1, θ̂2) · Tj∗1 j∗2 (θ̂1, θ̂2)
×
[
Ψ̂R,j1j2,j∗1 j

∗
2
(ŵσ,1j1j2 , ŵσ,2j1j2 ; ŵσ,1j∗1 j

∗
2
, ŵσ,2j∗1 j

∗
2
)

+ Q̂12j1j2,j∗1 j
∗
2
(ŵσ,1j1j2 , ŵσ,2j1j2 ; ŵσ,1j∗1 j

∗
2
, ŵσ,2j∗1 j

∗
2
) + Q̂21j1j2,j∗1 j

∗
2
(ŵσ,1j1j2 , ŵσ,2j1j2 ; ŵσ,1j∗1 j

∗
2
, ŵσ,2j∗1 j

∗
2
)

+ Ξ̂1,j1j2,j∗1 j
∗
2

+ Ξ̂2,j1j2,j∗1 j
∗
2

+ Ξ̂1,j∗1 j
∗
2 ,j1j2

+ Ξ̂2,j∗1 j
∗
2 ,j1j2

]
,

where all the terms in the RHS of the last equation are defined in Section B.3.
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Online Appendix

C Proofs

C.1 Proof of Proposition 1

To simplify the proof, we assume that both the threshold variables, and the threshold values are the

same across the two groups, that is z1t = z2t = zt, and θ1 = θ2 = θ, respectively. Therefore we only

have two regimes - synchronized across the two groups - denoted as j = j1 = j2, where j = H,L.

Without loss of generality, we also assume that the number of factors in group 1 (resp. group 2) is

K1 (resp. K2) in both regimes j = L,H, with K1 ≤ K2, which implies min(K1,K2) = K1. Under

these simplifying assumptions, model (1) for the generic regime j can we written as:

x1jt = Λ1jf1jt + e1jt, (C.1)

x2jt = Λ2jf2jt + e2jt, (C.2)

where fgjt = fgjgt and Λgj =
[
λgj1, . . . , λgjNg

]′
. The factors have zero mean within each regime,

and the variance-covariance matrix is:

V

 f1jt

f2jt

 = E

 f1jtf
′
1jt f1jtf

′
2jt

f2jtf
′
1jt f2jtf

′
2jt

 =

 Σfj11 Σfj12

Σ′fj12 Σfj22

 , j = H,L ,

where Σfj11 and Σfj22 are full rank. Let Djg be the (Kg × Kg) diagonal matrix collecting the

eigenvalues of Σfjgg, and Cjg be the (Kg ×Kg) matrix collecting the associated eigenvectors, that

is:

ΣfjggCjg = CjgDjg , C ′jgCjg = CjgC
′
jg = IKg , g = 1, 2, j = H,L.

Define the full rank matrix Ljg = D
−1/2
jg C ′jg and its inverse L−1

jg = CjgD
1/2
jg , for g = 1, 2 and

j = H,L. Then model (C.1) - (C.2) is observationally equivalent to:

x1jt = Λ̃1j f̃1jt + e1jt, (C.3)

x2jt = Λ̃2j f̃2jt + e2jt, (C.4)

46



where Λ̃gj = Λ1jtL
−1
jg and f̃1jt = Ljgfgjt. By definition, we have Λ̃gj =

[
λ̃gj1, . . . , λ̃gjNg

]′
, where

λ̃gjig = (L−1
jg )′λ1jig . The factors in the new model (C.3)-(C.4) can be written as:

 f̃1jt

f̃2jt

 =

 Lj1 0(K1×K2)

0(K2×K1) Lj2

 f1jt

f2jt

 ,

and their variance-covariance matrix is:

V

 f̃1jt

f̃2jt

 =

 Lj1 0(K1×K2)

0(K2×K1) Lj2

 ·
 Σfj11 Σfj12

Σ′fj12 Σfj22

 ·
 L′j1 0(K2×K1)

0(K1×K2) L′j2



=

 Lj1Σfj11L
′
j1 Lj1Σfj12L

′
j2

L′j2Σ′fj12L
′
j1 Lj2Σfj22L

′
j2

 =

 IK1 Φ̃j

Φ̃′j IK2

 ,

where the last equality follows by defining Φ̃j = Lj1Σfj12L
′
j2, and from the fact that:

LjgΣfj11L
′
jg = D

−1/2
jg C ′jgΣfjggCjgD

−1/2
jg = D

−1/2
jg DjgD

−1/2
jg = IKg , for g = 1, 2, j = H,L .

Therefore, we have just shown that by allowing the factor loadings to change in each regime and

group - as we do in our model - we can always rewrite the original model for each regime as an

equivalent factor model where Var[f̃gjt] = IKg,j for g = 1, 2, and E[f̃1jtf̃
′
2jt] = Φ̃j is the K1 ×K2

matrix of the correlations between the (rotated) pervasive factors in groups 1 and 2, in regime j.

Therefore, the systematic correlation can be expressed as:

R0
12ji1i2 =

cov(λ̃′1ji1 f̃1jt, λ̃
′
2ji2 f̃2jt)√

V (x1ji1) · V (x2ji2)
=

λ̃′1ji1Φ̃j λ̃2ji2√
V (x1ji1) · V (x2ji2)

. (C.5)

The zero correlation assumption between factors and idiosyncratic innovations implies:

V (xgjigt) = V (λ̃′gjig f̃gjt + egjigt) = λ̃′gjigV (f̃gjt)λ̃gjig + V (egjigt) =

K2∑
`=1

λ̃2
gjig ,` + σ2

gjig , g = 1, 2.

Let Aj and Bj be the matrices of canonical directions associated to the ordered canonical corre-

lations between f̃1jt, f̃2jt, that is Aj and Bj are (K1 ×K1) and (K2 ×K2) matrices, respectively,

such that:

A′jAj = AjA
′
j = IK1 , B′jBj = BjB

′
j = IK2 , (C.6)
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and

Φ̃j = Aj

[
Φj

... 0K1×(K2−K1)

]
B′j , (C.7)

where Φ̃j is the (K1 ×K1) diagonal matrix of all the K1 canonical correlations between f̃1jt and

f̃2jt:

Φj =


φj,1 0 ... 0

0 φj,2 ... 0

0 0
. . . 0

0 0 ... φj,K1

 ,

with 1 ≥ φj,1 ≥ φj,2 ≥ ... ≥ φj,K1 > 0. As discussed at the end of Chapter 12.2 of Anderson (2003),

equation (C.7), corresponds to the Singular Value Decomposition (SVD) of matrix Φ̃j . It can be

shown that the columns of Aj are the eigenvectors of Φ̃jΦ̃
′
j , while the corresponding eigenvalues

are equal to the squared elements of matrix Φj , that is:

Φ̃jΦ̃
′
jAj = AjΦ

2
j . (C.8)

It can also be shown that the columns of Bj are the eigenvectors of Φ̃′jΦ̃j , while the corresponding

non-zero eigenvalues are equal to the squared elements of matrix Φj , that is:

Φ̃′jΦ̃jBj = Bj

 Φ2
j 0(K1×(K2−K1))

0((K2−K1)×K1) 0((K2−K1)×(K2−K1))

 .

Equations (C.6) and (C.7) imply:

A′jΦ̃jBj =

[
Φj

... 0K1×(K2−K1)

]
.

Therefore, factors f̃1jt and f̃2jt can be rotated by means of matrices Aj and Bj respectively, in

order to generate two new set of factors f̆1jt = A′j f̃1jt and f̆2jt = B′j f̃2jt such that:

V (f̆1jt) = A′jV (f̃1jt)Aj = A′jAj = IK1 , V (f̆2jt) = B′jV (f̃2jt)Bj = B′jBj = IK2 ,
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and

cov(f̆1jt , f̆2jt) = cov(A′j f̃1jt , B
′
j f̃2jt) = A′jcov(f̃1jt , f̃2jt)Bj = A′jΦ̃Bj

=

[
Φj

... 0K1×(K2−K1)

]
. (C.9)

The new factors f̆1jt = [f̆1jt,1, ..., f̆1jt,K1 ]′ and f̆2jt = [f̆2jt,1, ..., f̆1jt,K2 ]′ are commonly referred to as

canonical variates. By construction the f̆1jt,1 and f̆2jt,1 are the linear combinations of f̆1jt and f̆2jt

with the maximum correlation, that is φj,1. Moreover, f̆1jt,2 and f̆2jt,2 are the linear combinations of

f̆1jt and f̆2jt uncorrelated with f̆1jt,1 and f̆2jt,1, respectively, which have the maximum correlation,

that is φj,2. Analogously, f̆1jt,3 and f̆2jt,3 are the linear combinations of f̆1jt and f̆2jt uncorrelated

with [f̆1jt,1, f̆1jt,2]′ and [f̆2jt,1, f̆2jt,2]′, respectively, which have the maximum correlation, that is

φj,3, and so on.17

By using the orthonormality of the the canonical direction matrices Aj and Bj , that is the

equations in (C.6), we have:

λ̃′1ji1 f̃1jt = λ̃′1ji1AjA
′
j f̃1jt = λ̆′1ji1 f̆1jt, (C.10)

λ̃′2ji2 f̃2jt = λ̃′2ji2BjB
′
j f̃2jt = λ̆′2ji2 f̆2jt, (C.11)

where λ̆1ji1 = λ̃′1ji1Aj and λ̆2ji2 = λ̃′2ji2Bj . By using equations (C.10) and (C.11) can rewrite model

(C.1)-(C.2) as an observationally equivalent model with new factors f̆1jt and f̆2jt:

x1ji1t = λ̃′1ji1 f̃1jt + e1ji1t = λ̆′1ji1 f̆1jt + e1ji1t, (C.12)

x2ji2t = λ̃′2ji2 f̃2jt + e2ji1t = λ̆′2ji2 f̆2jt + e2ji2t, (C.13)

Equations (C.10) - (C.13) and the assumption that the factors and the errors are uncorrelated

imply that, for g = 1, 2 we have:

V (λ̃′gjig f̃gjt) = V (λ̆′gjig f̆gjt) = λ̆′gjigV (f̆gjt)λ̃gjig =

Kg∑
`=1

λ̃2
gjig ,` =

Kg∑
`=1

λ̆2
1jig ,` ,

17For a thorough introduction to canonical correlation, canonical directions and variables see Chapter 12.2 of
Anderson (2003) and Chapter 17.16 in Magnus and Neudecker (2007).
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and

V (xgjigt) = V (λ̆′gjig f̆gjt + egjigt) =

Kg∑
`=1

λ̆2
gjig ,` + σ2

gjig , (C.14)

The last four equations and the definition of the population R-square given in equation (13) imply

that

R2
gjig =

V (λ̃′gjig f̃gjt)

V (xgjigt)
=

∑K1
`=1 λ̃

2
gji1,`∑K1

`=1 λ̃
2
gjig ,`

+ σ2
gji1

=
V (λ̆′gjig f̆gjt)

V (xgjigt)
=

∑K2
`=1 λ̆

2
gjig ,`∑K2

`=1 λ̆
2
gjig ,`

+ σ2
gji1

, g = 1, 2 . (C.15)

Moreover,

cov(λ̆′1ji1 f̆1jt, λ̆
′
2ji2 f̆2jt) = λ̆′1ji1cov(f̆1jt , f̆2jt)λ̆2ji2 = λ̆′1ji1

[
Φj

... 0K1×(K2−K1)

]
λ̆2ji2

=

K1∑
`=1

λ̆1ji1,`λ̆2ji2,`φj,` +

K2−K1∑
`=K1+1

0 · λ̆2ji2,` . (C.16)

By substituting (C.14) and (C.16) into equation (C.5) we get

∣∣R0
12ji1i2

∣∣ =

∣∣∣∑K1

`=1 λ̆1ji1,`λ̆2ji2,`φ`

∣∣∣√∑K1

`=1 λ̆
2
1ji1,`

+ σ2
1ji1

·
√∑K2

`=1 λ̆
2
2ji2,`

+ σ2
2ji2

≤

∑K1

`=1

∣∣∣λ̆1ji1,`∣∣∣ ∣∣∣λ̆2ji2,`∣∣∣φj,`√∑K1

`=1 λ̆
2
1ji1,`

+ σ2
1ji1

·
√∑K2

`=1 λ̆
2
2ji2,`

+ σ2
2ji2

≤
φj,1

∑K1

`=1

∣∣∣λ̆1ji1,`∣∣∣ ∣∣∣λ̆2ji2,`∣∣∣√∑K1

`=1 λ̆
2
1ji1,`

+ σ2
1ji1

·
√∑K2

`=1 λ̆
2
2ji2,`

+ σ2
2ji2

≤ φj,1

√∑K1

`=1 λ̆
2
1ji1,`√∑K1

`=1 λ̆
2
1ji1,`

+ σ2
1ji1

√∑K1

`=1 λ̆
2
2ji2,`√∑K2

`=1 λ̆
2
2ji2,`

+ σ2
2ji2

≤ φj,1

√∑K1

`=1 λ̆
2
1ji1,`√∑K1

`=1 λ̆
2
1ji1,`

+ σ2
1ji1

√∑K2

`=1 λ̆
2
2ji2,`√∑K2

`=1 λ̆
2
2ji2,`

+ σ2
2ji2

= φj,1 ·
√
R2

1ji1
·
√
R2

2ji2
,

where the first inequality follows from the repeated application of the triangle inequality and the

fact that the canonical correlations φj,`, for all ` = 1, ..,K1, are non-negative by definition. The

second inequality follows from the fact that φj,1 is the largest canonical correlation, and again

because all the canonical correlations are non-negative. The third inequality follows from the

50



Cauchy–Schwartz inequality, while the fourth inequality follows form the assumption K1 ≤ K2.

The last equality follows form the definition of the population R-square in equation (C.15).

