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Abstract

A large literature on modelling cross-section dependence in panels has been developed
through interactive effects. However, there are areas where research has not really caught on
yet. One such area is the one concerned with whether the regressors are correlated with factor
loadings or not. This is an important hypothesis to be tested because if the regressors are
uncorrelated with loadings, we can simply use the consistent two-way fixed effects (FE) estima-
tor without employing any more sophisticated econometrics such as the principal component
(PC) or the common correlated effects estimators. We propose the novel Hausman-type test.
Further, we develop two nonparametric variance estimators for the FE and PC estimators as
well as their difference, that are robust to the presence of heteroscedasticity, autocorrelation
and slope heterogeneity. Under the null hypothesis of no correlation between the regressors
and loadings the proposed test follows the χ2 distribution asymptotically. Monte Carlo simula-
tion results confirm satisfactory size and power performance of the test even in small samples.
Finally, we provide extensive empirical evidence in favour of uncorrelated factor loadings. In
this situation, the FE estimator would provide a simple and robust estimation strategy which
is invariant to nontrivial computational issues associated with the PC estimator.
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1 Introduction

Panel data models have been increasingly popular in applied economics and finance, due to

their ability to model various sources of heterogeneity. A standard practice is to impose strong

restrictions on error cross-section dependence (CSD). This takes the form of independence across

individual units under the fixed effects model whilst a common time effect severely restricts

the nature of CSD under the random effects specification. The pervasive evidence detecting the

presence of strong CSD in panels over the last decade (e.g., Pesaran (2015)), has prompted a large

number of studies to develop econometric methodologies for modelling CSD, mainly through the

structure of interactive effects (hereafter IE). This introduces heterogeneous unobserved factors

into the error components, allowing for a richer cross-sectional covariance structure.

Currently, there are two leading approaches that have received considerable attention in the

literature, see Chudik and Pesaran (2015) for a survey. The first, based on the principal compo-

nent (PC) estimation, estimates the factors jointly and iteratively with the main slope parameters.

This approach has been exhaustively analysed by Bai (2009), and extended by Moon and Weid-

ner (2015), Fernandez-Val and Weidner (2016) and Charbonneau (2017). The second approach,

advanced by Pesaran (2006), treats factors as nuisance terms, and removes their effects through

proxying them by the cross-section averages of the dependent and independent variables. This is

referred to as the common correlated effects (CCE) estimator. A growing number of extensions

have been developed by Kapetanios, Pesaran, and Yamagata (2011), Chudik and Pesaran (2015),

Westerlund and Urbain (2015) and Petrova and Westerlund (2020).

The conventional wisdom has so far been that the standard two-way fixed effects (FE) estima-

tor would be inconsistent in the presence of IE, due to ignoring the potential endogeneity arising

from the correlation between the regressors and factors and/or factor loadings (e.g. Bai (2009)).

In this paper, we start by highlighting a simple fact that the FE estimator is not always incon-

sistent even in the presence of IE. If the regressors are correlated with factors but uncorrelated

with loadings, then the FE estimator is shown to be consistent, which has also been noted by

Coakely, Fuertes, and Smith (2006), Sarafidis and Wansbeek (2012) and Westerlund (2019). In

such a case, we formally show that the FE estimator is consistent and asymptotically normally

distributed. But, the variance estimator provided by the standard FE estimation will be invalid

due to the presence of remaining zero-mean IE in the error components. Hence, we provide two

consistent nonparametric variance estimators that are robust to the presence of heteroscedastic

and serially-correlated disturbances as well as the slope parameters heterogeneity.

Via Monte Carlo studies, we find that FE and CCE estimators display a similar and satisfac-

tory performance when the regressors are correlated with factors but uncorrelated with loadings.

Further, the coverage rate of the FE estimator evaluated using nonparametric variance estimators

reaches the nominal 95%. The performance of both CCE and FE estimators worsens significantly
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if the regressors are correlated with loadings, which is in line with Westerlund and Urbain (2013).

As expected, the performance of the PC estimator is not unduly affected by the presence of

correlation between the regressors and loadings.

A number of specification tests have been proposed to testing the presence of the CSD or

IE, e.g. Pesaran (2015), Sarafidis, Yamagata, and Robertson (2009), Bai (2009) and Castagnetti,

Rossi, and Trapani (2015). Notice, however, that the rejection of the null hypothesis by these

tests does not always imply that the FE estimator is inconsistent under the alternative model with

IE. For instance, Sarafidis, Yamagata, and Robertson (2009) maintain an assumption that factor

loadings (between equations for the dependent variable and the regressors) are uncorrelated even

under the alternative. More importantly, we show that the Hausman test for the null hypothesis of

the two way additive fixed effects against the alternative hypothesis of IE proposed by Bai (2009),

would be inconsistent against the alternative, especially if the regressors are uncorrelated with

loadings. This suggests that the presence of no correlation between the regressors and loadings

emerges as an influential but under-appreciated feature of the panel data model with IE. For large

T , in order to avoid any potential omitted variables bias, it is natural to allow for the regressors

to be correlated with unobserved factors. But, it still remains the important issue to test whether

the regressors are correlated with loadings or not in practice.

Despite a growing number of studies on modelling CSD through IE, it is rather surprising

to find that the literature has been silent on investigating the important issue of testing the

validity of correlation between the regressors and factor loadings in panels with IE. This is the

important hypothesis to be tested because if the loadings are uncorrelated with the regressors,

we can just use the simple but consistent FE estimator. In order to fill this gap, as the main

contribution, we proceed to develop a Hausman-type test that determines the validity of whether

the regressors are correlated with loadings. Both the FE and PC estimators are consistent under

the null hypothesis of uncorrelated factor loadings whilst only the latter is consistent under the

alternative hypothesis. Notice, however, that our proposed test is different from the Hausman test

developed by Bai (2009), because our null hypothesis is subsumed under his alternative model

with IE. As a result, the FE estimator is not necessarily more effi cient than the PC estimator

under the null hypothesis. Based on this idea, we develop two nonparametric variance estimators

for the difference between the FE and PC estimators, that are shown to be robust to the presence

of heteroscedasticity, autocorrelation and slope heterogeneity. We derive that the proposed test

statistic follows the χ2 distribution asymptotically. Monte Carlo simulation results confirm that

the size and the power performance of the test is quite satisfactory even in small samples.

Finally, our most important contribution is the provision of extensive empirical evidence that

regressors are uncorrelated with factor loadings, in many panel datasets employed in the literature.

We find that the null hypothesis of the regressors being uncorrelated with factor loadings, is

not rejected in nine out of ten datasets considered. Next, we find that Bai’s Hausman test
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never rejects the null of additive effects model against the alternative of IE whilst the CD test

by Pesaran (2015) strongly rejects the null of weak CSD for all the dataset. Such conflicting

results could provide an additional support for our main findings that the regressors are indeed

uncorrelated with factor loadings even in cross-sectionally correlated panels with IE, in which

case we further show that Bai’s Hausman test is inconsistent. Furthermore, the FE estimator is

invariant to any complex issues related to selecting the number of unobserved factors incorrectly

which would significantly affect the performance of PC estimators (Moon and Weidner (2015)),

and to employing the inconsistent initial estimates which may not guarantee the convergence

of the iterative PC estimator (Hsiao (2018)). In this regard, the FE estimation combined with

nonparametric variance estimators will provide the simple and robust approach, which is widely

employed in the literature - avoiding uncertainty in specifying and estimating nuisance parameters

for potential effi ciency gain. This suggests that the FE estimator can still be of considerable

applicability in a wide variety of cross-sectionally correlated panel data, especially if the regressors

are found to be uncorrelated with factor loadings, the validity of which can be easily verified by

our proposed test.

The paper proceeds as follows. Section 2 describes the model and highlights that the FE

estimator is still consistent in panels with IE, under the condition that the regressors are un-

correlated with factor loadings. Section 3 develops the Hausman-type test for the validity of

correlated factor loadings, which is the important hypothesis to be tested. Section 4 employs a

range of Monte Carlo simulations to investigate the finite sample performance of the alternative

estimators and the proposed test statistic. Section 5 presents empirical evidence documenting

that the null hypothesis of the regressors uncorrelated with factor loadings, is not rejected for

nine out of ten datasets. Section 6 offers some concluding remarks. Mathematical proofs and the

data descriptions are relegated to Appendices. Additional simulation and empirical results can

be found in Online Supplement.

2 The Model

Consider the following heterogeneous panel data model with IE:

yit = β′ixit + γ ′if t + εit (1)

where yit is the dependent variable of the ith cross-sectional unit in period t, xit is the k × 1

vector of covariates with βi the k×1 vector of parameters, and εit’s are idiosyncratic errors. f t is

an r× 1 vector of unobserved common factors while γi is an r× 1 vector of random heterogenous

loadings.

We make the following assumptions:

Assumption A. (i) εit is independently distributed across i with E (εit) = 0, E
(
ε2it
)

= σ2εi and
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E
(
ε8+δit

)
<∞ for some δ > 0. Each εit follows a linear process with absolutely summable autoco-

variances such that limT→∞ T
−1∑T

s=1

∑T
t=1E |εisεit|

1+δ <∞, E
∣∣∣N−1/2∑N

i=1 [εisεit − E (εisεit)]
∣∣∣4 <

∞ for all t, s, and limT,N→∞ T
−2N−1

∑N
i=1

∑T
s=1

∑T
t=1

∑T
r=1

∑T
w=1 |Cov (εisεit, εirεiw)| < ∞. The

largest eigenvalue of E (εiε
′
i) is bounded uniformly in every i and t. εit is independent of xjs, γj

and f s for all i, j, s and t.

(ii) f t is covariance stationary with finite mean and variance, Σf with E
(
‖f t‖4

)
<∞ where

Σf is an r × r positive definite matrix.
(iii) γi is iid across i with finite mean and variance, Σγ , where Σγ is an r× r positive definite

matrix. γi are independent of εjt and f t for all i, j and t.