Finally, assuming that wgig ≥ 0 for all ig = 1, ..., Ng and g = 1, 2, we have:

∣∣∣∣∣
N1∑
i1=1

N2∑
i2=1

w1i1w2i2R
0
12ji1i2

∣∣∣∣∣ ≤
N1∑
i1=1

N2∑
i2=1

w1i1w2i2

∣∣∣∑K1
`=1 λ̆1ji1,`λ̆2ji2,`φ`

∣∣∣√∑K1
`=1 λ̆

2
1ji1,`

+ σ2
1ji1
·
√∑K2

`=1 λ̆
2
2ji2,`

+ σ2
2ji2

≤
N1∑
i1=1

N2∑
i2=1

w1i1w2i2

∑K1
`=1

∣∣∣λ̆1ji1,`

∣∣∣ ∣∣∣λ̆2ji2,`

∣∣∣φj,`√∑K1
`=1 λ̆

2
1ji1,`

+ σ2
1ji1
·
√∑K2

`=1 λ̆
2
2ji2,`

+ σ2
2ji2

≤ φj,1 ·

(
N1∑
i1=1

w1i1

√
R2

1ji1

)
·

(
N2∑
i2=1

w2i2

√
R2

2ji2

)
.

�

C.2 Proof of Theorem 1

The proof of Theorem 1 requires following Auxiliary Lemmas.

LEMMA C.1. Under Assumptions A.1 - A.8, for g = 1, 2, jg = L,H, and ig = 1, . . . , Ng,

λ̂gjgig − Ĥggjgjg(θ
0
g)
′λ0
gjgig = V̂gjg(θ

0
g)
−1

Λ̂′gjgΛ
0
gjg

Ng

[
1

T

T∑
t=1

Igjgt(θ0
g)f

0
gtegigt

]
+Op

(
1

C2
NgT

)
,

where

Ĥggjgjg(θ
0
g) =

F 0
gjg

(θ0
g)F

0
gjg

(θ0
g)
′

T

Λ0′
gjg

Λ̂gjg(θ
0
g)

Ng
V̂gjg(θ

0
g)
−1 (C.17)

and V̂gjg(θ
0
g) is the diagonal matrix consisting of the first Kgjg eigenvalues of Σ̂xgjg (θg) =

1
NgT

T∑
t=1

Igjgt
(
θ0
g

)
xgtx

′
gt in decreasing order.

Proof of Lemma C.1. The result is analogous to equation (B.2) in Bai (2003) and the proof is

omitted.
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LEMMA C.2. Under Assumptions A.1 - A.8, for g = 1, 2, and t = 1, . . . , T ,

f̂gt − [Ig1t(θ0
g)Ĥgg11(θ0

g) + Ig2t(θ0
g)Ĥgg22(θ0

g)]
−1f̂0

gt

= Ig1t(θ0
g)Ĥgg11(θ0

g)
′ 1

Ng

 Ng∑
ig=1

Ig1t(θ0
g)λ

0
g1igegigt

+ Ig2t(θ0
g)Ĥgg22(θ0

g)
′ 1

Ng

 Ng∑
ig=1

Ig2t(θ0
g)λ

0
g2igegigt


+Op

(
1√

NgCNgT

)
+Op

(
1√

TCNgT

)
.

Proof of Lemma C.2. The result is analogous to equation (A.5) in Bai (2003) and the proof is

omitted.

For g = 1, 2, jg = 1, 2, ig = 1, . . . , Ng, and t = 1, . . . , T , let ζ̂gjgigt := ĉgjgigt − c0
gjgigt

. We then

have

I1j1t(θ̂1)I2j2t(θ̂2)ĉ1j1i1tĉ2j2i2t = I1j1t(θ̂1)I2j2t(θ̂2)(c0
1j1i1t

+ ζ̂1j1i1t)(c
0
2j2i2t

+ ζ̂2j2i2t)

= I1j1t(θ̂1)I2j2t(θ̂2)c0
1j1i1t

c0
2j2i2t

+ I1j1t(θ̂1)I2j2t(θ̂2)c0
1j1i1t

ζ̂2j2i2t

+I1j1t(θ̂1)I2j2t(θ̂2)ζ̂1j1i1tc
0
2j2i2t

+ I1j1t(θ̂1)I2j2t(θ̂2)ζ̂1j1i1tζ̂2j2i2t.

(C.18)

By Theorem 3.4 in Massacci (2017), we can write
(
θ̂g − θ0

g

)
= Op

(
T−1

)
. By continuous mapping

theorem, this implies that

Igjgt(θ̂g) = Igjgt(θ0
g) +Op

(
T−1

)
, g = 1, 2, jg = 1, 2. (C.19)

Combining (C.18) and (C.19), it follows that

I1j1t(θ̂1)I2j2t(θ̂2)ĉ1j1i1tĉ2j2i2t = I1j1t(θ0
1)I2j2t(θ0

2)c0
1j1i1t

c0
2j2i2t

+ I1j1t(θ0
1)c0

1j1i1t
c0

2j2i2t
Op
(
T−1

)
+I2j2t(θ0

2)c0
1j1i1t

c0
2j2i2t

Op
(
T−1

)
+ c0

1j1i1t
c0

2j2i2t
Op
(
T−1

)
Op
(
T−1

)
+I1j1t(θ0

1)I2j2t(θ0
2)c0

1j1i1t
ζ̂2j2i2t + I1j1t(θ0

1)c0
1j1i1t

ζ̂2j2i2tOp
(
T−1

)
+I2j1t(θ0

2)c0
1j1i1t

ζ̂2j2i2tOp
(
T−1

)
+ c0

1j1i1t
ζ̂2j2i2tOp

(
T−1

)
Op
(
T−1

)
+I1j1t(θ0

1)I2j2t(θ0
2)c0

2j2i2t
ζ̂1j1i1t + I1j1t(θ0

1)c0
2j2i2t

ζ̂1j1i1tOp
(
T−1

)
+I2j2t(θ0

2)c0
2j2i2t

ζ̂1j1i1tOp
(
T−1

)
+ c0

2j2i2t
ζ̂1j1i1tOp

(
T−1

)
Op
(
T−1

)
+I1j1t(θ0

1)I2j2t(θ0
2)ζ̂1j1i1tζ̂2j2i2t + I1j1t(θ0

1)ζ̂1j1i1tζ̂2j2i2tOp
(
T−1

)
+I2j2t(θ0

2)ζ̂1j1i1tζ̂2j2i2tOp
(
T−1

)
+ ζ̂1j1i1tζ̂2j2i2tOp

(
T−1

)
Op
(
T−1

)
.

(C.20)
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By Assumptions A.1 and A.2 we have

c0
gjgigt

≤| c0
gjgigt

|≤| λ0′
gjgig

f0
gjgt
|≤
∥∥∥λ0

gjgig

∥∥∥∥∥∥f0
gjgt

∥∥∥ ≤ λ̄ ∥∥∥f0
gjgt

∥∥∥ = Op (1) , g = 1, 2. (C.21)

For g = 1, 2, consider

ζ̂gjgigt = ĉgjgigt − c0
gjgigt

= λ̂′gjgig f̂gjgt − λ
0′
gjgig

f0
gjgt

= [λ̂′gjgig f̂gjgt + λ0′
gjgig

Ĥggjgjg(θ
0
g)f̂gjgt − λ0′

gjgig
Ĥggjgjg(θ

0
g)f̂gjgt − λ0′

gjgig
f0
gjgt

]

= λ0′
gjgigt

[Ĥggjgjg(θ
0
g)f̂gjgt − f0

gjgt
] + [λ̂′gjgig − λ

0′
gjgig

Ĥggjgjg(θ
0
g)]f̂gjgt

= λ0′
gjgig

Ĥggjgjg(θ
0
g)[f̂gjgt − Ĥggjgjg(θ

0
g)
−1f0

gjgt
] + [λ̂′gjgig − λ

0′
gjgig

Ĥggjgjg(θ
0
g)]f̂gjgt

= λ0′
gjgig

Ĥggjgjg(θ
0
g)[f̂gjgt − Ĥggjgjg(θ

0
g)
−1f0

gjgt
] + [λ̂gjgig − Ĥggjgjg(θ

0
g)
′λ0
gjgig

]′f̂gjgt

and notice that for Igjgt(θ0
g) = 1

[λ̂gjgig − Ĥggjgjg(θ
0
g)
′λ0
gjgig

]′f̂gjgt = [λ̂gjgig − Ĥggjgjg(θ
0
g)
′λ0
gjgig

]′f̂gjgt

+[λ̂gjgig − Ĥggjgjg(θ
0
g)
′λ0
gjgig

]′Ĥggjgjg(θ
0
g)
−1f0

gjgt

−[λ̂gjgig − Ĥggjgjg(θ
0
g)
′λ0
gjgig

]′Ĥggjgjg(θ
0
g)
−1f0

gjgt

= [λ̂gjgig − Ĥggjgjg(θ
0
g)
′λ0
gjgig

]′Ĥggjgjg(θ
0
g)
−1f0

gjgt

+[λ̂gjgig − Ĥggjgjg(θ
0
g)
′λ0
gjgig

]′[f̂gjgt − Ĥggjgjg(θ
0
g)
−1f0

gjgt
] :

by Lemmas C.1 and C.2 and Assumptions A.7 and A.8, it follows that

[λ̂gjgig−Ĥggjgjg(θ
0
g)
′λ0
gjgig ]

′f̂gjgt = [λ̂gjgig−Ĥggjgjg(θ
0
g)
′λ0
gjgig ]

′Ĥggjgjg(θ
0
g)
−1f0

gjgt+Op

(
1√
NgT

)
,

which implies that

ζ̂gjgigt = λ0′
gjgig

Ĥggjgjg(θ
0
g)[f̂gjgt − Ĥggjgjg(θ

0
g)
−1f0

gjgt
]

+[λ̂gjgig − Ĥggjgjg(θ
0
g)
′λ0
gjgig

]′Ĥggjgjg(θ
0
g)
−1f0

gjgt
+Op

(
1√
NgT

)
= λ0′

gjgig
Ĥggjgjg(θ

0
g)[f̂gjgt − Ĥggjgjg(θ

0
g)
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gjgt
]

+f0′
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[
Ĥggjgjg(θ

0
g)
′
]−1

[λ̂gjgig − Ĥggjgjg(θ
0
g)
′λ0
gjgig

] +Op

(
1√
NgT

)
,
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and, using again Lemmas C.1 and C.2 and Assumptions A.7 and A.8 we get:

ζ̂gjgigt = λ0′
gjgigĤggjgjg(θ

0
g)Ĥggjgjg(θ

0
g)
′

 1

Ng

Ng∑
lg=1
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g)λ

0
gjglgeglgt


+f0′
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[
Ĥggjgjg(θ

0
g)
′
]−1

Vgjg(θ
0
g)
−1

Λ̂′gjgΛ
0
gjg
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[
1

T

T∑
v=1

Igjgv(θ0
g)f

0
gjgvegigv

]
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(
1√
NgT

)
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(
1

C2
NgT

)
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(
1√

NgCNgT

)
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(
1√

TCNgT

)

= Op

(
1√
Ng

)
+Op

(
1√
T

)
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(
1√
NgT

)
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(
1

C2
NgT

)
+Op

(
1√

NgCNgT

)
+Op

(
1√

TCNgT

)

= Op

(
1

CNgT

)
, g = 1, 2.

Combining (C.20), (C.21) and (C.22) we obtain

CNT

[
I1j1t(θ̂1)I2j2t(θ̂2)ĉ1j1i1tĉ2j2i2t − I1j1t(θ0

1)I2j2t(θ0
1)c0

1j1i1t
c0

2j2i2t

]
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1)I2j2t(θ0
2)c0

1j1i1t
λ0′

2j2i2
Ĥ22j2j2(θ0

2)Ĥ22j2j2(θ0
2)′
[

1

N2

∑N2
l2=1 I2j2t(θ

0
2)λ0

2j2l2
e2l2t

]
+CNT I1j1t(θ0

1)I2j2t(θ0
2)c0

1j1i1t
f0′

2j2t

[
Ĥ22j2j2(θ0

2)′
]−1

V2j2(θ0
2)−1

Λ̂′2j2Λ
0
2j2

N2

[
1

T

∑T
v=1 I2j2v(θ0

2)f0
2j2v

e2i2v

]
+CNT I1j1t(θ0

1)I2j2t(θ0
2)c0

2j2i2t
λ0′

1j1i1
Ĥ11j1j1(θ0

1)Ĥ11j1j1(θ0
1)′
[

1

N1

∑N1
l1=1 I1j1t(θ

0
1)λ0

1j1l1
e1l1t

]
+CNT I1j1t(θ0

1)I2j2t(θ0
2)c0

2j2i2t
f0′

1j1t

[
Ĥ11j1j1(θ0

1)′
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0
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[
1

T

∑T
v=1 I1j1v(θ0

1)f0
1j1v

e1i1v

]
+Op

(
1
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)
.

For g = 1, 2, the definition of Ĥggjgjg(θ
0
g) in equation (C.17) implies that

[Ĥggjgjg(θ
0
g)
′]−1 =

[
F 0
gjg

(θ0
g)F

0
gjg

(θ0
g)
′

T

]−1 [
Λ̂gjg(θ

0
g)
′Λ0

gjg

Ng

]−1

V̂gjg(θ
0
g),

and

Ĥggjgjg(θ
0
g)Ĥggjgjg(θ

0
g)
′ =

(
Λ0′
gjg

Λ0
gjg

Ng

)−1

+Op

(
1

C2
NgT

)
.
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The last two equation imply:
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[
I1j1t(θ̂1)I2j2t(θ̂2)ĉ1j1i1tĉ2j2i2t − I1j1t(θ0

1)I2j2t(θ0
1)c0

1j1i1t
c0

2j2i2t

]
=
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2)c0
1j1i1t

λ0′
2j2i2

(
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Λ0
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)−1 [
1√
N2

∑N2
l2=1 I2j2t(θ

0
2)λ0

2j2l2
e2l2t

]
+
CNT√
T

I1j1t(θ0
1)I2j2t(θ0

2)c0
1j1i1t

f0′
2j2t

[
F 0

2j2
(θ0

2)F 0
2j2

(θ0
2)′

T

]−1 [
1√
T

∑T
v=1 I2j2v(θ0

2)f0
2j2v

e2i2v

]
+
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N1

I1j1t(θ0
1)I2j2t(θ0
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2j2i2t
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(
Λ0′
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Λ0
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N1
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1√
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0
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1j1l1
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]
+
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T

I1j1t(θ0
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[
F 0
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(θ0
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1j1
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1)′

T
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1√
T

∑T
v=1 I1j1v(θ0

1)f0
1j1v

e1i1v

]
+Op

(
1

CNT

)
,

(C.22)

and the result stated in the theorem follows from Assumption A.9 as N1, N2, T → ∞ using argu-

ments analogous to those in the proof of Theorem 3 in Bai (2003).