(iv) The k × 1 vector of βi are generated as βi = β + ηi. ηi is independent across i with

E (ηi) = 0 and E (ηiη
′
i) = Ωηη,i, where Ωηη,i is a positive definite matrix uniformly for every i.

E ‖ηi‖4 ≤ ∆ <∞ and ‖β‖ <∞. ηi is independent of εit and γi.
Assumption A is standard in the literature, see Bai (2009), Karabiyik, Reese, and Westerlund

(2017) and Cui, Hayakawa, Nagata, and Yamagata (2019) (CHNY, hereafter).

For a consistent estimation of the parameters in (1), we need to first account for unobserved

factors, and then estimate β by applying panel estimators to (1) with defactored variables. On

the basis of this idea, two popular approaches have been proposed. The common correlated effects

(CCE) estimator advanced by Pesaran (2006), imposes that xit share the same factors, f t

xit = Γ′if t + vit (2)

where Γi an r × k matrix of random heterogenous loadings and vit are idiosyncratic errors,

and proposes to approximate f t by the cross-section averages of the dependent and independent

variables. Next, Bai (2009) allows xit to be arbitrarily correlated with both γi and f t, and

proposes the iterative principal component (PC) approach that estimates the factors jointly and

iteratively with the slope parameters. The validity of the CCE approach depends crucially upon

whether an appropriate rank condition, that has to be assumed, holds. Westerlund and Urbain

(2015) argue that the issue of correctly selecting the number of factors, r in the PC estimation,

is essentially the same as the issue of satisfying the condition, r ≤ k + 1 in CCE estimation.

Further, it is shown that both estimators involve bias terms, which do not disappear unless N/T

→ 0. The finite sample performance of the two approaches has been intensively investigated.

The earlier studies by Kapetanios and Pesaran (2005) and Chudik, Pesaran, and Tosetti (2011),

provide Monte Carlo evidence in favour of the CCE estimator, which is partly due to uncertainty

associated with estimating the true number of unobserved factors in the PC estimation. Further,

Westerlund and Urbain (2015) show that the performance of the PC estimator is sensitive to the

value of β. For β = 0, the PC estimator outperforms CCE, while for β 6= 0, the CCE estimator

tends to outperform.
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However, we find that the performance of the two-way Fixed Effect (FE) estimator has not

been widely investigated. Exceptions include the studies by Coakely, Fuertes, and Smith (2006),

Sarafidis and Wansbeek (2012) and Westerlund (2019). This simply reflects the conventional view

that the FE estimator would be inconsistent in the presence of IE, due to ignoring endogeneity

stemming from the correlation between regressors and factors/loadings. We aim to challenge this

maintained view. For large T , suppose that f t may represent the unobserved common policy or

globalisation trend, and γi are the heterogeneous individual responses (parameters).

In practice, it is important to test the validity of whether xit are correlated with γi or not.

Formally, we set the null and alternative hypothesis as follows:

H0 : xit uncorrelated with γi (3)

H1 : xit correlated with γi (4)

Under Assumptions A(ii) and (iii), we can express γ ′if t in (1) by
1

γ ′if t = µ+ αi + θt + γ̊ ′iḟ t (5)

where µ = γ̄ ′f̄ , αi = γ ′if̄ , θt = γ̄ ′f t, γ̊i = γi − γ̄ and ḟ t = f t − f̄ with γ̄ = N−1
∑N

i=1 γi and

f̄ = T−1
∑T

t=1 f t. Using (5) in (1), we have:

yit = β′ixit + µ+ αi + θt + γ̊ ′iḟ t + εit (6)

This transformation clearly shows that the panel data model with nonzero-mean IE, γ ′if t in (1)

can be equally expressed as the 2-way fixed effects panel data model with zero-mean IE, γ̊ ′iḟ t in

(6).2 Without loss of generality we assume βi = β for i = 1, ..., N , and apply the 2-way within

transformation to (6) to obtain:

ÿit = β′ẍit + üit, üit = γ̊ ′iḟ t + ε̈it (7)

where ÿit = yit−ȳi.−ȳ.t−ȳ.. with yi. = T−1
∑T

t=1 yit, y.t = N−1
∑N

i=1 yit, ȳ.. = (NT )−1
∑N

i=1

∑T
t=1 yit,

and similarly for ẍit and ε̈it.
1Hsiao (2018) argues that the assumption of zero mean for γi or f t often used as normalization conditions, is

not innocuous. With the mean zero assumption for γi, the cross-sectional mean equation of (1)

ȳt = β′x̄t + ε̄t, t = 1, ..., T

no longer involves γ′if t, where ȳt = N−1
∑N

i=1 yit, and similarly for x̄t and ε̄t. Thus the least squares regression
of ȳt on x̄t is consistent and asymptotically normally distributed as T → ∞. Similarly, under the mean zero
assumption for f t, the individual time series mean equation

ȳi = x̄′iβ + ε̄i, i = 1, ..., N,

does not involve γ′if t, where ȳi = T−1
∑T

t=1 yit, and similarly for x̄i and ε̄i. The least squares regression of ȳi on
x̄i can yield consistent and asymptotically normally distributed estimator of β if N is large. In this regard, we
consider the general case with E (γi) 6= 0 and E (f t) 6= 0.

2This may suggest that the additive case with γi = (αi, 1)′ and f t = (1, θt + µ)′ may not always be the special
case of the interactive effects, γ′if t, as argued by Bai (2009), because we have both 2-way effects, αi + θt and
zero-mean interactive effects, γ̊′iḟ t in (6).
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Under Assumption A and (3), it is easily seen by the independence of γi from all other random

quantities in the model and E (̊γi) = E (γi − γ̄) = 0 that ẍit is uncorrelated with the composite

error, üit = γ̊ ′iḟ t + ε̈it in (7), provided xit are strictly exogenous with respect to εit because

E
(
ẍ′it̊γ

′
iḟ t

)
= E

{
ẍ′itḟ

′
tE
(̊
γi|ẍit, ḟ t

)}
= 0. (8)

See also Section 5 in Hsiao (2018). Therefore, under the null hypothesis, (3), we can apply the

two-way FE estimation to (1) and obtain a consistent estimator of β from (7). Conversely, if

xit and γi are correlated, it is clear that E (üitxit) 6= 0 so that the FE estimator is inconsistent.

Notice that the consistency of the FE estimator requires only γi to be uncorrelated with xit, but

this is implicitly a maintained assumption in the CCE literature.3 A further possibility that we

do not entertain is that xit contains a different set of factors to that entering yit directly and that

the two sets of factors are uncorrelated. This points out the symmetry of the role of loadings and

factors in the IE setting. Then, (8) may hold even if (3) does not. However, we view this setting

as too unlikely to be of interest.

The two-way FE estimator of β is given by

β̂FE =

(
N∑
i=1

Ẍ
′
iẌi

)−1 N∑
i=1

Ẍ
′
iÿi (9)

where Ẍi = (ẍi1, ..., ẍiT )′ and ÿi = (ÿi1, ..., ÿiT )′. As üit in (7) still contains zero-mean IE, γ̊ ′iḟ t,

the standard variance estimator for β̂FE will be invalid. Thus, we propose the two consistent

variance estimators, which are also robust to the heteroscedasticity and the serial-correlation as

well as the slope heterogeneities. The first is the nonparametric variance estimator, similarly

applied in deriving the variance of the CCE estimator by Pesaran (2006):

V̂
NON

(
β̂FE

)
(10)

=

(
N∑
i=1

Ẍ
′
iẌi

)−1( N∑
i=1

(
Ẍ
′
iẌi

)(
β̂FE,i − β̄FE

)(
β̂FE,i − β̄FE

)′ (
Ẍ
′
iẌi

))( N∑
i=1

Ẍ
′
iẌi

)−1

where β̂FE,i =
(
Ẍ
′
iẌ
)−1

Ẍ
′
iÿi and β̄FE = 1

N

∑N
i=1 β̂FE,i. Next, we consider the following

heteroscedasticity and autocorrelation robust variance estimator (see CHNY):

V̂
HAC

(
β̂FE

)
=

(
N∑
i=1

Ẍ
′
iẌi

)−1( N∑
i=1

Ẍ
′
iûFE,iû

′
FE,iẌi

)(
N∑
i=1

Ẍ
′
iẌi

)−1
(11)

3Pesaran (2006) implicitly assumes that the factor loadings γi in (1) and Γi in (2), are uncorrelated. Bai (2009)
discusses this implication in detail, and shows via simulations that the CCE estimator is biased when xit is correlated
with both λi and f t. See also Westerlund and Urbain (2013) for the simulation evidence showing that the CCE
estimator performs poorly when factor loadings are correlated. Remark 2 in Westerlund and Urbain (2013) also
questions the uncorrelated factor loadings assumption by arguing that a common shock that has a positive effect on
savings, should have negative effects on interest rates. However, their discussion relates to the sign of the average
effect of common shocks or the sign of the cross-section mean of loadings. Since the independence assumption does
not restrict the sign of these means, the relevance of such a relaxation would be somewhat questionable.
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where ûFE,i = ÿi − Ẍiβ̂FE .

We show that β̂FE is consistent and follows the normal distribution asymptotically under the

null, (3).

Theorem 1 Under Assumption A and under (3), as N,T →∞,
√
N
(
β̂FE − β

)
→d N

(
0k×1,Ψ

−1
FERFEΨ−1FE

)
(12)

where ΨFE = limN,T→∞
1
N

∑N
i=1E

(
Ẍ
′
iẌi

T

)
. In the heterogeneous case with βi = β+ηi, RFE =

R1,FE +R2,FE whilst RFE = R1,FE in the homogeneous case with βi = β, where

R1,FE = lim
N,T→∞

1

N

N∑
i=1

E

(
Ẍ
′
iḞ

T
γ̊ i̊γ

′
i

Ḟ
′
Ẍi

T

)
(13)

R2,FE = lim
N,T→∞

1

N

N∑
i=1

E

(
Ẍ
′
iẌi

T
ηiη

′
i

Ẍ
′
iẌi

T

)
, (14)

and Ḟ =
(
ḟ1, ..., ḟT

)′
. Furthermore,

V̂
NON

(
β̂FE

)−1/2 (
β̂FE − β

)
→d N (0, Ik) and V̂

HAC
(
β̂FE

)−1/2 (
β̂FE − β

)
→d N (0, Ik) .