�

C.3 Proof of Theorem 2

Equation (C.19) implies

I1j1t
(
θ̂1

)
I2j2t

(
θ̂2

)
= I1j1t

(
θ0

1

)
I2j2t

(
θ0

2

)
+Op

(
T−1

)
(C.23)

and

Tj1j2

(
θ̂1, θ̂2

)
=

T∑
t=1

I1j1t
(
θ̂1

)
I2j2t

(
θ̂2

)
=

[
T∑
t=1

I1j1t
(
θ0

1

)
I2j2t

(
θ0

2

)]
+Op (1) . (C.24)
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From (C.22) it follows that

I1j1t(θ̂1)I2j2t(θ̂2)ĉi1i2t

= I1j1t(θ0
1)I2j2t(θ0

2)c0
i1i2t + I1j1t(θ0
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2j2i2e2i2t

]
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[
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T
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1√
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1√
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[
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T
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]
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(
1
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)
.

Substituting the last equation, (C.23) and (C.24) into the expression for ĉj1j2i1i2 in equation (16)

we get:

ĉj1j2i1i2 =

[
T∑
t=1

I1j1t
(
θ0

1

)
I2j2t

(
θ0

2

)
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2
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1
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2
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2
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(
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2
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T
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Therefore,

√
T ĉj1j2i1i2 =
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T
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√
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N2∑
i2=1

I2j2t
(
θ02
)
λ0
2j2i2e2i2t

]

+
√
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√
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√
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T∑
t=1

I1j1t
(
θ01
)
f0
1j1te1i1t

]

+
√
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(C.25)

Noting that

[
1

T

T∑
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1
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=
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(C.26)

we have:
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√
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=
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The last equation, together with equation (C.25) implies:
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Using the definition of the common component c0
gjgigt

= λ0′
gjgig

f0
gjgt

and Assumptions A.1, A.6 and

A.7 we get:
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which implies that
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We thus have
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, (C.28)

and the result stated in the theorem follows from CNT → ∞ with
√
T/N → 0, and Assumptions

A.1 - A.3 and A.5 - A.12.
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C.4 Proof of Theorem 3

Definition (18), and equations (C.23) - (C.24) imply:
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From the last equation it follows:
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and:
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Equation (C.27) implies:
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A first order expansion of R̂j1j2i1i2 defined in equation (17), together with equations (C.29) and
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(C.30), implies:
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The last equation and the definition of R0
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Therefore we get:
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Using the definition wσ,gj1j2ig =
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, with g = 1, 2, provided in Theorem 3, we can rewrite

the last equation as:
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or, equivalently:
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In order to compute the asymptotic variance of the RHS of equation (C.31) we need to compute,

for g = 1, 2, covariance terms like:
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where the first equality follows from the definitions xgigt = λ′gjgigfgjgt+eg,igt, and the third equality

follows from the independence of the factors from the innovations - that is Assumption A.12 - and

the assumption that the factors have zero expected value, see Assumption A.1. Therefore we have
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and, using again the independence across groups of the innovations - that is Assumption A.9, we

have:

Cov

(
λ0′

2j2i2

[
1

T

T∑
t=1

I1j1t
(
θ0

1

)
I2j2t

(
θ0

2

)
f0

2j2tf
0′
1j1t

][
F1j1

(
θ0

1

)
F1j1

(
θ0

1

)′
T

]−1
1√
T

T∑
t=1

I1j1t
(
θ0

1

)
f0

1j1te1i1t ,

c0
j1j2i1i2

2(σ0
x2j1j2i2

)2

1√
T

T∑
t=1

I1j1t
(
θ0

1

)
I2j2t

(
θ0

2

)
x2

2i2t

)
= 0.

Using analogous arguments for al the covariances between the elements in the RHS of equation

(C.31), the result of the theorem follows.

�

C.5 Proof of Theorem 4
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which completes the proof of the theorem.

�

C.6 Proof of Theorem 5

Consider
√
T
[(
R̂j1j2w1w2 −R0

j1j2w1w2

)
−
(
R̂j∗1 j∗2w1w2 −R0

j∗1 j
∗
2w1w2

)]
. Under Hc0,

√
T
[(
R̂j1j2w1w2 −R0

j1j2w1w2

)
−
(
R̂j∗1 j∗2w1w2 −R0

j∗1 j
∗
2w1w2

)]
=
√
T
(
R̂j1j2w1w2 − R̂j∗1 j∗2w1w2

)
,

and the asymptotic distribution under the null hypothesis follows from equation (C.31), Theorem 3

and Assumptions A.9 - A.12, and the computation of the covariance terms between
√
T
(
R̂j1j2w1w2 −R0

j1j2w1w2

)
and
√
T
(
R̂j∗1 j∗2w1w2 −R0

j∗1 j
∗
2w1w2

)
. Under Hc1, notice that

lim
T,N1,N2→∞

Pr
(√

T
∣∣∣R̂j1j2w1w2 − R̂j∗1 j∗2w1w2

∣∣∣→∞) = 1,

which completes the proof of the theorem.
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D Monte Carlo: Tables
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Table D.1 – Finite sample distribution of the recentered and standardized statistic ĉi1i2t in Theorem 1 with π0 = 0.75
aF = 0 Design 1 Design 2 Design 3 Design 4

N1 = N2 T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.

30 100 -0.017 0.001 1.329 1.477 -0.035 -0.018 1.167 1.456 -0.063 -0.020 1.213 1.537 -0.035 -0.027 1.232 1.582
30 200 -0.055 -0.022 1.155 1.418 0.007 -0.002 1.377 1.456 -0.069 -0.015 1.167 1.478 -0.061 -0.043 1.169 1.471
30 500 -0.024 -0.019 1.205 1.442 0.010 0.025 1.090 1.406 -0.020 -0.026 1.102 1.393 -0.054 -0.039 1.135 1.508

50 100 -0.032 -0.022 1.181 1.488 -0.025 -0.008 1.175 1.466 -0.051 -0.022 1.218 1.480 -0.044 -0.027 1.173 1.485
50 200 -0.016 -0.042 1.103 1.431 -0.012 0.012 1.104 1.414 -0.059 -0.039 1.119 1.425 -0.037 -0.040 1.718 1.442
50 500 -0.010 0.006 1.068 1.407 0.004 -0.010 1.081 1.436 -0.049 -0.015 1.075 1.412 -0.020 -0.003 1.064 1.414

100 100 -0.025 -0.019 1.126 1.445 -0.031 -0.009 1.197 1.444 -0.040 -0.012 1.266 1.497 -0.049 -0.032 1.160 1.491
100 200 -0.027 -0.027 1.025 1.380 0.000 0.016 1.065 1.413 -0.007 -0.037 2.907 1.390 -0.032 -0.008 1.090 1.371
100 500 -0.011 0.018 1.037 1.377 -0.029 -0.033 1.025 1.387 -0.022 -0.020 1.085 1.365 -0.004 0.003 1.043 1.371

300 100 -0.045 -0.024 1.128 1.424 0.020 0.018 1.147 1.443 -0.003 0.022 1.277 1.428 -0.016 -0.019 1.200 1.422
300 200 -0.014 0.006 1.064 1.382 -0.008 -0.017 1.040 1.369 -0.016 0.001 1.103 1.385 -0.048 -0.021 1.104 1.449
300 500 -0.015 -0.005 1.038 1.374 -0.023 -0.016 1.011 1.366 -0.016 -0.005 1.036 1.390 0.001 0.002 1.017 1.326

500 100 0.005 0.001 1.159 1.473 -0.018 -0.017 1.139 1.456 -0.066 -0.021 1.174 1.449 -0.033 -0.009 1.153 1.479
500 500 0.003 0.001 1.022 1.364 -0.015 -0.013 1.024 1.333 -0.002 0.018 1.016 1.363 -0.032 -0.040 1.022 1.345
500 1000 -0.006 0.010 1.024 1.352 -0.007 -0.033 1.010 1.338 -0.025 -0.020 1.237 1.342 -0.019 0.003 1.070 1.343

aF = 0.5 Design 5 Design 6 Design 7 Design 8

N1 = N2 T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.

30 100 -0.075 -0.053 1.230 1.474 -0.012 0.020 1.165 1.457 -0.051 -0.014 1.186 1.565 -0.062 -0.026 1.248 1.561
30 200 -0.052 -0.039 1.137 1.460 -0.038 -0.036 1.138 1.433 -0.032 -0.018 1.203 1.506 -0.071 -0.069 1.127 1.491
30 500 -0.027 -0.022 1.124 1.436 -0.020 -0.018 1.134 1.487 -0.076 -0.056 1.135 1.489 -0.056 -0.045 1.147 1.465

50 100 0.010 0.027 1.172 1.457 -0.068 -0.047 1.383 1.466 -0.026 -0.039 2.266 1.484 -0.041 -0.013 1.385 1.494
50 200 -0.010 0.005 1.104 1.420 -0.041 -0.029 1.095 1.432 -0.026 -0.003 1.091 1.445 -0.049 -0.039 1.196 1.487
50 500 -0.011 -0.002 1.062 1.412 -0.006 0.015 1.084 1.437 -0.017 -0.009 1.083 1.425 -0.006 0.025 1.069 1.395

100 100 -0.043 -0.036 1.141 1.454 -0.057 -0.054 1.315 1.470 -0.066 -0.032 1.248 1.485 -0.031 -0.021 1.176 1.489
100 200 -0.020 -0.005 1.089 1.404 -0.018 -0.030 1.091 1.399 0.008 0.018 1.071 1.407 -0.035 -0.025 1.094 1.424
100 500 0.001 0.008 1.041 1.358 -0.023 -0.009 1.045 1.416 -0.022 -0.005 1.047 1.402 -0.027 -0.013 1.067 1.410

300 100 -0.028 0.004 1.128 1.480 -0.044 -0.029 1.146 1.434 -0.023 0.028 1.279 1.538 -0.036 -0.006 1.202 1.479
300 200 -0.039 -0.024 1.077 1.420 0.022 0.028 1.069 1.401 -0.020 -0.013 1.110 1.422 -0.032 -0.023 1.083 1.385
300 500 0.008 0.002 1.022 1.383 -0.003 -0.012 1.020 1.371 0.010 0.026 1.029 1.347 -0.036 -0.017 1.036 1.369

500 100 -0.008 -0.011 1.158 1.488 -0.029 -0.006 1.183 1.484 -0.030 -0.007 1.204 1.476 -0.066 -0.045 1.209 1.446
500 500 -0.010 0.008 1.033 1.361 0.015 0.032 1.034 1.364 -0.045 -0.046 1.050 1.402 -0.016 -0.028 1.055 1.392
500 1000 0.012 0.001 1.019 1.366 -0.019 -0.007 1.009 1.375 -0.026 -0.016 1.024 1.380 -0.010 -0.003 1.001 1.349

This table reports the mean (m.), the median (med.), standard deviation (std.) and interquartile range (iqr.) of the empirical distribution of the recentered
and standardized statistic ĉi1i2t in Theorem 1 defined as: CNT

(
ĉi1i2t − c

0
i1i2t

)
/
√
Q̂i1i2t . The standardized statistic is computed for different sample sizes

(N1, N2, T ) and different values of the DGP parameters (Designs 1 - 8). The asymptotic distribution of the statistic is N(0, 1) under the Assumptions of
Theorem 1 and has interquartile ≈ 1.349. The empirical distributions are obtained by recomputing the statistics with 4000 Monte Carlo simulations.
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Table D.2 – Finite sample distribution of the recentered and standardized statistic ĉj1j2w1w2 in Theorem 2 with π0 = 0.75
aF = 0 Design 1 Design 2 Design 3 Design 4

N1 = N2 T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.

30 100 -0.121 -0.054 1.025 1.348 -0.147 -0.093 1.011 1.359 -0.214 -0.095 1.090 1.460 -0.194 -0.102 1.080 1.372
30 200 -0.080 -0.039 1.023 1.376 -0.100 -0.044 1.037 1.396 -0.138 -0.075 1.055 1.450 -0.140 -0.073 1.040 1.343
30 500 -0.073 -0.041 1.041 1.440 -0.051 -0.021 0.994 1.361 -0.109 -0.096 1.008 1.368 -0.104 -0.066 1.006 1.352

50 100 -0.154 -0.074 1.036 1.414 -0.134 -0.068 1.044 1.345 -0.195 -0.104 1.066 1.404 -0.197 -0.100 1.095 1.445
50 200 -0.107 -0.038 1.026 1.352 -0.087 -0.026 1.040 1.398 -0.131 -0.044 1.046 1.397 -0.131 -0.070 1.040 1.394
50 500 -0.078 -0.074 1.009 1.333 -0.034 -0.025 0.993 1.356 -0.095 -0.056 0.996 1.344 -0.092 -0.049 1.036 1.362

100 100 -0.152 -0.076 1.033 1.416 -0.153 -0.077 1.052 1.454 -0.205 -0.134 1.043 1.371 -0.209 -0.120 1.090 1.438
100 200 -0.085 -0.042 1.004 1.354 -0.085 -0.042 1.008 1.365 -0.159 -0.106 1.042 1.386 -0.142 -0.068 1.058 1.343
100 500 -0.069 -0.058 1.015 1.356 -0.046 -0.029 1.008 1.379 -0.069 -0.020 1.010 1.369 -0.092 -0.046 1.014 1.379

300 100 -0.126 -0.054 1.033 1.364 -0.106 -0.033 1.051 1.401 -0.198 -0.090 1.072 1.411 -0.193 -0.106 1.076 1.417
300 200 -0.107 -0.062 1.015 1.379 -0.142 -0.083 1.025 1.393 -0.148 -0.096 1.012 1.314 -0.155 -0.097 1.021 1.305
300 500 -0.034 -0.016 0.995 1.335 -0.070 -0.036 1.020 1.396 -0.094 -0.049 1.019 1.364 -0.081 -0.037 1.022 1.371

500 100 -0.137 -0.083 1.043 1.409 -0.109 -0.050 1.014 1.343 -0.196 -0.097 1.066 1.398 -0.179 -0.093 1.078 1.441
500 500 -0.071 -0.036 1.017 1.375 -0.100 -0.064 1.011 1.352 -0.086 -0.024 1.012 1.381 -0.065 -0.019 1.023 1.393
500 1000 -0.041 -0.007 0.991 1.339 -0.079 -0.076 1.009 1.336 -0.100 -0.081 1.035 1.386 -0.050 -0.013 1.024 1.381

aF = 0.5 Design 5 Design 6 Design 7 Design 8

N1 = N2 T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.