(15)

3 The Hausman-type Test

A number of specification tests have been proposed to test the presence of the CSD or the multi-

plicative IE in panels. The most popular test is the cross-section dependence (CD) test statistic

proposed by Pesaran (2015), that is increasingly applied to the residuals of regression models for

use as an ex-post diagnostic tool. However, the CD test fails to reject the null hypothesis of no

error CSD when the factor loadings have zero means, implying that the CD test will display very

poor power when it is applied to cross-sectionally demeaned data. Furthermore, the residual-based

CD test has been shown to often reject the null hypothesis of no remaining CSD in the case of the

CCE estimator (e.g. Mastromarco, Serlenga, and Shin (2016)). Juodis and Reese (2018) show

that the application of the CD test to regression residuals obtained from IE models introduces a

bias term of order
√
T , rendering an erroneous rejection of the null.4 Sarafidis, Yamagata, and

Robertson (2009) propose an alternative testing procedure for the null hypothesis of homoge-

neous factor loadings against the alternative of heterogeneous loadings after estimating a linear

dynamic panel data model by GMM. This approach is valid only when N is large relative to T ,

but it can be applied to testing for any remaining error CSD after including time dummies. But,

4Nonetheless, the CD test may be used as a model-selection tool, with a reduction in the absolute value of the
CD test statistic typically being interpreted as an indication of an improved model specification.
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they maintain an assumption that the loadings between equations for y and x are uncorrelated

(see their Assumption 5(b)).

The PC estimator is consistent both under models with two-way additive (fixed) effects and

under models with IE, but less effi cient than the FE estimator under the null model with additive

effects only. But, the FE estimator is inconsistent under the alternative model with IE. Following

this idea, Bai (2009, Section 9) advances the following Hausman test for testing the null of additive

effects, i.e. γ ′if t = αi + θt against the alternative of IE:5

HBai =
(
β̂FE − β̂PC

)′
(V Bai)

−1
(
β̂FE − β̂PC

)
, (16a)

where V Bai = Ṽ ar
(
β̂PC

)
− Ṽ ar

(
β̂FE

)
, Ṽ ar

(
β̂FE

)
is the the standard variance estimator

provided by the two-way FE estimation, and Ṽ ar
(
β̂PC

)
is the analytic (sandwich-form) variance

estimator, which takes into account unknown form of heteroscedastic and autocorrelated errors.

Bai (2009) derives that HBai →d χ
2
k under the null.

The conventional wisdom is that if the null hypothesis of no error CSD is rejected, the FE

estimator would be biased due to the potential endogeneity arising from the correlation between

the regressors and unobserved factors and/or loadings. We have shown that the presence of IE

does not always imply that the FE estimator is inconsistent. In particular, the FE estimator

is still consistent under the null (3), even though the regressors are correlated with factors. In

this case we may prefer to use the simple FE estimator, which is invariant to any complex issues

related to selecting the number of unobserved factors incorrectly which would significantly affect

the performance of PC estimators (Moon and Weidner (2015)), and to employing the inconsistent

initial estimates which may not guarantee the convergence of the IPC estimator (Hsiao (2018)).

In this regard, it is surprising to find that the literature has been silent on investigating the

important issue of testing if the regressors are correlated with loadings or not in panels with IE.

For large T context, it is natural to allow for xit to be correlated with f t to avoid any omitted

variables bias. It still remains the important issue to test whether xit are correlated with γi.

Given the pervasive evidence of cross sectionally dependent errors in panels (Pesaran (2015)), as

the main contribution, we proceed to develop a novel Hausman-type test that investigates the

validity of the null hypothesis, (3). In the model (1), recall that the PC estimator is consistent

under the null, (3) and under the alternative, (4) whereas the FE estimator is consistent only

under the null, (3). Following this idea, we propose the Hausman-type test based on the difference

between the FE and PC estimators as follows:

H =
(
β̂FE − β̂PC

)′
V −1

(
β̂FE − β̂PC

)
(17)

5Focusing on the special cases, Castagnetti, Rossi, and Trapani (2015) propose two tests for the null of no factor
structure: one for the null that factor loadings are cross sectionally homogeneous, and another for the null that
common factors are homogeneous over time. Using extremes of the estimated loadings and common factors, they
show that their statistics follow an asymptotic Gumbel distribution under the null. Furthermore, they show that
the average-type statistics diverge under the null while the Hausman test is inconsistent.
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where β̂PC is the PC estimator to be defined below, and V = V ar
(
β̂FE − β̂PC

)
= V ar

(
β̂FE

)
+

V ar
(
β̂PC

)
− 2Cov

(
β̂FE , β̂PC

)
. Notice that the FE estimator is not necessarily more effi cient

than the PC estimator under the null, which implies that

V ar
(
β̂FE − β̂PC

)
6= V ar

(
β̂FE

)
− V ar

(
β̂PC

)
in contrast to the well-established finding in Hausman (1978). Hence, our proposed test is not

exactly the Hausman test. We interpret the Hausman-type test in (17) as a test for the null

hypothesis, (3) in heterogenous panels with IE, (1).

Before developing the asymptotic theory for the Hausman-type statistic, we describe the as-

ymptotic distribution of the bias-corrected PC estimator given by

β̂PC = β̃PC −
1

N
B̂NT −

1

T
ĈNT

where the β̃PC is the PC estimator obtained by iteratively solving the set of nonlinear equations:

β̃PC =

(
N∑
i=1

X ′iM F̂Xi

)−1 N∑
i=1

X ′iM F̂yi and

[
1

NT

N∑
i=1

(
yi −Xiβ̃PC

)(
yi −Xiβ̃PC

)′]
F̂ = F̂ V NT

where M F̂ = IT − F̂
(
F̂
′
F̂
)−1

F̂
′
, V NT is the diagonal matrix that consists of the r largest

eigenvalues of the above matrix in the brackets arranged in a decreasing order, F̂ is
√
T times

the corresponding eigenvectors, and 1
N B̂NT and 1

T ĈNT are the bias correction terms derived in

CHNY (see Appendix 9 for details).

Next, we propose two versions of the robust variance estimator as follows:

V̂
NON

(
β̂PC

)
(18)

=

(
N∑
i=1

X ′iM F̂Xi

)−1( N∑
i=1

(
X ′iM F̂Xi

) (
β̃PC,i − β̃PC

)(
β̃PC,i − β̃PC

)′ (
X ′iM F̂Xi

))( N∑
i=1

X ′iM F̂Xi

)−1

where β̃PC,i =
(
X ′iM F̂Xi

)−1
X ′iM F̂yi, and

V̂
HAC

(
β̂PC

)
=

(
N∑
i=1

X ′iM F̂Xi

)−1( N∑
i=1

X̂
′
iûPC,iû

′
PC,iX̂i

)(
N∑
i=1

X ′iM F̂Xi

)−1
(19)

where ûPC,i = yi − X̂iβ̂PC .

We provide the asymptotic distribution of the β̂PC estimator in Theorem 2.

Theorem 2 Suppose that Assumption A holds. In the heterogeneous case with βi = β + ηi, as

N,T →∞,
√
N
(
β̂PC − β

)
→d N

(
0k×1,Ψ

−1
PCR1,PCΨ−1PC

)
(20)
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where ΨPC = limN,T→∞
1
N

∑N
i=1E

(
V ′iV i

T

)
with V i = (vi1, ...,viT )′ defined in (35) in Appendix,

and

R1,PC = lim
N,T→∞

N−1
N∑
i=1

E

(
V ′iV i

T
ηiη

′
i

V ′iV i

T

)
(21)

In the homogeneous case with βi = β for all i, as N,T →∞,
√
NT

(
β̂PC − β

)
→d N

(
0k×1,Ψ

−1
PCR2,PCΨ−1PC

)
(22)

where

R2,PC = lim
N,T→∞

N−1
N∑
i=1

E

(
V ′iεiε

′
iV i

T

)
(23)

Furthermore,

V̂
NON

(
β̂PC

)−1/2 (
β̂PC − β

)
→d N (0, Ik) and V̂

HAC
(
β̂PC

)−1/2 (
β̂PC − β

)
→d N (0, Ik) .

(24)

It is worth noting in the homogeneous case with βi = β for all i that while the FE estimator is
√
N -consistent, the PC estimator can achieve a faster rate of convergence as it completely removes

the effect of the unobserved factors, asymptotically. Further, the rate of convergence of the FE

estimator is also shared by the CCE estimator, if the rank condition in Pesaran (2006) does not

hold. Such condition cannot be ascertained but needs to be assumed, in which case the FE and

CCE estimators have comparable theoretical properties. Nevertheless, the superiority of the PC

estimator does not necessarily extend to its small sample properties as we examine in Monte Carlo

study below.

Having established that the two versions of the robust estimator can consistently standardise

the estimator, we propose to estimate Cov
(
β̂FE , β̂PC

)
by6

Ĉ
NON

(
β̂FE , β̂PC

)
=

(
N∑
i=1

Ẍ
′
iẌi

)−1( N∑
i=1

(
Ẍ
′
iẌi

)(
β̂FE,i − β̂FE

)(
β̃PC,i − β̃PC

)′ (
X ′iM F̂Xi

))( N∑
i=1

X ′iM F̂Xi

)−1

Ĉ
HAC

(
β̂FE , β̂PC

)
=

(
N∑
i=1

Ẍ
′
iẌi

)−1( N∑
i=1

Ẍ
′
iûFE,iû

′
PC,iX̂i

)(
N∑
i=1

X ′iM F̂Xi

)−1
.

Accordingly, we define two operating versions of the Hausman-type statistic by

HNON =
(
β̂FE − β̂PC

)′ (
V̂
NON

)−1 (
β̂FE − β̂PC

)
(25)

HHAC =
(
β̂FE − β̂PC

)′ (
V̂
HAC

)−1 (
β̂FE − β̂PC

)
(26)

6Following Bai (2009), we have also employed the analytic (sandwich-form) variance estimator of V , taking into
account unknown form of heteroscedastic and autocorrelated errors. After conducting the preliminary simulations,
we find that the two robust estimators perform more satisfactory.
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where

V̂
NON

= V̂
NON

(
β̂FE

)
+ V̂

NON
(
β̂PC

)
− 2Ĉ

NON
(
β̂FE , β̂PC

)
(27)

V̂
HAC

= V̂
HAC

(
β̂FE

)
+ V̂

HAC
(
β̂PC

)
− 2Ĉ

HAC
(
β̂FE , β̂PC

)
(28)

We provide the main result in the following Theorem.

Theorem 3 Under Assumption A, as N,T →∞,

Hj →d χ
2
k for j = NON,HAC

Hj follows the χ2k distribution irrespective of whether the parameters are homogeneous or

heterogeneous, even though the rate of convergence of the PC estimator differs in these two cases

while the FE estimator is always
√
N -consistent. This follows from the use of the robust covariance

estimators that properly normalise the test statistic as is shown in the Appendix.

Next, notice that our proposed test, (17), is fundamentally different from Bai’s Hausman test,

(16a), because our null hypothesis, (3) is subsumed under his alternative model with IE, as is

clearly demonstrated in (6). Furthermore, Bai’s test will be consistent only if the regressors are

correlated with both factors and loadings. Importantly, Bai’s Hausman test will be inconsistent

if xit are uncorrelated with γi in (1), which is mainly because the FE estimator is still consistent

under (3). This suggests that the non-rejection of the null by the Bai’s test is not informative

because it cannot distinguish between the panel data model with the 2-way additive fixed effects

only and the model with IE where the regressors are uncorrelated with loadings. See the Online

Supplement for the simulation evidence. In the empirical applications below we find that Bai’s

Hausman test never rejects the null of additive effects model against the alternative of IE even

though the CD test strongly rejects the null of weak CSD for all the datasets. Such conflicting

results may suggest that the regressors are indeed uncorrelated with factor loadings even in the

panels with IE, which could provide the support for the usefulness of our proposed test.

4 Monte Carlo Simulations

4.1 Review of previous studies

Westerlund and Urbain (2013) find that the CCE estimator does not perform very well in the

presence of correlated factor loadings, especially if the full rank condition is not satisfied. Kara-

biyik, Reese, and Westerlund (2017) discuss the role of the rank condition in the CCE estimation,

and show that the second moment matrix of the estimated factors becomes asymptotically sin-

gular if the number of factors is strictly less than the number of dependent and independent

variables, invalidating the key arguments commonly applied to establish the asymptotic theory.

Westerlund and Urbain (2015) provide a formal comparison between the CCE and PC estimators

by employing the same data generating process (DGP)7 and show that the two estimators are
7The DGP and the estimators are not identical to what have proposed by Pesaran (2006) and Bai (2009).
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asymptotically equivalent only if N/T → 0 whereas their asymptotic distributions are no longer

equivalent if N/T → τ > 0, especially in terms of asymptotic biases.

Though a number of papers have examined the small sample performance of the CCE and

PC estimators, we find that only two studies by Sarafidis and Wansbeek (2012) and Westerlund

(2019), have explicitly analysed the performance of the FE estimator in the presence of CSD.

Assuming the homogenous parameters with N = 100 and T = 50, Sarafidis and Wansbeek (2012)

compare the performance of the FE, CCE and PC estimators. If the factor loadings between

the equations for y and x are uncorrelated and the rank condition is satisfied, they find that all

three estimators perform well in terms of bias and RMSE. If the factor loadings are correlated,

however, the FE estimator is severely biased. The CCE estimator is substantially biased if the

rank condition is violated. As expected, the performance of the PC estimator is not significantly

affected by the presence of correlated factor loadings.

Recently, Westerlund (2019) shows that the FE estimator can be consistent even in the pres-

ence of IE, because both FE and CCE estimators belong to a class of estimators that satisfy a

zero sum restriction. But, he maintains the assumption that factor loadings are uncorrelated in

which case he demonstrates that the performance of the FE and CCE estimators is satisfactory.

4.2 Monte Carlo design

We generate the data as follows:

yit = βixit + γ1if1t + γ2if2t + εit, (29)

xit = Γ1if1t + Γ2if2t + uit, (30)

where (f1t, f2t, εit, uit)
′ are drawn from the multivariate normal distribution with zero means and

covariance matrix, Σi = diag
(
σ2
f1
, σ2

f2
, σ2εi , σ

2
ui

)
. We follow Pesaran (2006) and Westerlund and

Urbain (2013), and generate the factor loadings, (γ1i, γ2i) and (Γ1i,Γ2i) as follows:

• Experiment 1 with uncorrelated factor loadings and the full rank in which case γ1i ∼

iidN(1, 1), γ2i ∼ iidN(0, 1), Γ1i ∼ iidN(0, 1), Γ2i ∼ iidN(1, 1) such that E
(
γ1i γ2i
Γ1i Γ2i

)
=(

1 0
0 1

)
.

• Experiment 2 with uncorrelated factor loadings and the rank deficiency in which case γ1i ∼

iidN(1, 1), γ2i ∼ iidN(0, 1), Γ1i ∼ iidN(1, 1), Γ2i ∼ iidN(0, 1), such that E
(
γ1i γ2i
Γ1i Γ2i

)
=(

1 0
1 0

)
.

• Experiment 3 with correlated factor loadings and the full rank in which case: γ1i = γ1+υ1i,

γ2i = γ2 + υ2i, Γ1i = Γ1 + υ1i, and Γ2i = Γ2 + υ2i with γ1 = 1, γ2 = 0, Γ1 = 2, Γ2 = 1 and

(υ1i, υ2i) ∼ iidN(0, I2), such that E
(
γ1i γ12
Γ1i Γ12

)
=

(
1 0
2 1

)
13



• Experiment 4 with correlated factor loadings and the rank deficiency in which case γ1i ∼

iidN(1, 1), γ2i ∼ iidN(0, 1), γ1i = Γ1i and γ2i = Γ2i such that E
(
γ1i γ2i
Γ1i Γ2i

)
=

(
1 0
1 0

)
.

For the main slope parameter, β, we consider the heterogenous case with βi = 1 + ηi and

ηi ∼ iidN (0, 0.04). We consider the following combination of (N,T ) = 20, 30, 50, 100, 200, and

set the number of replications at R = 1, 000.8

4.3 The small sample performance of FE, CCE and PC estimators

We examine the finite sample performance of the following estimators: the two-way fixed effect

(FE) estimator, β̂FE , the CCE estimator by Pesaran (2006), β̂CCE , and the bias corrected PC

estimators proposed by CHNY following Bai (2009), β̂PC . We consider both pooled and mean

group estimator except for β̂PC (see Appendix 7 for details). Notice that consistency of the PC

estimator depends crucially upon correctly selecting the number of unobserved factors (Moon and

Weidner (2015)). In this regard, to address uncertainty associated with the selection criteria, we

initially consider the two information criteria, denoted ICp1 and AIC1, proposed by Bai and Ng

(2002). Overall, we find that the PC estimator using ICp1 outperforms that with AIC1, and we

only report the results based on ICp1.

We report the following summary statistics:

• Bias: β̂R − β0, where β0 is a true parameter value and β̂R = R−1
∑R

r=1 β̂r is the mean

coeffi cient across R replications.

• RMSE: the root mean square error estimated by
√
R−1

∑R
r=1

(
β̂r − β0

)2
.

Table 1 shows the simulation results for Experiment 1 with the full rank and uncorrelated

factor loadings. The biases of all estimators are mostly negligible even in small samples with

the FE performing slightly worse than other estimators when N = 20. The results for RMSEs

display qualitatively similar patterns. RMSEs of CCE and PC estimators are lower than those

of the FE and decline as N or T grows. On the other hand, the RMSE of the FE estimator

improves only with N . Finally, biases and RMSEs of the pooled and mean group estimators

display almost identical patterns. The relative performance of FE, CCE and PC estimators is

generally in line with the simulation results reported in Chudik, Pesaran, and Tosetti (2011),

Sarafidis and Wansbeek (2012) and CHNY.

The important exception is the poor performance of the PC estimator using AIC1.9 In this

case the biases are substantial in small samples. They decline only if both N and T become large.

Further, their RMSEs are much larger than those of the other estimators and decrease only if N

8We have also considered the cases with homogeneous β’s and obtained qualitatively similar results, which are
reported in the Online Supplement.

9For a complete comparison we report the simulation results based on AIC1 in the Online Supplement.
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and T are large. This demonstrates the influence of the estimated number of factors for the PC

estimator. Given that information criteria have very variable performance, this is a problematic

issue for PC estimators in which case the FE estimator can make an operational alternative.

Table 2 presents simulation results for Experiment 2 where factor loadings are uncorrelated

but the rank condition is violated. The performance of the CCE estimators tends to slightly

deteriorate, both bias and RMSE of the CCE estimator are higher than in the case with the full

rank. The performance of the CCE estimator improves slowly with N only, suggesting that the

rank deficiency may slow down its performance. On the other hand, the bias and the RMSE of the

PC and FE estimators do not appear to be affected by the rank deficiency. Finally, we find that

the mean group estimator performs slightly better than the pooled estimator in small samples.

Table 3 shows the results for Experiment 3 with correlated loadings and full rank. Now, only

the FE estimator is severely biased. Next, the biases of the CCE estimator are not negligible

for small N , but its performance improves sharply with N , a consistent finding with Westerlund

and Urbain (2013), who note that ’the problem with correlated loadings goes away if the rank

condition is satisfied’. The overall performance of the PC estimator is qualitatively similar to the

previous cases, confirming that it is still consistent with both N and T .

Table 4 presents the simulation results for Experiment 4 with correlated loadings and the

rank deficiency. Both CCE and FE estimators are severely biased, confirming our theoretical

prediction that both estimators are inconsistent in the presence of correlated factors loadings as

also discussed in Sarafidis and Wansbeek (2012) and Westerlund and Urbain (2013). On the other

hand, the performance of the PC estimators is qualitatively similar to those presented in Table 2.