30 100 -0.209 -0.108 1.164 1.601 -0.229 -0.130 1.168 1.574 -0.309 -0.171 1.209 1.548 -0.313 -0.175 1.214 1.578
30 200 -0.164 -0.118 1.114 1.547 -0.147 -0.080 1.088 1.476 -0.229 -0.119 1.185 1.525 -0.248 -0.160 1.148 1.498
30 500 -0.073 -0.031 1.079 1.479 -0.077 -0.033 1.087 1.414 -0.150 -0.094 1.090 1.471 -0.126 -0.065 1.112 1.506

50 100 -0.192 -0.096 1.136 1.561 -0.214 -0.141 1.115 1.506 -0.319 -0.204 1.217 1.588 -0.303 -0.179 1.213 1.567
50 200 -0.126 -0.071 1.096 1.455 -0.143 -0.060 1.112 1.472 -0.193 -0.089 1.141 1.461 -0.231 -0.140 1.145 1.524
50 500 -0.101 -0.070 1.082 1.475 -0.093 -0.049 1.074 1.424 -0.128 -0.060 1.118 1.491 -0.174 -0.092 1.096 1.460

100 100 -0.202 -0.120 1.150 1.584 -0.230 -0.155 1.139 1.559 -0.323 -0.197 1.211 1.558 -0.300 -0.165 1.210 1.595
100 200 -0.152 -0.081 1.117 1.456 -0.170 -0.108 1.101 1.493 -0.204 -0.116 1.120 1.532 -0.243 -0.145 1.131 1.485
100 500 -0.082 -0.034 1.082 1.468 -0.113 -0.060 1.054 1.438 -0.099 -0.048 1.082 1.486 -0.151 -0.092 1.084 1.424

300 100 -0.216 -0.126 1.120 1.521 -0.207 -0.123 1.145 1.562 -0.266 -0.169 1.173 1.499 -0.313 -0.178 1.220 1.604
300 200 -0.151 -0.082 1.082 1.475 -0.153 -0.080 1.113 1.472 -0.238 -0.133 1.157 1.476 -0.200 -0.080 1.127 1.488
300 500 -0.102 -0.052 1.081 1.451 -0.099 -0.038 1.089 1.467 -0.162 -0.102 1.103 1.497 -0.162 -0.101 1.102 1.459

500 100 -0.221 -0.132 1.138 1.532 -0.238 -0.164 1.153 1.512 -0.317 -0.177 1.214 1.595 -0.283 -0.141 1.202 1.555
500 500 -0.091 -0.083 1.070 1.436 -0.091 -0.050 1.076 1.448 -0.143 -0.091 1.105 1.483 -0.141 -0.066 1.071 1.464
500 1000 -0.062 -0.020 1.084 1.476 -0.090 -0.077 1.070 1.446 -0.087 -0.062 1.055 1.380 -0.078 -0.018 1.078 1.453

This table reports the mean (m.), the median (med.), standard deviation (std.) and interquartile range (iqr.) of the empirical distribution of the recentered

and standardized statistic ĉj1j2w1w2 in Theorem 2 defined as:
√
T
(
ĉj1j2w1w2 − c

0
j1j2w1w2

)
/

√
Q̂j1j2(w1,w2), with w1 = [1, 0, 0, ..., 0] and w2 = [1, 0, 0, ..., 0].

The standardized statistic is computed for different sample sizes (N1, N2, T ) and different values of the DGP parameters (Designs 1 - 8). The asymptotic
distribution of the statistic is N(0, 1) under the Assumptions of Theorem 2 and has interquartile ≈ 1.349. The empirical distributions are obtained by
recomputing the statistics with 4000 Monte Carlo simulations.
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Table D.3 – Empirical size and power of the test of change in comovement based on T̂ Rj1j2j∗1 j∗2w1w2
in Theorem 5 with π0 = 0.75 and π0 = 0.50

π0 = 0.75 Design 1 Design 2 Design 3 Design 4

size power size power size power size power

N1 = N2 T 1% 5% 10% 5% 1% 5% 10% 5% 1% 5% 10% 5% 1% 5% 10% 5%

30 100 0.030 0.090 0.154 0.699 0.045 0.113 0.168 0.700 0.049 0.119 0.179 0.668 0.049 0.120 0.188 0.668
30 200 0.018 0.062 0.121 0.929 0.019 0.068 0.128 0.934 0.028 0.084 0.151 0.823 0.029 0.090 0.151 0.873
30 500 0.012 0.059 0.112 0.999 0.013 0.051 0.107 1.000 0.019 0.066 0.128 0.991 0.021 0.067 0.127 0.995

50 100 0.031 0.097 0.157 0.680 0.038 0.110 0.175 0.712 0.044 0.113 0.188 0.674 0.052 0.126 0.185 0.709

50 200 0.019 0.071 0.125 0.893 0.023 0.071 0.130 0.927 0.028 0.086 0.142 0.827 0.028 0.090 0.157 0.893
50 500 0.017 0.070 0.124 0.997 0.017 0.063 0.115 0.999 0.021 0.075 0.127 0.999 0.020 0.076 0.137 0.998

100 100 0.031 0.093 0.154 0.688 0.035 0.094 0.150 0.720 0.044 0.121 0.185 0.675 0.050 0.120 0.192 0.698
100 200 0.026 0.072 0.128 0.889 0.018 0.067 0.118 0.916 0.028 0.095 0.162 0.864 0.032 0.087 0.144 0.891
100 500 0.014 0.061 0.113 1.000 0.014 0.058 0.113 0.999 0.019 0.067 0.129 0.998 0.021 0.072 0.127 0.999

300 100 0.032 0.101 0.161 0.691 0.042 0.104 0.163 0.727 0.046 0.129 0.194 0.637 0.052 0.124 0.191 0.704
300 200 0.015 0.069 0.128 0.879 0.020 0.072 0.119 0.919 0.031 0.096 0.153 0.869 0.028 0.090 0.152 0.888
300 500 0.013 0.061 0.116 0.998 0.015 0.062 0.116 1.000 0.018 0.072 0.124 0.996 0.016 0.064 0.120 1.000

500 100 0.033 0.089 0.144 0.677 0.038 0.100 0.157 0.717 0.052 0.121 0.191 0.659 0.050 0.127 0.192 0.687

500 500 0.013 0.058 0.111 0.999 0.013 0.058 0.107 0.999 0.017 0.064 0.117 0.997 0.019 0.071 0.124 0.999
500 1000 0.013 0.051 0.105 1.000 0.012 0.052 0.105 1.000 0.012 0.059 0.117 1.000 0.013 0.062 0.122 1.000

π0 = 0.50 Design 1 Design 2 Design 3 Design 4

size power size power size power size power

N1 = N2 T 1% 5% 10% 5% 1% 5% 10% 5% 1% 5% 10% 5% 1% 5% 10% 5%

30 100 0.018 0.068 0.124 0.804 0.026 0.070 0.128 0.879 0.037 0.103 0.170 0.746 0.034 0.104 0.170 0.817
30 200 0.013 0.059 0.108 0.976 0.017 0.066 0.124 0.986 0.026 0.086 0.144 0.920 0.024 0.084 0.142 0.965
30 500 0.014 0.061 0.113 1.000 0.011 0.052 0.108 1.000 0.021 0.077 0.126 1.000 0.021 0.074 0.133 1.000

50 100 0.017 0.071 0.131 0.805 0.021 0.077 0.133 0.843 0.036 0.101 0.168 0.775 0.036 0.103 0.165 0.821

50 200 0.015 0.056 0.107 0.914 0.014 0.057 0.116 0.992 0.021 0.079 0.141 0.916 0.025 0.086 0.144 0.965

50 500 0.012 0.054 0.100 1.000 0.011 0.055 0.104 1.000 0.015 0.073 0.132 0.999 0.016 0.070 0.128 1.000

100 100 0.021 0.071 0.122 0.812 0.024 0.071 0.135 0.899 0.040 0.104 0.169 0.710 0.032 0.105 0.166 0.852
100 200 0.011 0.061 0.112 0.975 0.015 0.057 0.115 0.989 0.024 0.084 0.148 0.946 0.026 0.082 0.142 0.984
100 500 0.014 0.055 0.105 1.000 0.010 0.051 0.101 1.000 0.018 0.067 0.127 1.000 0.020 0.072 0.122 1.000

300 100 0.021 0.065 0.121 0.798 0.019 0.073 0.126 0.861 0.033 0.094 0.161 0.741 0.038 0.106 0.172 0.822

300 200 0.014 0.059 0.111 0.970 0.016 0.060 0.114 0.987 0.027 0.085 0.148 0.930 0.027 0.084 0.145 0.964

300 500 0.011 0.049 0.105 1.000 0.012 0.055 0.107 1.000 0.017 0.075 0.130 0.999 0.016 0.067 0.124 1.000

500 100 0.019 0.074 0.130 0.770 0.020 0.070 0.120 0.865 0.035 0.100 0.157 0.727 0.041 0.105 0.162 0.826
500 500 0.013 0.057 0.105 1.000 0.013 0.058 0.105 1.000 0.021 0.069 0.126 1.000 0.018 0.068 0.129 1.000
500 1000 0.011 0.049 0.099 1.000 0.008 0.053 0.113 1.000 0.017 0.068 0.122 1.000 0.015 0.064 0.118 1.000

This table reports the empirical size and power of the two-tailed test of a change in comovement across regimes based on the test statistic T̂ R
j1j2j

∗
1 j
∗
2w1w2

in Theorem

5, with w1 = [1/N1, ..., 1/N1] and w2 = [1/N2, ..., 1/N2]. The statistic is computed for different sample sizes (N1, N2, T ) and different values of the DGP parameters

under the null hypothesis of no change in comovement (Designs 1 H0 - 4 H0) and under the alternative of change in comovement (Designs 1 H1 - 4 H1). The empirical
size is assessed at the α levels of 1%, 5% and 10% using Designs 1 H0 - 4 H0, while the empirical power is assessed at the α level of 5% using Designs 1 H1 - 4 H1. The

empirical distributions are obtained by recomputing the statistics with 4000 MC simulations.

69



Supplementary Material

“not intended for publication” of

“Systematic Comovement

in Threshold Group-Factor Models”.

D. Massacci1 M. Rubin2 D. Ruzzi3

Date: July 2, 2021

1King’s Business School, London, United Kingdom (daniele.massacci@kcl.ac.uk)
2EDHEC Business School, Nice, France (mirco.rubin@edhec.edu)
3Bank of Italy, Rome, Italy (dario.ruzzi@bancaditalia.it)

1



E Monte Carlo: Additional Results

This section provides additional MC results.

Table E.1 – Parameters of Monte Carlo simulation designs for Theorems 1 and 2

Design / Param. KC
L = KC

H Ks
L = Ks

H δcig = δsig c∗gj β aF az π0

Design 9 0 3 0.25 1.0 0 0 0 0.75

Design 10 0 3 1.00 1.0 0 0 0 0.75

Design 11 0 3 0.25 0.5 0.2 0 0 0.75

Design 12 0 3 1.00 0.5 0.2 0 0 0.75

Design 13 0 3 0.25 0.5 0 0 0 0.50

Design 14 0 3 1.00 0.5 0 0 0 0.50

Design 15 0 3 0.25 0.5 0 0 0.50 0.75

Design 16 0 3 1.00 0.5 0 0 0.50 0.75

Design 17 0 1 0.25 0.5 0 0 0 0.75

Design 18 0 1 1.00 0.5 0 0 0 0.75

Design 19 1 0 0.25 0.5 0 0 0 0.75

Design 20 1 0 1.00 0.5 0 0 0 0.75

Table E.1 provides values of the parameters in the DGP described in Section 5 for each of the MC simulation

designs considered in the Online Appendix and used to assess the properties of the statistics in Theorems 1 and

2. In all simulation designs we also set σcgj = σsgj = 1 and α = 1. In Designs 9 - 16, ΦsL = diag(0.4, 0.2, 0.1)

and ΦsH = diag(0.8, 0.4, 0.2). In Designs 17 - 18, ΦsL and ΦsH reduce to two scalar parameters that we assume

to be ΦsL = 0.4, ΦsH = 0.8. In Designs 19 - 20, ΦsL and ΦsH are empty matrices.
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Table E.2 – Finite sample distribution of the recentered and standardized statistic R̂j1j2w1w2
in Theorem 3 with π0 = 0.75

aF = 0 Design 1 Design 2 Design 3 Design 4

N1 = N2 T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.