Overall, our results show that, when the factor loadings are uncorrelated, all the estimators

show a similar and satisfactory performance, suggesting that the FE estimator can produce reliable

results even in the presence of IE. When factor loadings are correlated, however, the FE estimator

becomes severely biased and the performance of the CCE estimator tends to worsen. Only under

the full rank condition, the performance of the CCE improves with N . The performance of the

bias-corrected PC estimator is qualitatively similar across all four experiments.

4.4 The performance of the Hausman-type test statistic

We examine the small sample performance of the H test statistics under the above four experi-

ments. To construct the H statistic, we consider the difference between the FE estimator, βFE
and the bias corrected PC estimator, βPC standardised respectively by both versions of robust

variance estimator, denoted NON and HAC.10

We examine size and power of the H statistic, but we also report the coverage rates for

the three estimators. We consider the cases with homogeneous βi = β, and with heterogeneous

10 In what follows, we apply the bias corrected PC estimators using ICp1. We have also investigated the perfor-
mance of the H statistics using the uncorrected PC estimators, and obtained qualitatively similar results.
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βi = β + ηi and ηi ∼ N(0, 0.04). Further, we consider serially correlated errors given by

εit = ρεεi,t−1 + vεit and uit = ρuui,t−1 + vuit with ρε = ρu = 0 or 0.5.

Hence, we examine the following two cases:

Case 1: Homogeneous β’s and no serial correlation; see Tables 5 and 6.

Case 2: Heterogeneous β’s and serial correlation; see Tables 7 and 8.

Overall, the test performance of the H statistics reported in Tables 5-8, is satisfactory and

qualitatively similar in terms of the empirical size and power. This confirms that all the estimators

are consistent under the null for both homogeneous and heterogeneous βs. Furthermore, the

satisfactory coverage rates revealed by the three estimators demonstrate that both nonparametric

and HAC variance estimators are also robust to serial correlation as well as the slope heterogeneity.

In Experiments 1 and 2, the sizes of both HNON and HHAC tests approach the nominal

level (0.05) in most cases as the sample size rises. The power of the H test is always one under

Experiments 3 and 4. In particular, when the regressors are uncorrelated with factor loadings,

βFE is shown to be consistent and its coverage rate reaches the nominal 95% in Experiments 1

and 2, irrespective of the rank condition. In Experiments 3 and 4 when loadings are correlated

with the regressor, however, βFE is significantly biased and displays a zero coverage rate. The

coverage rates of the bias-corrected PC estimator tend to 95% under all four experiments.11

We have also considered the cases with homogeneous β’s and serial correlation and with

heterogeneous β’s and no serial correlation, and obtained qualitatively similar results, which are

reported in the Online Supplement.

4.5 The pretest estimator

The estimated number of factors can influence the performance of the PC estimator considerably,

and this issue needs to be handled carefully. The previous literature has not provided clear

evidence on what is the best course of action to choose the number of factors. In this regard,

we propose a pretest estimator which is constructed as follows. The pretest estimator, denoted

β̂pretest, selects either the FE or the PC estimator depending on the Hausman-type test results.

To be more specific, we first evaluate the HNON and HHAC statistics. If the null hypothesis, (3)

is not rejected, then we select β̂pretest = β̂FE while, if the null is rejected, we set β̂pretest = β̂PC .

In the Online Supplement we have examined the finite sample performance of this pretest es-

timator under the same four experiments considered above. Its overall performance is satisfactory

in terms of bias and RMSE, irrespective of whether factor loadings are correlated or not. This

11We have also examined the coverage rates for estimators using the analytic variance estimator derived in (Bai,
2009, Section 9). We find that, when errors are serially correlated and conditionally heteroscedastic and/or β’s
are heterogenous, coverage rates of the PC estimators are mostly well below the nominal level . Similar findings
are reported in Chudik, Pesaran, and Tosetti (2011) and Sarafidis and Wansbeek (2012). This demonstrates an
importance of using the robust variance estimators for a reliable inference.
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suggests that such an estimator has considerable potential as it alleviates the issue of selecting

the number of factors, especially in the case where the regressors are found to be uncorrelated

with factor loadings in practice.

5 Empirical Applications

We investigate the empirical relevance of the null hypothesis of no correlation between the re-

gressors and factor loadings by applying our proposed statistics, HNON and HHAC defined in

(25) and (26) to four empirical topics with ten different datasets. The details of the data and the

empirical specifications are provided in Appendix 8.

The Cobb-Douglas production function The first application comprises six different cases -

the OECD members (N=26, T=41, Mastromarco, Serlenga, and Shin (2016)), the EU27 countries

(N=27, T=25), the 20 Italian regions (N=20, T=21), the 48 U.S. States (N=48, T=17), and

the aggregate sectorial data for manufacturing from developed and developing countries (N=25,

T=25). Following the economic growth literature, we estimate the Cobb-Douglas production

function by the FE and PC estimators and then apply our proposed Hausman-type test. For

OECD and EU27, the output is measured by the per capita GDP while the regressor is the

capital-labour ratio. For the Italian regions, output is the per capita value added while for the

U.S. application, the output is the per capita gross State product, with the same regressor. In

the fifth application, the output is measured as the aggregated manufacturing sector value-added

of OECD countries, see Eberhardt and Teal (2019). In the sixth application, the production

function is augmented by the R&D stock expenditure, and the output is the aggregate sectorial

value added for manufacturing, see Eberhardt, Helmers, and Strauss (2013).

The Gravity model of bilateral trade flows Next, we consider the estimation of a gravity

model of the bilateral trade flows for the EU14 countries, counting N=91 pairs from 1960 to 2008

(T=49). Here, we follow Serlenga and Shin (2007) and estimate the gravity panel data regression,

in which the bilateral trade flow is set as a function of GDP, countries’similarity, relative factor

endowment, the real exchange rate as well as the trade union and common currency dummies.

The gasoline demand function This application aims at estimating the price and income

elasticities of gasoline demand. In particular, we focus on estimating the demand function for

gasoline using the data from Liu (2014), which contains quarterly data for the 50 States in the

U.S. over the period 1994 to 2008 (N=50, T=60).

Housing prices We estimate the income elasticity of real housing prices from 1975 to 2010. We

consider two datasets; the first data from Holly, Pesaran, and Yamagata (2010) covers the 49 U.S.
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States (N=49, T=36) while the second covers the 384 Metropolitan Statistical Areas (N=384,

T=36) obtained from Baltagi and Li (2014).

In Table 9, we present the estimation and test results. First of all, the test results by both

HNON and HHAC provide a surprisingly convincing evidence that the null hypothesis of the

regressors being uncorrelated with factor loadings, is not rejected (even at 1% significance level)

in nine out of ten datasets considered. We also report the results for the CD test proposed by

Pesaran (2015), which tests the null of no (weak) CSD against the alternative of strong CSD, and

the Hausman test proposed by Bai (2009), HBai in (16a), which tests the null of additive-effects

against the alternative of IE. The CD test strongly rejects the null hypothesis for all the datasets

whilst the HBai test never rejects the null hypothesis of additive-effects model. These test results

are rather in conflict, since the former suggests the presence of CSD while the latter suggests no

IE. As highlighted in Section 2, however, the rejection of CD test does not always imply that the

FE estimator is biased in panels with IE. Further, in Section 3, we show that the HBai test has

no power against the alternative model with IE, especially if the regressors are uncorrelated with

factor loadings. Indeed, such conflicting results can provide support for our main test results that

the regressors are indeed uncorrelated with factor loadings in the panels with IE.

Next, we turn to the slope estimates provided by both FE and PC estimators, and find that

they are mostly significant. Their magnitudes and signs are relatively similar to each other, and

consistent with theoretical predictions. There is only an exception reported in the gravity model

of international trade.12

Combining all the above test and estimation results, we come to a conclusion that the regres-

sors are uncorrelated with factor loadings in many cross-sectionally correlated panels with IE in

practice. In this situation, the FE estimation can produce consistent estimator. We emphasise

that the FE estimator is invariant to any complex issues related to selecting the number of un-

observed factors incorrectly which would significantly affect the performance of PC estimators

(Moon and Weidner (2015)), and to employing the inconsistent initial estimates which may not

guarantee the convergence of the iterative PC estimator (Hsiao (2018)). This suggests that the FE

estimator can still be of considerable applicability in a wide variety of cross-sectionally correlated

panel data with IE, especially if the regressors are found to be uncorrelated with factor loadings,

the validity of which can be easily verified by our proposed test.

6 Conclusions

A large strand of the literature on panel data has focused on analysing CSD, based on the error

components model with IE, which is implicitly understood to bias the conventional two-way FE

estimator, due to the potential endogeneity arising from the correlation between regressors and

12Notice that the FE estimation tends to produce substantially large coeffi cient on GDP, which has been widely
reported in the literature.
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factors/loadings. Two main approaches have been advocated to deal with this issue: the CCE

estimator by Pesaran (2006) and the PC estimator by Bai (2009).

In this paper we have shown that the panel data model with IE can be encompassed by

the standard two-way error components model if the regressors are correlated with factors but

uncorrelated with the loadings. This suggests that the null hypothesis of no correlation between

the regressors and factor loadings emerges as an influential but under-appreciated feature of the

panel data model with IE. We propose the Hausman-type test, which follows the χ2 distribution

asymptotically under the null hypothesis. Monte Carlo simulation results confirm that the size

and the power of the proposed test is quite satisfactory even in small samples.

Finally, we apply the proposed tests to a number of existing panel datasets, and find strong

evidence in favor of the regressors uncorrelated with factor loadings in nine of ten datasets. In

this situation, the FE estimator would provide a simple and robust estimation strategy in practice

by avoiding nontrivial computational issues associated with the PC estimator, the performance of

which relies crucially upon applying the complex bias-corrections and using reliable information

criteria correctly selecting the number of unobserved factors.