30 100 0.008 0.010 1.057 1.413 -0.011 -0.013 1.062 1.407 -0.019 -0.014 1.080 1.394 -0.039 -0.023 1.068 1.449
30 200 0.003 -0.017 1.032 1.358 -0.024 -0.041 1.043 1.407 -0.012 0.006 1.027 1.384 -0.026 -0.004 1.035 1.355
30 500 0.005 -0.001 1.015 1.346 0.008 -0.001 1.025 1.370 -0.031 -0.042 0.997 1.356 -0.015 -0.007 1.029 1.393

50 100 0.013 0.014 1.064 1.381 -0.034 -0.016 1.062 1.396 -0.052 -0.037 1.090 1.418 -0.018 0.037 1.067 1.350
50 200 -0.011 -0.002 1.053 1.388 0.002 -0.018 1.025 1.375 -0.000 0.006 1.035 1.381 -0.003 -0.003 1.036 1.442
50 500 0.027 0.027 1.015 1.343 -0.003 0.023 1.005 1.368 -0.015 -0.026 1.017 1.348 -0.017 -0.026 1.023 1.333

100 100 -0.027 -0.020 1.081 1.430 -0.009 0.021 1.071 1.423 -0.043 -0.034 1.076 1.447 -0.069 -0.049 1.067 1.362
100 200 -0.005 0.016 1.026 1.346 0.007 0.023 1.056 1.407 -0.019 -0.008 1.035 1.378 -0.022 -0.006 1.023 1.351
100 500 -0.013 -0.021 1.038 1.433 0.008 -0.011 1.020 1.379 -0.010 -0.017 1.025 1.383 -0.033 -0.020 1.026 1.356

300 100 -0.001 0.009 1.063 1.427 0.006 0.025 1.043 1.388 -0.011 -0.002 1.064 1.405 -0.008 0.000 1.074 1.359
300 200 0.019 0.022 1.033 1.369 -0.031 -0.036 1.036 1.441 -0.035 -0.044 1.030 1.351 -0.031 -0.015 1.039 1.368
300 500 0.027 0.013 1.025 1.387 -0.004 -0.020 1.024 1.372 -0.004 0.014 1.001 1.345 -0.007 0.004 1.016 1.374

500 100 -0.018 -0.000 1.071 1.397 0.019 0.012 1.053 1.428 -0.049 -0.031 1.082 1.406 -0.029 0.007 1.098 1.456
500 500 -0.016 -0.020 1.024 1.355 -0.029 -0.015 1.021 1.378 -0.010 -0.010 1.009 1.400 -0.021 -0.025 1.015 1.332
500 1000 0.015 -0.006 1.020 1.336 -0.008 -0.014 1.017 1.375 -0.014 0.009 1.020 1.362 0.002 0.014 1.016 1.378

aF = 0.5 Design 5 Design 6 Design 7 Design 8

N1 = N2 T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.

30 100 -0.048 -0.044 1.199 1.566 -0.004 0.005 1.199 1.550 -0.078 -0.061 1.201 1.564 -0.079 -0.039 1.206 1.572
30 200 -0.002 0.004 1.133 1.518 -0.049 -0.043 1.120 1.467 -0.046 -0.014 1.116 1.515 -0.032 -0.017 1.129 1.512
30 500 -0.026 -0.012 1.089 1.425 0.006 0.022 1.102 1.477 -0.045 -0.035 1.107 1.508 -0.025 -0.011 1.088 1.461

50 100 -0.014 -0.038 1.203 1.580 -0.024 -0.042 1.198 1.587 -0.107 -0.094 1.194 1.526 -0.106 -0.078 1.203 1.577
50 200 -0.048 -0.027 1.148 1.529 -0.017 -0.008 1.140 1.507 -0.060 -0.033 1.145 1.522 -0.048 -0.048 1.139 1.526
50 500 0.011 0.022 1.074 1.451 -0.035 -0.010 1.104 1.529 -0.055 -0.038 1.102 1.502 -0.023 -0.023 1.091 1.455

100 100 0.004 -0.014 1.210 1.628 -0.007 -0.024 1.210 1.566 -0.058 -0.044 1.194 1.588 -0.084 -0.051 1.209 1.535
100 200 -0.011 0.001 1.151 1.525 -0.016 -0.016 1.144 1.504 -0.072 -0.081 1.142 1.516 -0.036 0.009 1.126 1.515
100 500 -0.036 -0.027 1.079 1.455 0.033 0.025 1.068 1.477 -0.013 -0.012 1.096 1.473 -0.005 0.028 1.067 1.438

300 100 -0.051 -0.040 1.233 1.634 -0.010 -0.013 1.229 1.612 -0.093 -0.065 1.201 1.523 -0.071 -0.035 1.234 1.607
300 200 -0.043 -0.039 1.148 1.558 -0.003 -0.002 1.138 1.500 -0.033 0.006 1.159 1.538 -0.047 -0.023 1.134 1.500
300 500 -0.002 -0.022 1.083 1.440 -0.021 -0.023 1.081 1.444 -0.047 -0.024 1.093 1.465 -0.035 -0.028 1.077 1.468

500 100 0.022 0.036 1.211 1.594 -0.043 -0.018 1.216 1.589 -0.080 -0.041 1.213 1.532 -0.076 -0.035 1.216 1.569
500 500 -0.032 -0.010 1.067 1.415 -0.021 -0.007 1.091 1.483 -0.019 -0.006 1.092 1.470 -0.057 -0.067 1.091 1.474
500 1000 0.003 0.029 1.061 1.414 -0.016 -0.018 1.069 1.449 -0.044 -0.041 1.067 1.430 -0.038 -0.033 1.041 1.367

This table reports the mean (m.), the median (med.), standard deviation (std.) and interquartile range (iqr.) of the empirical distribution of the recentered

and standardized statistic R̂j1j2w1w2 in Theorem 3 defined as:
√
T
(
R̂j1j2w1w2 −R

0
j1j2w1w2

)
/

√
Q̂R,j1j2(ŵσ,1j1j2 , ŵσ,2j1j2), with w1 = [1/N1, ..., 1/N1] and

w2 = [1/N2, ..., 1/N2]. The standardized statistic is computed for different sample sizes (N1, N2, T ) and different values of the DGP parameters (Designs 1
- 8). The asymptotic distribution of the statistic is N(0, 1) under the Assumptions of Theorem 3 and has interquartile ≈ 1.349. The empirical distributions
are obtained by recomputing the statistics with 4000 Monte Carlo simulations.
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Table E.3 – Finite sample distribution of the test statistic T̂ cj1j2j∗1 j∗2w1w2
in Theorem 4 with π0 = 0.75

Design 1 H0 Design 2 H0 Design 3 H0 Design 4 H0

N1 = N2 T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.

30 100 -0.037 -0.036 1.024 1.448 -0.006 -0.004 1.014 1.426 0.007 -0.002 1.075 1.523 -0.021 -0.017 1.083 1.546
30 200 -0.005 -0.013 0.987 1.345 0.013 0.014 1.005 1.378 0.003 0.029 1.050 1.476 -0.011 -0.003 1.063 1.492
30 500 -0.030 -0.024 0.979 1.276 -0.015 -0.013 0.996 1.335 -0.014 0.005 1.046 1.450 0.004 0.017 1.031 1.404

50 100 -0.011 -0.020 1.006 1.421 -0.036 -0.053 1.027 1.443 -0.019 -0.016 1.089 1.510 -0.017 0.004 1.079 1.508
50 200 -0.007 0.010 1.010 1.363 -0.004 -0.016 0.999 1.387 -0.031 -0.039 1.054 1.455 -0.000 -0.005 1.046 1.459
50 500 0.008 0.005 1.013 1.391 -0.001 -0.016 1.018 1.417 -0.026 -0.025 1.041 1.395 0.011 0.018 1.030 1.391

100 100 0.041 0.039 1.003 1.383 -0.008 0.014 1.014 1.434 0.024 0.016 1.061 1.510 0.006 0.003 1.070 1.519
100 200 0.004 -0.003 1.003 1.365 0.022 0.035 1.013 1.368 0.010 -0.007 1.029 1.391 0.014 0.003 1.051 1.446
100 500 0.024 0.034 0.997 1.319 0.032 0.065 0.997 1.323 -0.034 -0.029 1.057 1.475 0.016 0.042 1.032 1.426

300 100 0.015 0.005 0.999 1.435 -0.003 0.003 1.007 1.409 0.000 0.000 1.053 1.404 -0.003 -0.004 1.083 1.537
300 200 -0.010 -0.005 1.000 1.418 0.004 0.020 1.005 1.397 0.006 -0.007 1.056 1.446 -0.006 -0.004 1.058 1.455
300 500 -0.000 0.026 0.983 1.335 0.015 0.024 0.988 1.330 0.007 0.025 1.039 1.372 -0.006 -0.021 1.031 1.397

500 100 -0.020 -0.028 1.021 1.439 -0.009 -0.008 1.007 1.418 -0.014 -0.021 1.081 1.515 0.022 0.009 1.068 1.524
500 500 0.014 0.013 1.013 1.386 0.016 -0.006 0.997 1.355 -0.016 -0.026 1.045 1.433 0.001 0.000 1.014 1.359
500 1000 0.011 0.022 0.989 1.326 0.006 0.011 0.998 1.357 -0.016 -0.049 1.015 1.403 0.018 0.014 1.011 1.400

This table reports the mean (m.), the median (med.), standard deviation (std.) and interquartile range (iqr.) of the empirical distribution of the test statistic

T̂ cj1j2j∗1 j∗2w1w2
in Theorem 4, with w1 = [1, 0, 0, ..., 0] and w2 = [1, 0, 0, ..., 0]. The statistic is computed for different sample sizes (N1, N2, T ) and different

values of the DGP parameters under the null hypothesis of no change in comovement across regimes (Designs 1 H0 - 4 H0). The asymptotic distribution
of the statistic is N(0, 1) under the Assumptions of Theorem 4 and has interquartile ≈ 1.349. The empirical distributions are obtained by recomputing the
statistics with 4000 MC simulations.
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Table E.4 – Empirical size and power of the test of change in comovement based on T̂ cj1j2j∗1 j∗2w1w2
in Theorem 4 with π0 = 0.75

Design 1 H0 , H1 Design 2 H0 , H1 Design 3 H0 , H1 Design 4 H0 , H1

size power size power size power size power

N1 = N2 T 1% 5% 10% 5% 1% 5% 10% 5% 1% 5% 10% 5% 1% 5% 10% 5%

30 100 0.009 0.050 0.105 0.428 0.008 0.051 0.104 0.504 0.014 0.066 0.122 0.424 0.012 0.067 0.128 0.516
30 200 0.006 0.050 0.098 0.799 0.008 0.047 0.103 0.868 0.011 0.059 0.114 0.761 0.016 0.059 0.113 0.835
30 500 0.009 0.043 0.096 0.995 0.009 0.050 0.100 0.999 0.015 0.059 0.114 0.993 0.012 0.058 0.111 0.998

50 100 0.007 0.050 0.098 0.456 0.008 0.051 0.108 0.522 0.016 0.067 0.130 0.421 0.011 0.066 0.127 0.518
50 200 0.009 0.053 0.104 0.805 0.008 0.050 0.097 0.869 0.012 0.060 0.117 0.764 0.010 0.061 0.115 0.825
50 500 0.009 0.051 0.107 0.998 0.010 0.051 0.107 1.000 0.015 0.061 0.115 0.993 0.010 0.057 0.112 0.997

100 100 0.007 0.045 0.102 0.438 0.005 0.050 0.105 0.528 0.012 0.060 0.123 0.429 0.010 0.065 0.122 0.515
100 200 0.009 0.051 0.103 0.797 0.007 0.047 0.108 0.870 0.012 0.054 0.112 0.764 0.010 0.061 0.122 0.840
100 500 0.008 0.051 0.100 0.997 0.009 0.049 0.099 0.999 0.014 0.064 0.120 0.995 0.011 0.057 0.110 0.998

300 100 0.005 0.042 0.095 0.444 0.009 0.046 0.102 0.535 0.011 0.061 0.121 0.426 0.011 0.067 0.134 0.499
300 200 0.005 0.043 0.098 0.818 0.008 0.046 0.095 0.873 0.012 0.065 0.122 0.760 0.015 0.059 0.118 0.846
300 500 0.008 0.042 0.094 0.998 0.007 0.050 0.097 1.000 0.014 0.061 0.114 0.993 0.010 0.053 0.112 0.999

500 100 0.008 0.047 0.103 0.439 0.007 0.045 0.101 0.525 0.013 0.066 0.127 0.431 0.010 0.060 0.120 0.512
500 500 0.010 0.053 0.102 0.996 0.009 0.050 0.102 0.998 0.011 0.053 0.121 0.994 0.011 0.051 0.105 0.999
500 1000 0.009 0.049 0.098 1.000 0.007 0.051 0.100 1.000 0.010 0.050 0.105 1.000 0.007 0.052 0.107 1.000

This table reports the empirical size and power of the two-tailed test of a change in comovement across regimes based on the test statistic T̂ cj1j2j∗1 j∗2w1w2
in

Theorem 4, with w1 = [1, 0, 0, ..., 0] and w2 = [1, 0, 0, ..., 0]. The statistic is computed for different sample sizes (N1, N2, T ) and different values of the DGP
parameters under the null hypothesis of no change in comovement (Designs 1 H0 - 4 H0) and under the alternative of change in comovement (Designs 1 H1

- 4 H1). The empirical size is assessed at the α levels of 1%, 5% and 10% using Designs 1 H0 - 4 H0, while the empirical power is assessed at the α level of
5% using Designs 1 H1 - 4 H1. The empirical distributions are obtained by recomputing the statistics with 4000 MC simulations.
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Table E.5 – Finite sample distribution of the test statistic T̂ cj1j2j∗1 j∗2w1w2
in Theorem 4 with π0 = 0.75

Design 1 H0 Design 2 H0 Design 3 H0 Design 4 H0

N1 = N2 T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.

30 100 -0.018 -0.029 1.063 1.446 -0.004 0.010 1.085 1.522 -0.004 -0.008 1.127 1.572 -0.007 -0.013 1.139 1.573
30 200 0.005 -0.017 1.016 1.402 0.008 0.012 1.041 1.405 0.029 0.036 1.097 1.495 0.007 0.007 1.084 1.483
30 500 -0.025 -0.023 1.020 1.387 0.007 0.003 1.030 1.388 -0.011 -0.008 1.046 1.442 -0.003 -0.013 1.042 1.360

50 100 0.006 -0.012 1.061 1.441 0.015 0.030 1.059 1.465 0.010 0.047 1.145 1.549 0.016 -0.014 1.126 1.556
50 200 0.002 -0.010 1.028 1.363 0.010 0.018 1.027 1.416 -0.018 -0.019 1.085 1.459 0.008 -0.015 1.086 1.476
50 500 0.005 -0.002 1.010 1.371 -0.034 -0.044 1.006 1.382 0.004 -0.003 1.065 1.443 0.001 -0.002 1.040 1.391

100 100 0.003 0.004 1.058 1.447 -0.005 -0.004 1.100 1.484 0.001 0.014 1.158 1.600 -0.032 -0.029 1.129 1.572
100 200 -0.006 0.011 1.037 1.443 -0.010 0.004 1.030 1.426 -0.004 -0.004 1.106 1.515 -0.025 -0.038 1.097 1.512
100 500 -0.017 -0.014 1.014 1.361 0.019 0.038 1.013 1.354 -0.009 -0.016 1.052 1.405 -0.004 -0.040 1.030 1.398

300 100 -0.005 -0.021 1.051 1.445 0.017 0.003 1.079 1.473 -0.012 -0.022 1.166 1.616 0.001 -0.000 1.149 1.578
300 200 -0.005 -0.010 1.028 1.412 0.006 0.034 1.051 1.452 0.031 0.031 1.094 1.482 -0.005 0.012 1.072 1.473
300 500 -0.005 -0.003 1.016 1.380 0.006 0.010 1.014 1.328 -0.001 0.020 1.060 1.409 -0.014 -0.020 1.073 1.426

500 100 -0.002 -0.003 1.052 1.432 -0.005 -0.010 1.085 1.466 -0.011 -0.001 1.133 1.534 -0.024 -0.018 1.149 1.610
500 500 -0.002 0.019 0.999 1.366 0.028 0.021 1.036 1.386 -0.007 -0.008 1.060 1.403 -0.002 -0.007 1.061 1.436
500 1000 -0.016 -0.012 0.995 1.362 -0.006 -0.015 1.028 1.427 0.005 0.020 1.039 1.419 -0.024 -0.029 1.035 1.407

This table reports the mean (m.), the median (med.), standard deviation (std.) and interquartile range (iqr.) of the empirical distribution of the test

statistic T̂ cj1j2j∗1 j∗2w1w2
in Theorem 4, with w1 = [1/N1, ..., 1/N1] and w2 = [1/N2, ..., 1/N2]. The statistic is computed for different sample sizes (N1, N2, T )

and different values of the DGP parameters under the null hypothesis of no change in comovement across regimes (Designs 1 H0 - 4 H0). The asymptotic
distribution of the statistic is N(0, 1) under the Assumptions of Theorem 4 and has interquartile ≈ 1.349. The empirical distributions are obtained by
recomputing the statistics with 4000 MC simulations.
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Table E.6 – Empirical size and power of the test of change in comovement based on T̂ cj1j2j∗1 j∗2w1w2
in Theorem 4 with π0 = 0.75

Design 1 H0 , H1 Design 2 H0 , H1 Design 3 H0 , H1 Design 4 H0 , H1

size power size power size power size power

N1 = N2 T 1% 5% 10% 5% 1% 5% 10% 5% 1% 5% 10% 5% 1% 5% 10% 5%

30 100 0.014 0.065 0.124 0.512 0.013 0.070 0.128 0.661 0.021 0.077 0.141 0.544 0.022 0.083 0.144 0.585
30 200 0.009 0.054 0.103 0.781 0.011 0.060 0.112 0.894 0.017 0.072 0.135 0.831 0.018 0.066 0.127 0.842
30 500 0.012 0.057 0.105 0.994 0.013 0.058 0.113 1.000 0.013 0.060 0.119 0.988 0.014 0.064 0.118 0.999

50 100 0.015 0.059 0.120 0.589 0.014 0.061 0.119 0.590 0.027 0.086 0.145 0.474 0.022 0.078 0.147 0.530
50 200 0.013 0.060 0.110 0.885 0.009 0.053 0.107 0.916 0.019 0.072 0.128 0.740 0.017 0.072 0.130 0.911
50 500 0.010 0.052 0.100 0.999 0.011 0.050 0.096 1.000 0.014 0.066 0.124 0.983 0.012 0.058 0.114 1.000

100 100 0.014 0.060 0.120 0.616 0.017 0.074 0.135 0.599 0.022 0.087 0.155 0.514 0.022 0.079 0.139 0.642
100 200 0.014 0.054 0.107 0.850 0.011 0.054 0.108 0.933 0.018 0.074 0.140 0.832 0.018 0.072 0.131 0.858
100 500 0.010 0.052 0.103 0.999 0.012 0.054 0.103 1.000 0.014 0.066 0.114 0.995 0.014 0.054 0.105 1.000

300 100 0.012 0.061 0.118 0.589 0.015 0.068 0.129 0.638 0.026 0.095 0.155 0.535 0.021 0.085 0.155 0.628
300 200 0.014 0.056 0.106 0.901 0.015 0.061 0.111 0.926 0.018 0.072 0.134 0.833 0.016 0.069 0.124 0.898
300 500 0.012 0.051 0.102 0.999 0.014 0.057 0.105 0.999 0.017 0.066 0.124 0.996 0.019 0.066 0.129 0.998

500 100 0.012 0.058 0.115 0.562 0.014 0.071 0.130 0.628 0.022 0.085 0.145 0.549 0.020 0.087 0.153 0.590
500 500 0.010 0.049 0.105 0.999 0.012 0.061 0.120 1.000 0.018 0.067 0.121 0.997 0.015 0.062 0.116 0.998
500 1000 0.007 0.044 0.097 1.000 0.014 0.052 0.104 1.000 0.015 0.060 0.109 1.000 0.009 0.059 0.116 1.000

This table reports the empirical size and power of the two-tailed test of a change in comovement across regimes based on the test statistic T̂ cj1j2j∗1 j∗2w1w2

in Theorem 4, with w1 = [1/N1, ..., 1/N1] and w2 = [1/N2, ..., 1/N2]. The statistic is computed for different sample sizes (N1, N2, T ) and different values
of the DGP parameters under the null hypothesis of no change in comovement (Designs 1 H0 - 4 H0) and under the alternative of change in comovement
(Designs 1 H1 - 4 H1). The empirical size is assessed at the α levels of 1%, 5% and 10% using Designs 1 H0 - 4 H0, while the empirical power is assessed
at the α level of 5% using Designs 1 H1 - 4 H1. The empirical distributions are obtained by recomputing the statistics with 4000 MC simulations.
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Table E.7 – Finite sample distribution of the test statistic T̂ Rj1j2j∗1 j∗2w1w2
in Theorem 5 with π0 = 0.75

Design 1 H0 Design 2 H0 Design 3 H0 Design 4 H0

N1 = N2 T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.

30 100 -0.045 -0.043 1.159 1.500 -0.009 0.003 1.238 1.520 -0.022 -0.022 1.271 1.606 0.006 0.007 1.284 1.602
30 200 0.004 0.009 1.068 1.447 0.004 0.010 1.089 1.458 -0.020 -0.017 1.156 1.543 -0.029 -0.027 1.157 1.539
30 500 0.006 0.016 1.043 1.406 0.011 0.011 1.016 1.328 -0.011 -0.014 1.081 1.489 -0.006 -0.013 1.075 1.430

50 100 0.028 0.010 1.166 1.518 0.020 -0.001 1.226 1.549 0.018 0.032 1.261 1.629 -0.040 -0.042 1.307 1.655
50 200 0.023 0.015 1.079 1.453 -0.014 -0.021 1.096 1.390 -0.007 -0.005 1.146 1.508 0.001 -0.002 1.166 1.526
50 500 0.014 0.021 1.069 1.428 0.005 -0.016 1.048 1.383 0.004 0.016 1.074 1.436 -0.010 0.012 1.115 1.471

100 100 0.003 0.009 1.180 1.508 -0.004 -0.020 1.187 1.487 -0.019 -0.035 1.268 1.679 -0.000 -0.011 1.299 1.623
100 200 0.033 0.031 1.084 1.360 0.033 0.030 1.070 1.417 -0.008 -0.005 1.168 1.503 0.021 0.035 1.150 1.478
100 500 -0.023 -0.018 1.036 1.374 0.003 0.000 1.038 1.370 0.013 0.021 1.087 1.469 0.002 0.017 1.087 1.442

300 100 0.014 0.007 1.186 1.566 0.030 0.038 1.233 1.553 0.017 0.021 1.292 1.693 -0.029 -0.021 1.297 1.619
300 200 0.046 0.057 1.068 1.420 0.002 0.007 1.091 1.474 -0.012 -0.012 1.177 1.532 0.035 0.046 1.158 1.475
300 500 0.020 0.025 1.032 1.354 -0.005 -0.007 1.041 1.368 0.033 0.025 1.077 1.412 0.002 0.008 1.072 1.430

500 100 0.012 0.009 1.156 1.486 0.015 0.008 1.195 1.481 -0.013 0.001 1.282 1.616 0.040 0.028 1.315 1.650
500 500 -0.003 -0.009 1.032 1.356 0.026 0.007 1.031 1.367 -0.044 -0.032 1.061 1.428 -0.004 -0.033 1.083 1.444
500 1000 -0.011 -0.006 1.014 1.369 -0.035 -0.052 1.020 1.372 -0.025 -0.001 1.052 1.435 -0.002 0.011 1.055 1.442

This table reports the mean (m.), the median (med.), standard deviation (std.) and interquartile range (iqr.) of the empirical distribution of the test

statistic T̂ Rj1j2j∗1 j∗2w1w2
in Theorem 5, with w1 = [1/N1, ..., 1/N1] and w2 = [1/N2, ..., 1/N2]. The statistic is computed for different sample sizes (N1, N2, T )

and different values of the DGP parameters under the null hypothesis of no change in comovement across regimes (Designs 1 H0 - 4 H0). The asymptotic
distribution of the statistic is N(0, 1) under the Assumptions of Theorem 4 and has interquartile ≈ 1.349. The empirical distributions are obtained by
recomputing the statistics with 4000 MC simulations.
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Table E.8 – Finite sample distribution of the test statistic T̂ Rj1j2j∗1 j∗2w1w2
in Theorem 5 with π0 = 0.5

Design 1 H0 Design 2 H0 Design 3 H0 Design 4 H0

N1 = N2 T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.

30 100 0.001 -0.027 1.065 1.379 0.029 0.046 1.092 1.396 -0.002 -0.008 1.211 1.567 -0.013 -0.015 1.206 1.595
30 200 -0.017 -0.022 1.031 1.386 -0.003 -0.015 1.060 1.404 0.022 0.003 1.129 1.515 0.011 0.006 1.125 1.480
30 500 -0.010 -0.031 1.039 1.401 0.007 0.005 1.015 1.333 0.003 -0.007 1.091 1.460 0.013 0.014 1.099 1.467

50 100 0.002 0.008 1.086 1.437 0.004 0.031 1.109 1.447 0.001 -0.001 1.197 1.571 -0.001 -0.001 1.204 1.546
50 200 -0.024 -0.014 1.032 1.359 -0.012 -0.010 1.040 1.399 0.005 -0.011 1.102 1.444 0.020 0.028 1.131 1.490
50 500 0.008 -0.001 0.998 1.323 -0.001 0.011 1.009 1.333 -0.018 -0.022 1.088 1.469 0.006 -0.003 1.077 1.427

100 100 -0.014 -0.025 1.072 1.381 -0.004 0.004 1.102 1.437 -0.010 0.009 1.211 1.585 0.017 0.037 1.207 1.601
100 200 0.003 0.007 1.030 1.387 -0.013 -0.015 1.039 1.392 -0.001 0.006 1.130 1.496 0.007 0.014 1.130 1.465
100 500 -0.002 0.011 1.023 1.365 0.004 0.009 1.002 1.348 0.024 0.014 1.071 1.423 0.008 0.007 1.090 1.461

300 100 -0.002 -0.010 1.069 1.370 0.026 0.022 1.081 1.433 0.015 0.016 1.178 1.542 -0.015 -0.004 1.226 1.592
300 200 -0.003 -0.014 1.029 1.337 -0.014 -0.016 1.046 1.393 -0.046 -0.034 1.143 1.550 0.004 0.005 1.133 1.479
300 500 -0.005 -0.013 1.010 1.401 -0.007 -0.006 1.010 1.363 0.007 0.023 1.092 1.445 -0.003 0.015 1.082 1.476

500 100 0.014 0.008 1.093 1.430 0.025 0.033 1.064 1.389 0.004 0.001 1.188 1.558 0.008 0.011 1.233 1.590
500 500 -0.007 -0.002 1.017 1.363 0.016 0.021 1.024 1.381 -0.003 0.012 1.077 1.415 0.010 0.012 1.087 1.468
500 1000 0.001 0.004 1.008 1.359 0.014 0.033 1.008 1.339 -0.002 -0.004 1.077 1.450 0.005 -0.012 1.057 1.416

This table reports the mean (m.), the median (med.), standard deviation (std.) and interquartile range (iqr.) of the empirical distribution of the test

statistic T̂ Rj1j2j∗1 j∗2w1w2
in Theorem 5, with w1 = [1/N1, ..., 1/N1] and w2 = [1/N2, ..., 1/N2]. The statistic is computed for different sample sizes (N1, N2, T )

and different values of the DGP parameters under the null hypothesis of no change in comovement across regimes (Designs 1 H0 - 4 H0). The asymptotic
distribution of the statistic is N(0, 1) under the Assumptions of Theorem 4 and has interquartile ≈ 1.349. The empirical distributions are obtained by
recomputing the statistics with 4000 MC simulations.
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Table E.9 – Finite sample distribution of the recentered and standardized statistic ĉi1i2t in Theorem 1
Design 9 Design 10 Design 11 Design 12

N1 = N2 T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.