We conclude by noting a couple of avenues for future research. A natural but challenging

extension is to develop the LM-type test which does not require us to estimate the PC estimator

at all. Next, it is worthwhile to develop the Hausman-type test in the dynamic heterogeneous

panel data model with IE.
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7 Appendix: Proofs

7.1 Preliminary Lemmata

We first provide two Lemmas that extend the Law of Large Numbers and Central Limit Theorem

to cover the martingale difference sequence for the panel data. We define the concept of spatial

martingale difference arrays as follows: Let Wi,T for i = 1, ..., N and T = 1, ..., T, be arrays of

matrices of random variables. Define the σ-field generated by Wj,T for j = 1, ..., N , j 6= i, as

F−i. Then, Wi,T is a spatial martingale difference array if E (Wi,T |F−i) = 0, i = 1, ..., N . It is

clear that the resulting sequence is a martingale difference array sequence for any ordering of the

random matrices Wi,T .

Lemma 4 Let Wi,T and µi,T for i = 1, ..., N and T = 1, ..., be arrays of matrices of random

variables and constants such that Wi,T − µi,T is a spatial martingale difference array where

supi,T E ‖Wi,T ‖1+δ <∞ for some δ > 0. Then, as (N,T )→j ∞,

N−1
N∑
i=1

(Wi,T − µi,T )→p 0.

Proof. By Theorem 12.11 of Davidson (1994), if supi,T E ‖Wi,T ‖1+δ <∞, then

lim
M→∞

sup
i,T

E
(
‖Wi,T − µi,T ‖ I{‖Wi,T−µi,T‖>M}

)
= 0,

which is a generalisation of uniform integrability to arrays. Then, the result follows immediately

by Corollary 19.9 of Davidson (1994).

Lemma 5 Let wi,T and µi,T , for i = 1, ..., N and T = 1, ..., be arrays of vectors of ran-

dom variables and constants such that wi,T − µi,T is a spatial martingale difference array where
E
[
(wi,T − µi,T ) (wi,T − µi,T )′

]
= Σi,T , and supi,T E ‖wiT ‖2+δ < ∞ for some δ > 0. Assume that

Σ = limN,T→∞N
−1∑N

i=1 Σi,T is positive definite and supN,T N
−1∑N

i=1 Σi,T < ∞. Then, as

(N,T )→j ∞,

N−1
N∑
i=1

(wiT − µiT )→d N(0,Σ). (31)

Proof. By Theorem 12.11 of Davidson (1994), if supi,T E ‖wi,T ‖2+δ <∞, we obtain the uniform
integrability condition,

lim
M→∞

sup
i,T

E
(
‖Wi,T − µi,T ‖ I{‖Wi,T−µi,T‖>M}

)
= 0.

Together with supN,T N
−1∑N

i=1 Σi,T < ∞, this implies that the Lindeberg condition holds by
Theorem 23.18 of Davidson (1994). Then, by Theorem 23.16 of Davidson (1994), it follows that

max
i,T

N−1 (wiT − µiT )→p 0. (32)

Together with supi,T E ‖wi,T ‖2+δ <∞, (32) implies (31) by Theorem 24.3 of Davidson (1994).
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7.2 Proof of Theorem 1

Consider first the homogeneous case with βi = β for all i in which case we have:

β̂FE − β =

(
N∑
i=1

Ẍ
′
iẌi

)−1 N∑
i=1

Ẍ
′
iüi =

(
N∑
i=1

Ẍ
′
iẌi

)−1 N∑
i=1

Ẍ
′
i

(
Ḟ γ̊i + ε̈i

)

=

(
N∑
i=1

Ẍ
′
iẌi

)−1 N∑
i=1

Ẍ
′
i

(
Ḟ γ̊i + εi

)
+ op (1) , (33)

where we use that ε̇it = εit − ε̄i. − ε̄.t + ε̄.. = εit + op (1).

Next, in the heterogeneous case with βi = β + ηi, we have

β̂FE − β =

(
N∑
i=1

Ẍ
′
iẌi

)−1 N∑
i=1

Ẍ
′
i

(
Ẍiηi + Ḟ γ̊i + ε̈i

)
(34)

=

(
N∑
i=1

Ẍ
′
iẌi

)−1 N∑
i=1

Ẍ
′
i

(
Ẍiηi + Ḟ γ̊i + εi

)
+ op (1) .

Using Lemma 4, it is easily seen that as (N,T )→j ∞,

1

N

N∑
i=1

Ẍ
′
iẌi

T
→p lim

N,T→∞

1

N

N∑
i=1

E

(
Ẍ
′
iẌi

T

)
= ΨFE

Next, by the independence of γi and ηi each other and from Xi and F across i, and using the

fact that E (̊γi) = E(ηi) = 0, it follows that Ẍ
′
i

(
Ḟ γ̊i + ε̈i

)
is a spatial martingale difference but

also a martingale difference sequence for any ordering across i. To see this, for any ordering over

i, we have:

E
[
Ẍ
′
i

(
Ẍiηi + Ḟ γ̊i + εi

)
|Ẍj , Ḟ , γ̊j ,ηj

]
= E

[
Ẍ
′
iẌiηi|Ẍj , Ḟ , γ̊j ,ηj

]
+ E

[
Ẍ
′
iḞ γ̊i|Ẍj , Ḟ , γ̊j ,ηj

]
+ E

[
Ẍ
′
iεi|Ẍj , Ḟ , γ̊j ,ηj

]
= E

[
Ẍ
′
iẌi|Ẍj , Ḟ , γ̊j ,ηj

]
E
[
ηi|Ẍj , Ḟ , γ̊j ,ηj

]
+ E

[
Ẍ
′
iḞ |Ẍj , Ḟ , γ̊j ,ηj

]
E
[̊
γi|Ẍj , Ḟ , γ̊j ,ηj

]
+ E

[
Ẋi|Ẍj , Ḟ , γ̊j ,ηj

]
E
[
εi|Ẍj , Ḟ , γ̊j ,ηj

]
for j 6= i

Since

E
[
ηi|Ẍj , Ḟ , γ̊j ,ηj

]
= E

[̊
γi|Ẍj , Ḟ , γ̊j ,ηj

]
= E

[
εi|Ẍj , Ḟ , γ̊j ,ηj

]
= 0 for j 6= i

hence

E
[
Ẍ
′
i

(
Ẍiηi + Ḟ γ̊i + εi

)
|Ẍj , Ḟ , γ̊j ,ηj

]
= 0 for j 6= i

which proves the martingale difference property. Notice that we repeatedly use the fact that

the product of a stochastic process with a second process, that is independent over its in-

dex as well as of the first process, is a martingale difference process. Next, we note that
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{
Ẍ
′
iεi√
T

}N
i=1

,
{
Ẍ
′
iḞ γ̊i
T

}N
i=1

and
{
Ẍ
′
iẌiηi
T

}N
i=1

are spatial martingale difference series. Notice that(∑N
i=1 Ẍ

′
iẌi

)−1∑N
i=1 Ẍ

′
iεi = Op

(
1√
NT

)
, is of the smaller probability order of magnitude than

the other two terms in the RHS of (34). Therefore, it follows that as (N,T )→j ∞,

1√
N

N∑
i=1

Ẍ
′
iḞ γ̊i
T

→d N (0,R1,FE)

1√
N

N∑
i=1

Ẍ
′
i

(
Ẍiηi + Ḟ γ̊i

)
Ẋ
′
i

T
→d N (0,R1,FE +R2,FE) .

where R1,FE and R2,FE are defined in (13) and (14). This proves (12) in Theorem 1. We will

prove (15) in the proof of Theorem 3.

7.3 Proof of Theorem 2

Let RNT denote terms of the lower order of probability than the leading terms. By Theorem 6 in

CHNY, if βi = β + ηi, then we have:

β̂PC− β =

(
N∑
i=1

V ′iV i

)−1 N∑
i=1

V ′iV iηi +RNT

CHNY assume that xit follows a linear factor structure, (2), which can be expressed as

Xi = FΓi + V i, (35)

whereXi = (xi1, ...,xiT )′, F = (f1, ...,fT )′ and V i = (vi1, ...,viT )′. See also Assumptions B1-B5

in CHNY. Next, if βi = β, we have:

β̂PC − β =

(
N∑
i=1

V ′iV i

)−1 N∑
i=1

V ′iεi +RNT

Note that
∑N

i=1 V
′
iV iηi = Op

(√
NT

)
and

∑N
i=1 V

′
iεi = Op

(√
NT

)
. Using Lemmas 4 and

5, it follows that as (N,T )→j ∞,(
1

N

N∑
i=1

V ′iV i

T

)−1
→p lim

N,T→∞

1

N

N∑
i=1

E

(
V ′iV i

T

)
= ΨPC

1√
N

N∑
i=1

V ′iV iηi
T

→d N (0,R1,PC) ;
1√
N

N∑
i=1

V ′iεi√
T
→d N (0,R2,PC)

where R1,PC and R2,PC are defined in (21) and (23). These prove (20) and (22). (24) follows by

the proof of Theorem 3.
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7.4 Proof of Theorem 3

Given Theorems 1 and 2, it suffi ces to derive the equivalence and consistency of the two robust

covariance estimators for β̂FE and β̂PC , which are given by (10), (11), (18) and (19), respectively.

Rewrite them compactly as

V NON
(
β̂FE

)
= Ψ̂−1FER̂

NON
FE Ψ̂−1FE ; V HAC

(
β̂FE

)
= Ψ̂−1FER̂

HAC
FE Ψ̂−1FE

V NON
(
β̂PC

)
= Ψ̂−1PCR̂

NON
PC Ψ̂−1PC ; V HAC

(
β̂PC

)
= Ψ̂−1PCR̂

HAC
PC Ψ̂−1PC

where X̂i = M F̂Xi,

Ψ̂FE =
N∑
i=1

Ẍ
′
iẌi, Ψ̂PC =

N∑
i=1

X̂
′
iX̂i =

N∑
i=1

X ′iM F̂Xi,

R̂
NON
FE =

N∑
i

(
Ẍ
′
iẌi

)(
β̂FE,i − β̂FE

)(
β̂FE,i − β̂FE

)′ (
Ẍ
′
iẌi

)
,

R̂
NON
PC =

N∑
i

X ′iM F̂Xi

(
β̂PC,i − β̂PC

)(
β̂PC,i − β̂PC

)′
X ′iM F̂Xi,

R̂
HAC
FE =

N∑
i

Ẍ
′
iûFE,iû

′
FE,iẌi, R̂

HAC
PC =

N∑
i

X̂
′
iûPC,iû

′
PC,iX̂i.