30 100 -0.062 -0.055 1.352 1.590 -0.067 -0.032 1.312 1.554 0.008 -0.013 1.303 1.638 -0.003 0.001 1.277 1.464
30 200 -0.009 0.002 1.234 1.465 -0.045 -0.015 1.474 1.534 -0.007 -0.007 1.176 1.461 -0.024 -0.051 1.229 1.557
30 500 -0.066 -0.040 1.233 1.468 -0.053 -0.071 1.682 1.501 -0.009 0.003 1.250 1.658 0.020 0.027 1.232 1.505

50 100 -0.007 0.003 1.233 1.539 -0.006 -0.001 1.303 1.524 0.004 0.016 1.201 1.520 -0.047 -0.014 1.466 1.597
50 200 -0.078 -0.045 1.378 1.453 -0.041 -0.011 1.144 1.391 -0.020 -0.013 1.202 1.549 -0.037 -0.033 1.136 1.493
50 500 0.034 -0.002 1.164 1.330 -0.004 -0.019 1.290 1.434 -0.044 -0.047 1.136 1.432 0.005 0.021 1.138 1.492

100 100 -0.039 -0.010 1.348 1.523 -0.028 -0.015 1.336 1.439 -0.004 -0.019 1.144 1.464 -0.037 -0.027 1.296 1.529
100 200 -0.038 -0.036 1.129 1.371 -0.040 -0.023 1.190 1.430 -0.024 -0.005 1.224 1.475 -0.017 -0.008 1.122 1.432
100 500 0.047 0.040 1.063 1.359 -0.031 -0.018 1.075 1.363 0.002 0.012 1.077 1.415 -0.029 -0.015 1.082 1.415

300 100 -0.018 0.006 1.276 1.427 -0.026 -0.006 1.306 1.378 -0.023 -0.016 1.158 1.438 -0.023 -0.026 1.130 1.461
300 200 -0.026 0.002 1.066 1.392 -0.014 0.014 1.096 1.436 -0.006 -0.011 1.079 1.412 -0.030 -0.038 1.060 1.417
300 500 0.004 0.008 1.042 1.326 0.006 -0.014 1.069 1.421 -0.014 -0.004 1.070 1.441 -0.000 0.000 1.059 1.430

500 100 -0.025 -0.021 1.174 1.420 -0.042 -0.026 1.204 1.439 -0.035 -0.025 1.172 1.421 -0.019 -0.014 1.075 1.426
500 500 0.008 0.012 1.045 1.386 -0.043 -0.032 1.044 1.393 0.043 0.055 1.086 1.397 -0.016 -0.001 1.086 1.460
500 1000 0.011 0.038 1.023 1.372 -0.005 -0.014 1.055 1.383 0.001 -0.003 1.070 1.459 -0.022 -0.002 1.050 1.410

Design 13 Design 14 Design 15 Design 16

N1 = N2 T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.

30 100 -0.003 -0.018 1.387 1.546 -0.000 -0.005 1.199 1.515 -0.003 0.005 1.230 1.507 -0.049 -0.042 1.173 1.479
30 200 0.005 -0.002 1.152 1.513 -0.009 -0.010 1.139 1.447 -0.042 -0.011 1.239 1.442 -0.007 0.011 1.132 1.497
30 500 -0.015 -0.007 1.150 1.436 -0.016 0.001 1.118 1.441 -0.005 -0.019 1.210 1.456 -0.015 -0.014 1.175 1.487

50 100 -0.084 -0.046 1.340 1.457 -0.039 -0.029 1.136 1.445 0.014 0.013 1.156 1.448 -0.033 -0.008 1.125 1.441
50 200 -0.016 -0.007 1.169 1.385 -0.009 0.000 1.095 1.408 -0.008 0.009 1.098 1.348 0.001 0.002 1.131 1.464
50 500 -0.027 -0.010 1.096 1.391 -0.044 -0.047 1.097 1.426 -0.010 -0.017 1.122 1.402 0.002 0.016 1.119 1.448

100 100 0.015 0.006 1.136 1.419 -0.032 -0.032 1.113 1.392 -0.026 -0.007 1.140 1.407 -0.023 0.002 1.493 1.456
100 200 -0.003 0.017 1.069 1.404 0.009 0.006 1.091 1.418 -0.017 -0.032 1.068 1.426 -0.016 -0.035 1.067 1.417
100 500 -0.010 0.001 1.050 1.394 0.013 0.028 1.046 1.371 0.010 -0.008 1.072 1.391 -0.008 -0.014 1.065 1.414

300 100 -0.013 0.002 1.130 1.473 -0.008 -0.009 1.115 1.391 0.023 0.033 1.111 1.462 -0.023 -0.028 1.141 1.438
300 200 0.005 0.009 1.045 1.407 0.026 0.049 1.057 1.409 -0.043 -0.033 1.045 1.356 -0.035 -0.009 1.062 1.385
300 500 -0.011 0.007 1.033 1.364 -0.009 0.005 1.032 1.365 -0.012 -0.012 1.026 1.374 0.014 0.021 1.042 1.369

500 100 -0.003 -0.000 1.133 1.452 -0.017 -0.012 1.109 1.472 0.010 0.012 1.127 1.400 -0.032 -0.022 1.100 1.417
500 500 0.002 0.010 1.008 1.369 -0.012 -0.023 1.042 1.404 -0.011 0.001 1.048 1.395 -0.023 -0.036 1.015 1.370
500 1000 0.006 0.016 1.019 1.363 0.038 0.039 1.017 1.337 -0.021 -0.039 1.014 1.365 0.024 0.040 1.215 1.373

Design 17 Design 18 Design 19 Design 20

N1 = N2 T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.

30 100 -0.028 -0.005 1.163 1.470 -0.052 -0.044 1.319 1.419 -0.183 -0.108 1.137 1.401 -0.226 -0.112 1.275 1.365
30 200 -0.032 0.007 1.341 1.446 -0.066 -0.044 1.154 1.421 -0.157 -0.062 1.188 1.428 -0.170 -0.115 1.354 1.364
30 500 -0.027 -0.018 1.110 1.400 -0.008 0.013 1.097 1.464 0.226 0.113 1.222 1.385 -0.161 -0.098 1.144 1.318

50 100 0.014 0.007 1.128 1.366 -0.003 0.009 1.083 1.361 -0.196 -0.086 1.274 1.430 0.162 0.075 1.202 1.383
50 200 -0.076 -0.064 1.065 1.405 0.083 0.050 1.099 1.409 -0.157 -0.060 1.334 1.350 -0.158 -0.079 1.080 1.335
50 500 -0.007 0.009 1.050 1.366 -0.039 -0.016 1.066 1.406 0.137 0.061 1.099 1.370 -0.116 -0.055 1.073 1.352

100 100 0.016 0.003 1.406 1.419 -0.030 -0.009 1.000 1.321 -0.133 -0.072 1.077 1.379 0.057 0.027 1.145 1.386
100 200 -0.028 -0.015 1.106 1.385 -0.021 -0.009 1.051 1.375 -0.124 -0.067 1.102 1.416 0.037 0.042 1.075 1.371
100 500 0.018 0.015 1.041 1.372 -0.026 -0.028 1.026 1.356 -0.120 -0.050 1.073 1.330 -0.105 -0.056 1.010 1.321

300 100 0.003 0.027 1.044 1.353 -0.007 0.017 1.057 1.369 -0.131 -0.102 1.131 1.422 -0.109 -0.063 1.057 1.358
300 200 -0.051 -0.001 1.069 1.368 -0.031 -0.018 1.051 1.386 -0.081 -0.039 1.124 1.356 -0.072 -0.017 1.072 1.358
300 500 0.010 0.013 1.018 1.377 -0.007 -0.028 0.997 1.314 -0.075 -0.052 1.029 1.360 -0.082 -0.038 1.035 1.335

500 100 0.026 -0.001 1.052 1.351 -0.025 0.004 1.100 1.434 -0.094 -0.032 1.061 1.356 -0.073 -0.017 1.068 1.423
500 500 0.006 -0.011 1.011 1.369 -0.007 0.002 1.014 1.356 -0.069 -0.050 1.024 1.370 -0.086 -0.047 1.050 1.408
500 1000 -0.031 -0.035 1.011 1.338 0.023 0.038 1.003 1.350 0.070 0.036 1.026 1.340 0.047 0.022 1.018 1.358

This table reports the mean (m.), the median (med.), standard deviation (std.) and interquartile range (iqr.) of the empirical
distribution of the recentered and standardized statistic ĉi1i2t in Theorem 1 defined as: CNT

(
ĉi1i2t − c

0
i1i2t

)
/
√
Q̂i1i2t . The

standardized statistic is computed for different sample sizes (N1, N2, T ) and different values of the DGP parameters (Designs
9 - 20). The asymptotic distribution of the statistic is N(0, 1) under the Assumptions of Theorem 1 and has interquartile
≈ 1.349. The empirical distributions are obtained by recomputing the statistics with 4000 Monte Carlo simulations.
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Table E.10 – Finite sample distribution of recentered and standardized statistic ĉj1j2w1w2
in Theorem 2

Design 9 Design 10 Design 11 Design 12

N1 = N2 T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.

30 100 -0.211 -0.142 1.035 1.384 -0.226 -0.130 1.042 1.373 -0.132 -0.050 1.035 1.408 -0.164 -0.104 1.029 1.408
30 200 -0.186 -0.117 1.055 1.407 -0.164 -0.121 1.041 1.383 -0.075 -0.020 1.009 1.339 -0.086 -0.042 1.009 1.325
30 500 -0.134 -0.097 1.028 1.371 -0.112 -0.042 1.054 1.418 -0.098 -0.065 1.024 1.368 -0.121 -0.088 0.997 1.344

50 100 -0.209 -0.131 1.034 1.397 -0.217 -0.112 1.069 1.380 -0.159 -0.082 1.032 1.382 -0.156 -0.096 1.040 1.358
50 200 -0.161 -0.091 1.050 1.426 -0.157 -0.066 1.033 1.383 -0.080 -0.010 1.021 1.380 -0.115 -0.092 1.006 1.348
50 500 -0.095 -0.025 1.034 1.395 -0.121 -0.057 1.028 1.412 -0.054 -0.029 1.007 1.346 -0.098 -0.051 1.006 1.335

100 100 -0.203 -0.102 1.031 1.383 -0.192 -0.116 1.036 1.385 -0.155 -0.078 1.025 1.366 -0.160 -0.085 1.041 1.400
100 200 -0.155 -0.069 1.010 1.368 -0.171 -0.099 1.037 1.348 -0.100 -0.053 1.035 1.401 -0.101 -0.073 1.013 1.359
100 500 -0.106 -0.061 1.008 1.347 -0.098 -0.054 0.998 1.333 -0.063 -0.018 1.015 1.383 -0.065 -0.055 1.004 1.360

300 100 -0.207 -0.108 1.032 1.382 -0.246 -0.169 1.026 1.358 -0.113 -0.039 1.041 1.410 -0.116 -0.060 1.038 1.381
300 200 -0.145 -0.067 1.022 1.337 -0.150 -0.065 1.030 1.380 -0.115 -0.081 1.016 1.372 -0.070 -0.012 1.001 1.319
300 500 -0.114 -0.069 1.010 1.355 -0.088 -0.049 1.007 1.352 -0.040 0.013 1.009 1.409 -0.026 0.001 0.995 1.337

500 100 -0.183 -0.075 1.021 1.360 -0.204 -0.119 1.020 1.344 -0.155 -0.100 1.042 1.456 -0.156 -0.083 1.041 1.387
500 500 -0.092 -0.037 1.025 1.371 -0.089 -0.010 1.015 1.326 -0.034 0.021 0.999 1.348 -0.062 -0.039 0.993 1.301
500 1000 -0.081 -0.036 0.981 1.354 -0.081 -0.031 1.002 1.338 -0.010 0.011 1.024 1.363 -0.046 -0.023 1.022 1.384

Design 13 Design 14 Design 15 Design 16

N1 = N2 T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.

30 100 -0.116 -0.062 1.039 1.437 -0.196 -0.133 1.053 1.371 -0.159 -0.086 1.026 1.386 -0.117 -0.043 1.032 1.404
30 200 -0.112 -0.055 1.017 1.391 -0.103 -0.021 1.048 1.426 -0.094 -0.044 1.034 1.410 -0.089 -0.039 1.013 1.340
30 500 -0.074 -0.025 1.009 1.323 -0.066 -0.052 1.025 1.351 -0.057 -0.038 1.009 1.372 -0.046 -0.027 1.020 1.398

50 100 -0.151 -0.052 1.072 1.406 -0.163 -0.077 1.062 1.424 -0.134 -0.089 1.022 1.352 -0.146 -0.054 1.039 1.383
50 200 -0.133 -0.090 1.023 1.390 -0.115 -0.055 1.011 1.394 -0.127 -0.071 1.013 1.356 -0.086 -0.057 1.004 1.378
50 500 -0.073 -0.045 1.016 1.393 -0.072 -0.041 0.993 1.337 -0.076 -0.040 1.023 1.378 -0.076 -0.038 1.025 1.382

100 100 -0.175 -0.101 1.032 1.372 -0.185 -0.109 1.056 1.421 -0.130 -0.059 1.051 1.397 -0.154 -0.069 1.053 1.419
100 200 -0.115 -0.044 1.035 1.382 -0.129 -0.061 1.019 1.415 -0.099 -0.046 1.043 1.364 -0.107 -0.067 1.030 1.383
100 500 -0.066 -0.022 1.010 1.319 -0.071 -0.033 1.015 1.389 -0.015 0.014 0.999 1.353 -0.061 -0.041 1.003 1.357

300 100 -0.162 -0.086 1.058 1.428 -0.162 -0.083 1.059 1.408 -0.139 -0.048 1.057 1.414 -0.140 -0.078 1.021 1.372
300 200 -0.114 -0.040 1.047 1.417 -0.111 -0.040 1.017 1.391 -0.108 -0.038 1.034 1.381 -0.084 -0.015 1.046 1.470
300 500 -0.080 -0.036 1.023 1.392 -0.097 -0.069 1.006 1.348 -0.065 -0.044 1.021 1.376 -0.074 -0.040 1.006 1.363

500 100 -0.124 -0.042 1.043 1.415 -0.143 -0.064 1.046 1.425 -0.128 -0.070 1.022 1.396 -0.171 -0.105 1.052 1.414
500 500 -0.079 -0.041 1.020 1.364 -0.050 -0.005 0.998 1.350 -0.070 -0.038 1.021 1.374 -0.084 -0.066 1.005 1.339
500 1000 -0.085 -0.061 1.006 1.328 -0.059 -0.024 0.992 1.349 -0.064 -0.052 1.004 1.359 -0.069 -0.058 1.003 1.364

Design 17 Design 18 Design 19 Design 20

N1 = N2 T m. med. std. iqr. m. med. std. iqr. m. med. std. iqr. m. med. std. iqr.