Finally, we define:

Ĉ
NON

(
β̂FE , β̂PC

)
= Ψ̂−1FER̂

NON
FE,PCΨ̂−1PC ; Ĉ

HAC
(
β̂FE , β̂PC

)
= Ψ̂−1FER̂

HAC
FE,PCΨ̂−1PC

where

R̂
NON
FE,PC =

N∑
i

Ẍ
′
iẌi

(
β̂FE,i − β̂FE

)(
β̂PC,i − β̂PC

)′
X̂
′
iX̂i,

R̂
HAC
FE,PC =

N∑
i

Ẍ
′
iûFE,iû

′
PC,iX̂i

To establish that the two covariance estimators are (asymptotically) equivalent, we need to show:

R̂
NON
FE = R̂

HAC
FE +RNT (36)

R̂
NON
PC = R̂

HAC
PC +RNT (37)

R̂
NON
FE,PC = R̂

HAC
FE,PC +RNT (38)

where RNT denotes terms of the lower order of probability than the leading terms. We focus on

the PC estimator in (37). First, consider R̂
HAC
PC and notice that

X̂
′
iûPC,i = X̂

′
i

(
uPC,i + X̂i

(
β̂PC − β

))
.
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By Theorem 11 in CHNY, it follows that as limN,T→∞
T
N → c ∈ (0,∆] with ∆ <∞,

N∑
i=1

X̂
′

iûPC,iû
′
PC,iX̂i =

N∑
i=1

V ′iuPC,iu
′
PC,iV i +RNT

where uPC,i = Xiηi + εi. Then, we have

R̂
HAC
PC =

N∑
i=1

V ′iV iηiη
′
iV
′
iV i +

N∑
i=1

V ′iεiε
′
iV i +RNT . (39)

Next, it is easily seen that

β̂PC,i − β =
(
X̂
′
iX̂i

)−1
X̂
′
iεi + ηi

β̂PC − β =
1

N

N∑
i=1

[(
X̂
′
iX̂i

)−1
X̂
′
iεi + ηi

]
Then,

X̂
′
iX̂i

(
β̂PC,i − β̂PC

)
= X̂

′
iX̂i

(
β̂PC,i − βi + βi − β + β − β̂PC

)
(40)

= X̂
′
iX̂i

(
β̂PC,i − βi

)
+ X̂

′
iX̂iηi + X̂

′
iX̂i

(
β − β̂PC

)
= X̂

′
iεi + X̂

′
iX̂iηi + X̂

′
iX̂i

(
β − β̂PC

)
By Theorem 11 in CHNY, we then obtain:

R̂
NON
PC =

N∑
i=1

V ′iV iηiη
′
iV
′
iV i +

N∑
i=1

V ′iεiε
′
iV i +RN,T . (41)

This proves (37).

Noticing that both V ′iεiε
′
iV i

T −E
(
V ′iεiε

′
iV i

T

)
and V ′iV i

T ηiη
′
i
V ′iV i

T −E
(
V ′iV i

T ηiη
′
i
V ′iV i

T

)
are iid

and martingale difference processes over i and by Lemma 4, we have:

1

N

N∑
i=1

V ′iV i

T
ηiη

′
i

V ′iV i

T
→p lim

NT,→∞

1

N

N∑
i=1

E

(
V ′iV i

T
ηiη

′
i

V ′iV i

T

)
1

N

N∑
i=1

V ′iεiε
′
iV i

T
→p lim

N,T→∞

1

N

N∑
i=1

E

(
V ′iεiε

′
iV i

T

)
This provides consistency of both variance estimators.

Along similar lines to (40), it is straightforward to prove (36) and (38) because(
Ẍ
′
iẌi

)(
β̂FE,i − β̂FE

)
= Ẍ

′
iiεi + Ẍ

′
iẌiηi + Ẍ

′
iḞ γ̊i + Ẍ

′
iẌi

(
β − β̂FE

)
,

and the term Ẍ
′
iḞ γ̊i can be analysed similarly to Ẍ

′
iẌiηi. Using these results, it readily follows

that (
β̂FE − β̂PC

)′ (
V̂
NON

)−1 (
β̂FE − β̂PC

)
∼ χ2k(

β̂FE − β̂PC
)′ (

V̂
HAC

)−1 (
β̂FE − β̂PC

)
∼ χ2k

irrespective of whether βi = β + ηi or βi = β, where V̂
NON

and V̂
HAC

are defined in (27) and

(28), respectively.
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8 Appendix: The Data and Empirical Specifications

We describe the empirical specifications and the data in details. For the production function, we

estimate the following panel data regression:

ln

(
Y

L

)
it

= β ln

(
K

L

)
it

+ eit, eit = γ ′if t + εit (42)

The first group consists of 26 OECD countries; Australia, Austria, Belgium, Canada, Chile, Den-

mark, Finland, France, Germany, Greece, Hong Kong, Ireland, Israel, Italy, Japan, Korea, Mexico,

the Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Turkey, the U.K. and the U.S.

The data is collected from PWT 7.0 and covers the period 1970-2010. Y is GDP measured in

million U.S. $ at the 2005 price, K the capital measured in millions U.S. $, constructed using

the perpetual inventory method (PIM), and L the labour measured as the total employment in

thousands. The second group contains the EU27 countries; Austria, Belgium, Bulgaria, Cyprus,

Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy,

Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, Slovakia,

Slovenia, Spain, Sweden and the U.K. The data are extracted from PWT 9.0 over the period

1990-2015 and the definition of the variables, Y , K and L is the same as above. The third group

includes 20 Italian regions over the period 1995-2016; Piemonte, Valle d’Aosta, Liguria, Lom-

bardia, Trentino Alto Adige, Veneto, Friuli-Venezia Giulia, Emilia-Romagna, Toscana, Umbria,

Marche, Lazio, Abruzzo, Molise, Campania, Puglia, Basilicata, Calabria, Sicilia and Sardegna.

Due to the data availability, we construct Y by the value added measured in million Euros at the

2010 price, L by the total employment in thousands, and K by Gross Fixed Capital Formation

in millions Euros. The data, gathered from ISTAT, covers the period 1995 to 2000. The fourth

data taken from Munnell (1990), comprises the 48 U.S. states and covers the period, 1970-1986.

Y is the per capita gross state product, K is the private capital computed by apportioning Bu-

reau of Economic Analysis (BEA) national stock estimates, and L is the number of employers in

thousands in non-agricultural payrolls. The fifth application employs the aggregate sectorial data

for manufacturing from developed and developing countries for the period 1970 to 2002, collected

from UNIDO by Eberhardt and Teal (2019). We extract a balanced panel of 25 countries with 25

time periods from 1970 to 1995, where we cover Australia, Belgium, Brazil, Colombia, Cyprus,

Ecuador, Egypt, Spain, Finland, Fiji, France, Hungary, Indonesia, India, Italy, Korea, Malta,

Norway, Panama, Philippines, Poland, Portugal, Singapore, the USA and Zimbabwe.

The production function is augmented with R&D in the sixth application. From the data

provided by Eberhardt, Helmers, and Strauss (2013), we extract a balanced panel of 82 country-

industry units representing manufacturing industries across ten OECD economies (Denmark, Fin-

land, Germany, Italy, Japan, Netherlands, Portugal, Sweden, the United Kingdom, and the US)
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from 1980 to 2005. We consider an augmented Cobb-Douglas production function:

lnYit = βl lnLit + βk lnKit + βrd lnRDit + eit, eit = γ ′if t + εit (43)

where Y measured as deflated value added, L is the total number of hours worked by persons

engaged, K is the total tangible assets by book value and RD is the R&D stock expenditure. See

Eberhardt, Helmers, and Strauss (2013) for details.

Next, we consider the gravity model specifications for the bilateral trade flows given by

ln (tradeit) = βgdp ln (gdpit) + βrer ln (rerit) + βsim ln (simit) + βrlf ln (rlfit) (44)

+βceeceeit + βeuroeuroit + eit, eit = γ ′if t + εit

Here, tradeit is the sum of bilateral import flows (importodt) and export flows (exportodt) measured

in million U.S. dollars at the 2000 price with o and d denoting the origin and the destination coun-

try, gdpit is the sum of gdpot and gdpdt both of which are measured as the gross domestic product

at the 2000 dollar price, rerit = nerodt×xpiUS is the real exchange rate measured in the 2000 dollar
price, where nerhft is the bilateral nominal exchange rate normalised in terms of the U.S. $, sim

is a measure of similarity in size constructed by simit =

[
1−

(
gdpot

gdpot+gdpdt

)2
−
(

gdpdt
gdpot+gdpdt

)2]
,

and rlfit = |pgdpot − pgdpdt| measures countries’difference in relative factor endowment where
pgdp is per capita GDP. cee and euro represent dummies equal to one when countries of origin

and destination both belong to the European Economic Community and share the euro as com-

mon currency, respectively. The data are collected from the IMF Direction of Trade Statistics,

and covers the period, 1960-2008. We consider a sample of 91 country-pairs amongst the EU14

member countries (Austria, Belgium-Luxemburg, Denmark, Finland, France, Germany, Greece,

Ireland, Italy, Netherlands, Portugal, Spain, Sweden and the U.K.).

Further, we estimate the gasoline demand function by

ln (qit) = βp ln (pit) + βinc ln (incit) + eit, eit = αi + γ ′if t + εit (45)

where gasoline consumption, qit, is approximated as monthly sales volumes of motor gasoline, per

capita per day; pit is the after tax gasoline prices computed by adding the state/federal tax rates

to the motor gasoline sales to end user price and incit represent the quarterly personal disposable

income. Prices, income, and tax rates are converted to constant 2005 dollars using GDP implicit

price deflators. The source of data is Liu (2014).