30 100 -0.235 -0.116 1.103 1.467 -0.209 -0.131 1.070 1.409 -0.252 -0.124 1.120 1.419 -0.275 -0.161 1.115 1.414
30 200 -0.150 -0.096 1.043 1.381 -0.150 -0.099 1.058 1.414 -0.159 -0.080 1.054 1.406 -0.169 -0.082 1.038 1.389
30 500 -0.104 -0.041 1.030 1.390 -0.078 -0.036 1.021 1.374 -0.086 -0.048 1.011 1.366 -0.113 -0.037 1.055 1.436

50 100 -0.256 -0.131 1.117 1.434 -0.205 -0.115 1.076 1.374 -0.267 -0.156 1.107 1.430 -0.275 -0.165 1.146 1.458
50 200 -0.155 -0.100 1.042 1.407 -0.178 -0.101 1.078 1.404 -0.145 -0.076 1.084 1.421 -0.124 -0.040 1.053 1.367
50 500 -0.112 -0.056 1.044 1.372 -0.066 0.001 1.035 1.401 -0.118 -0.052 1.026 1.360 -0.103 -0.041 1.030 1.390

100 100 -0.237 -0.156 1.103 1.396 -0.226 -0.134 1.094 1.407 -0.268 -0.162 1.119 1.445 -0.243 -0.143 1.107 1.379
100 200 -0.124 -0.047 1.037 1.349 -0.118 -0.036 1.030 1.350 -0.185 -0.105 1.075 1.427 -0.180 -0.074 1.070 1.367
100 500 -0.084 -0.033 1.047 1.410 -0.072 -0.028 1.034 1.388 -0.113 -0.064 1.038 1.374 -0.122 -0.072 1.032 1.393

300 100 -0.229 -0.113 1.110 1.456 -0.218 -0.126 1.101 1.433 -0.251 -0.135 1.138 1.469 -0.259 -0.136 1.121 1.420
300 200 -0.134 -0.054 1.035 1.390 -0.129 -0.081 1.040 1.379 -0.184 -0.074 1.074 1.389 -0.188 -0.111 1.072 1.391
300 500 -0.086 -0.032 1.028 1.361 -0.107 -0.067 1.026 1.344 -0.105 -0.068 1.005 1.328 -0.096 -0.031 1.003 1.334

500 100 -0.202 -0.095 1.103 1.445 -0.228 -0.118 1.113 1.416 -0.248 -0.132 1.117 1.418 -0.233 -0.110 1.130 1.441
500 500 -0.112 -0.074 1.005 1.372 -0.074 -0.025 0.997 1.341 -0.110 -0.046 1.052 1.377 -0.089 -0.039 1.035 1.388
500 1000 -0.060 -0.036 1.019 1.357 -0.074 -0.050 1.011 1.364 -0.061 -0.025 1.014 1.340 -0.073 -0.005 1.035 1.362

This table reports the mean (m.), the median (med.), standard deviation (std.) and interquartile range
(iqr.) of the empirical distribution of the recentered standardized statistic ĉj1j2w1w2 in Theorem 2 defined as:
√
T
(
ĉj1j2w1w2 − c

0
j1j2w1w2

)
/

√
Q̂j1j2(w1,w2), with w1 = [1, 0, 0, ..., 0] and w2 = [1, 0, 0, ..., 0]. The standardized statis-

tic is computed for different sample sizes (N1, N2, T ) and different values of the DGP parameters (Designs 9 - 20). The
asymptotic distribution of the statistic is N(0, 1) under the Assumptions of Theorem 2 and has interquartile ≈ 1.349. The
empirical distributions are obtained by recomputing the statistics with 4000 MC simulations.
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Figure E.1 – Finite sample distribution of the recentered and standardized statistic ĉi1i2t in Theorem 1

(a) Design 2, N1 = N2 = 30, T = 100
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(b) Design 2, N1 = N2 = 50, T = 200
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(c) Design 2, N1 = N2 = 100, T = 200
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(d) Design 2, N1 = N2 = 300, T = 200
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(e) Design 2, N1 = N2 = 500, T = 500
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(f) Design 2, N1 = N2 = 500, T = 1000
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This figure shows the simulated empirical distribution of the recentered and standardized statistic ĉi1i2t in

Theorem 1 defined as: CNT
(
ĉi1i2t − c

0
i1i2t

)
/

√
Q̂i1i2t . The standardized statistic is computed for different

sample sizes (N1, N2, T ) and for the values of the DGP parameters in Design 2 of Table 1. Under the

Assumptions of Theorem 1, the asymptotic distribution of the statistic is N(0, 1) (solid red line). The

empirical distributions are obtained by recomputing the statistics with 4000 Monte Carlo simulations.
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Figure E.2 – Finite sample distribution of recentered and standardized statistic ĉj1j2w1w2
in Theorem 2

(a) Design 2, N1 = N2 = 30, T = 100
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(b) Design 2, N1 = N2 = 50, T = 200
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(c) Design 2, N1 = N2 = 100, T = 200
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(d) Design 2, N1 = N2 = 300, T = 200
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(e) Design 2, N1 = N2 = 500, T = 500
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(f) Design 2, N1 = N2 = 500, T = 1000
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This figure shows the simulated empirical distribution of the recentered and standardized statistic ĉj1j2w1w2

in Theorem 2 defined as:
√
T
(
ĉj1j2w1w2 − c0j1j2w1w2

)
/

√
Q̂j1j2(w1,w2) , with w1 = [1, 0, 0, ..., 0] and w2 =

[1, 0, 0, ..., 0]. The statistic is computed for different sample sizes (N1, N2, T ) and for the values of the DGP

parameters in Design 2 of Table 1. Under the Assumptions of Theorem 2, the asymptotic distribution of the

statistic is N(0, 1) (solid red line). The empirical distributions are obtained with 4000 MC simulations.
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Figure E.3 – Finite sample distribution of recentered and standardized statistic R̂j1j2w1w2
in Theorem 3

(a) Design 2, N1 = N2 = 30, T = 100
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(b) Design 2, N1 = N2 = 50, T = 200
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(c) Design 2, N1 = N2 = 100, T = 200
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(d) Design 2, N1 = N2 = 300, T = 200
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(e) Design 2, N1 = N2 = 500, T = 500
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(f) Design 2, N1 = N2 = 500, T = 1000
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This figure shows the simulated empirical distribution of the recentered and standardized statistic R̂j1j2w1w2

in Theorem 3 defined as:
√
T
(
R̂j1j2w1w2

−R0
j1j2w1w2

)
/

√
Q̂R,j1j2(ŵσ,1j1j2 , ŵσ,2j1j2), withw1 = [1/N1, ..., 1/N1]

and w2 = [1/N2, ..., 1/N2]. The standardized statistic is computed for different sample sizes (N1, N2, T )

and for the values of the DGP parameters in Design 2 of Table 1. Under the Assumptions of Theorem 3, the

asymptotic distribution of the statistic is N(0, 1) (solid red line). The empirical distributions are obtained

by recomputing the statistics with 4000 Monte Carlo simulations.
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Figure E.4 – Finite sample distribution of the test statistic T̂ cj1j2j∗1 j∗2w1w2
in Theorem 4

(a) Design 2, N1 = N2 = 30, T = 100
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(b) Design 2, N1 = N2 = 50, T = 200
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(c) Design 2, N1 = N2 = 100, T = 200
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(d) Design 2, N1 = N2 = 300, T = 200
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(e) Design 2, N1 = N2 = 500, T = 500
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(f) Design 2, N1 = N2 = 500, T = 1000
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This figure shows the simulated empirical distribution of the test statistic T̂ cj1j2j∗1 j∗2w1w2
in Theorem 4, with

w1 = [1, 0, 0, ..., 0] and w2 = [1, 0, 0, ..., 0]. The test statistic is computed for different sample sizes (N1, N2,

T ) and for the values of the DGP parameters in Design 2 of Table 2. Under the Assumptions of Theorem

4, the asymptotic distribution of the test statistic is N(0, 1) (solid red line). The empirical distributions are

obtained by recomputing the statistics with 4000 Monte Carlo simulations.
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Figure E.5 – Finite sample distribution of the test statistic T̂ cj1j2j∗1 j∗2w1w2
in Theorem 4

(a) Design 2, N1 = N2 = 30, T = 100
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(b) Design 2, N1 = N2 = 50, T = 200
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(c) Design 2, N1 = N2 = 100, T = 200
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(d) Design 2, N1 = N2 = 300, T = 200
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(e) Design 2, N1 = N2 = 500, T = 500
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(f) Design 2, N1 = N2 = 500, T = 1000
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This figure shows the simulated empirical distribution of the test statistic T̂ cj1j2j∗1 j∗2w1w2
in Theorem 4, with

w1 = [1/N1, ..., 1/N1] and w2 = [1/N2, ..., 1/N2]. The test statistic is computed for different sample sizes

(N1, N2, T ) and for the values of the DGP parameters in Design 2 of Table 2. Under the Assumptions

of Theorem 4, the asymptotic distribution of the test statistic is N(0, 1) (solid red line). The empirical

distributions are obtained by recomputing the statistics with 4000 Monte Carlo simulations.
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Figure E.6 – Finite sample distribution of the test statistic T̂ Rj1j2j∗1 j∗2w1w2
in Theorem 5 with π0 = 0.5

(a) Design 2, N1 = N2 = 30, T = 100
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(b) Design 2, N1 = N2 = 50, T = 200
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(c) Design 2, N1 = N2 = 100, T = 200
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(d) Design 2, N1 = N2 = 300, T = 200
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(e) Design 2, N1 = N2 = 500, T = 500
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(f) Design 2, N1 = N2 = 500, T = 1000
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This figure shows the simulated empirical distribution of the test statistic T̂ Rj1j2j∗1 j∗2w1w2
in Theorem 5, with

w1 = [1/N1, ..., 1/N1] and w2 = [1/N2, ..., 1/N2]. The test statistic is computed for different sample sizes

(N1, N2, T ) and for the values of the DGP parameters in Design 2 of Table 2. Under the Assumptions

of Theorem 5, the asymptotic distribution of the test statistic is N(0, 1) (solid red line). The empirical

distributions are obtained by recomputing the statistics with 4000 Monte Carlo simulations.
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Figure E.7 – Finite sample distribution of the test statistic T̂ Rj1j2j∗1 j∗2w1w2
in Theorem 5

(a) Design 2, N1 = N2 = 30, T = 100
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(b) Design 2, N1 = N2 = 50, T = 200
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(c) Design 2, N1 = N2 = 100, T = 200
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(d) Design 2, N1 = N2 = 300, T = 200
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(e) Design 2, N1 = N2 = 500, T = 500
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(f) Design 2, N1 = N2 = 500, T = 1000
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This figure shows the simulated empirical distribution of the test statistic T̂ Rj1j2j∗1 j∗2w1w2
in Theorem 5, with

w1 = [1/N1, ..., 1/N1] and w2 = [1/N2, ..., 1/N2]. The test statistic is computed for different sample sizes

(N1, N2, T ) and for the values of the DGP parameters in Design 2 of Table 2. Under the Assumptions

of Theorem 5, the asymptotic distribution of the test statistic is N(0, 1) (solid red line). The empirical

distributions are obtained by recomputing the statistics with 4000 Monte Carlo simulations.
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E Empirical Application: Additional Results

Figure E.1 – Actual correlations within and across panels when zt ≤ θ̂1 = θ̂2
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The figure displays the sample correlations within and across panels of monthly excess returns on the U.S.

equity portfolios (Group 1) and on the developed (ex US) equity portfolios (Group 2) when zt ≤ θ̂1 = θ̂2,

that is for all dates such that UM ≤ 0.674. Average sample correlations are R̄11 = 0.802, R̄12 = R̄21 = 0.543,

and R̄22 = 0.871.
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Figure E.2 – Actual correlations within and across panels when zt > θ̂1 = θ̂2
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The figure displays the sample correlations within and across panels of monthly excess returns on the U.S.

equity portfolios (Group 1) and the international (ex U.S.) equity portfolios (Group 2) when zt > θ̂1 = θ̂2,

that is for all dates such that UM > 0.674. Average sample correlations are R̄11 = 0.808, R̄12 = R̄21 = 0.707,

and R̄22 = 0.917.
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Figure E.3 – Estimated systematic correlations within and across panels when zt ≤ θ̂1 = θ̂2
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The figure displays the estimated systematic correlations within and across panels of monthly excess returns

on the U.S. equity portfolios (Group 1) and the international (ex U.S.) equity portfolios (Group 2) when

zt ≤ θ̂1 = θ̂2, that is for all dates such that UM ≤ 0.674. Average systematic correlations are R̂w11 = 0.802,

R̂LLw1w2 = 0.543, and R̂w22 = 0.871.
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Figure E.4 – Estimated systematic correlations within and across panels when zt > θ̂1 = θ̂2
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The figure displays the estimated systematic correlations within and across panels of monthly excess returns

on the U.S. equity portfolios (Group 1) and the international (ex U.S.) equity portfolios (Group 2) when

zt > θ̂1 = θ̂2, that is for all dates such that UM > 0.674. Average systematic correlations are R̂w11 = 0.808,

R̂HHw1w2 = 0.708, and R̂w22 = 0.917.
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Figure E.5 – Return loadings on F
(1)
US , the first pervasive factor of the U.S. equity portfolios.
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Figure E.6 – Return loadings on F
(2)
US , the second pervasive factor of the U.S. equity portfolios.
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Figure E.7 – Return loadings on F
(1)
DEV , the first pervasive factor of the developed (ex US) equity portfolios.
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Figure E.8 – Return loadings on F
(2)
DEV , the second pervasive factor of the developed (ex US) equity portfolios.
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