Finally, we estimate the income elasticity of real house price using the specification:

ln (pit) = βinc ln (incit) + eit, eit = γ ′if t + εit, (46)

where pit is the housing price index and incit is the real per capital income. We consider two

annual datasets. The first sample from Holly, Pesaran, and Yamagata (2010) consists of the panel
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data for 48 U.S. States (excluding Alaska and Hawaii) plus the District of Columbia (N = 49)

over the period 1975 to 2010. The second sample taken from Baltagi and Li (2014), contains a

panel data of 384 Metropolitan Statistical Areas over the period 1975 to 2010.

9 Appendix: The Bias Corrected PC Estimator

The bias corrected estimator proposed by Cui, Hayakawa, Nagata, and Yamagata (2019) is given

by

β̂PC = β̃PC −
1

N
B̂NT −

1

T
ĈNT

where the estimator for (βPC ,F ) denoted as (β̃PC ,F̂ ) is the solution of the set of nonlinear

equations

β̃PC =

(
N∑
i=1

X ′iM F̂Xi

)−1 N∑
i=1

X ′iM F̂yi and

[
1

NT

N∑
i=1

(
yi −Xiβ̃PC

)(
yi −Xiβ̃PC

)′]
F̂ = F̂ V NT

whereM F̂ = IT − F̂
(
F̂
′
F̂
)−1

F̂
′
, V NT is the diagonal matrix that consists r largest eigenvalues

of the above matrix in the brackets arranged in a decreasing order and F̂ is
√
T times the

corresponding eigenvectors. The bias correction term is given by

B̂NT = −
(

1

NT

N∑
i=1

ẐiM F̂ Ẑ
′
i

)−1
1

NT 2

N∑
i=1

T∑
t=1

ẐiF̂ Υ̂
−1
γ γ̂iû

2
it

where Ẑi = Xi − 1
N

∑N
j=1 âijXj with âij = γ̂′iΥ̂

−1
γ γ̂j , Υ̂γ = (Γ̂′Γ̂/N), Γ̂ = (γ̂1, γ̂2, ...γ̂N )′ and

ĈNT = −
(

1

NT

N∑
i=1

ẐiM F̂ Ẑ
′
i

)−1
1

NT

N∑
i=1

X̂iM F̂ Ω̂F̂ Υ̂
−1
γ γ̂i

where Ω̂ = diag
(
1
N

∑N
j=1 û

2
j1, ...,

1
N

∑N
j=1 û

2
jT

)
.
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Tables

Table 1: Simulation results for Experiment 1 with uncorrelated loadings
and the full rank

T/N 20 30 50 100 200 20 30 50 100 200
βCCEP βCCEMG

Bias
20 -0.0038 -0.0013 0.0015 -0.0001 -0.0003 -0.0041 -0.0026 0.0023 0.0000 -0.0002
30 -0.0037 0.0019 0.0021 -0.0003 -0.0007 -0.0027 0.0017 0.0017 -0.0008 -0.0008
50 0.0010 0.0008 0.0001 0.0014 0.0007 0.0006 0.0016 0.0002 0.0015 0.0006
100 0.0019 0.0002 -0.0008 -0.0004 0.0005 0.0015 0.0003 -0.0007 -0.0004 0.0005
200 -0.0011 0.0008 -0.0007 -0.0003 0.0003 -0.0006 0.0007 -0.0006 -0.0005 0.0003

RMSE
20 0.0730 0.0609 0.0444 0.0319 0.0229 0.0741 0.0613 0.0454 0.0322 0.0234
30 0.0670 0.0546 0.0407 0.0281 0.0195 0.0660 0.0546 0.0410 0.0282 0.0194
50 0.0598 0.0461 0.0347 0.0255 0.0181 0.0582 0.0458 0.0343 0.0254 0.0179
100 0.0538 0.0416 0.0311 0.0224 0.0163 0.0525 0.0407 0.0312 0.0222 0.0162
200 0.0545 0.0401 0.0294 0.0213 0.0151 0.0529 0.0397 0.0293 0.0212 0.0150

βFEP βFEMG

Bias
20 0.0008 0.0042 0.0006 0.0012 -0.0004 -0.0012 0.0002 -0.0004 0.0014 -0.0016
30 -0.0073 -0.0022 0.0010 0.0009 0.0004 -0.0017 -0.0023 0.0034 -0.0007 0.0004
50 -0.0011 -0.0001 -0.0017 0.0006 0.0029 0.0022 0.0053 -0.0002 0.0003 0.0031
100 0.0052 -0.0001 -0.0021 -0.0004 0.0015 0.0073 0.0010 -0.0017 -0.0007 0.0001
200 -0.0037 0.0010 0.0011 0.0029 -0.0003 -0.0014 0.0009 -0.0001 0.0022 0.0005

RMSE
20 0.1285 0.1041 0.0849 0.0578 0.0418 0.1230 0.1035 0.0808 0.0558 0.0398
30 0.1253 0.0995 0.0816 0.0579 0.0405 0.1198 0.0992 0.0760 0.0538 0.0387
50 0.1251 0.1001 0.0798 0.0559 0.0390 0.1152 0.0938 0.0749 0.0530 0.0369
100 0.1230 0.0968 0.0790 0.0544 0.0380 0.1114 0.0887 0.0715 0.0489 0.0354
200 0.1255 0.0996 0.0778 0.0533 0.0378 0.1135 0.0913 0.0717 0.0485 0.0339

βPC
Bias

20 0.0029 -0.0024 -0.0002 -0.0008 0.0000
30 0.0045 -0.0033 -0.0023 -0.0004 0.0004
50 -0.0012 0.0023 0.0002 0.0017 0.0000
100 -0.0019 -0.0018 -0.0005 -0.0008 -0.0002
200 -0.0006 0.0019 -0.0006 -0.0006 -0.0004

RMSE
20 0.0773 0.0577 0.0476 0.0327 0.0229
30 0.0685 0.0541 0.0405 0.0277 0.0193
50 0.0604 0.0469 0.0346 0.0247 0.0174
100 0.0515 0.0433 0.0320 0.0229 0.0162
200 0.0491 0.0388 0.0306 0.0210 0.0146

Notes: CCEP and CCEMG are the pooled and mean group common correlated estimators by Pesaran (2006);

FEP and FEMG denote the pooled and mean group two-way fixed effects estimators. PC is the iterative principal

component estimator in CHNY. The PC estimator is bias-corrected and evaluated using the ICp1 criterion by Bai

and Ng (2002).

28



Table 2: Simulation results for Experiment 2 with uncorrelated loadings
and the rank deficiency.

T/N 20 30 50 100 200 20 30 50 100 200
βCCEP βCCEMG

Bias
20 -0.0025 -0.0035 0.0001 -0.0015 0.0013 0.0011 -0.0054 -0.0008 -0.0012 0.0020
30 0.0052 0.0011 0.0015 -0.0015 0.0018 0.0018 0.0010 0.0013 -0.0016 0.0013
50 0.0010 0.0015 -0.0010 0.0001 0.0025 -0.0013 0.0014 0.0001 0.0001 0.0023
100 -0.0024 0.0010 -0.0029 -0.0001 0.0016 -0.0018 -0.0001 -0.0019 0.0005 0.0010
200 0.0010 -0.0054 0.0005 0.0005 -0.0011 -0.0010 -0.0048 0.0001 0.0010 -0.0006

RMSE
20 0.1168 0.0906 0.0703 0.0495 0.0351 0.1033 0.0819 0.0648 0.0443 0.0322
30 0.1107 0.0956 0.0691 0.0492 0.0347 0.0947 0.0802 0.0591 0.0428 0.0299
50 0.1071 0.0830 0.0668 0.0481 0.0339 0.0900 0.0717 0.0555 0.0402 0.0276
100 0.1022 0.0833 0.0657 0.0474 0.0320 0.0843 0.0700 0.0535 0.0384 0.0271
200 0.0980 0.0840 0.0665 0.0452 0.0333 0.0833 0.0694 0.0538 0.0367 0.0276

βFEP βFEMG

Bias
20 -0.0009 -0.0052 -0.0012 -0.0006 0.0006 -0.0001 -0.0032 -0.0008 0.0004 0.0005
30 0.0052 -0.0019 0.0017 0.0005 0.0006 0.0027 -0.0003 0.0022 0.0006 0.0013
50 0.0037 0.0056 -0.0018 0.0020 0.0014 0.0034 0.0032 -0.0036 0.0011 0.0009
100 -0.0021 0.0004 0.0012 -0.0010 0.0011 -0.0005 0.0017 0.0011 0.0009 0.0003
200 -0.0018 0.0011 0.0031 0.0002 -0.0007 -0.0033 -0.0009 0.0025 0.0003 0.0000

RMSE
220 0.1370 0.1054 0.0801 0.0593 0.0403 0.1301 0.0974 0.0767 0.0550 0.0398
30 0.1339 0.1106 0.0791 0.0573 0.0396 0.1214 0.1031 0.0735 0.0551 0.0366
50 0.1207 0.0994 0.0778 0.0571 0.0398 0.1140 0.0927 0.0716 0.0521 0.0377
100 0.1191 0.0985 0.0770 0.0537 0.0377 0.1082 0.0901 0.0687 0.0502 0.0346
200 0.1175 0.1015 0.0785 0.0541 0.0391 0.1111 0.0932 0.0716 0.0502 0.0362

βPC
Bias

20 -0.0026 -0.0003 -0.0035 -0.0017 0.0004
30 -0.0009 -0.0005 -0.0029 0.0009 -0.0009
50 -0.0031 -0.0041 0.0008 -0.0008 0.0001
100 -0.0016 -0.0017 -0.0014 0.0008 0.0000
200 -0.0014 0.0003 -0.0025 -0.0009 -0.0007

RMSE
20 0.0814 0.0630 0.0460 0.0323 0.0228
30 0.0674 0.0541 0.0397 0.0292 0.0203
50 0.0599 0.0473 0.0370 0.0245 0.0182
100 0.0521 0.0425 0.0320 0.0231 0.0157
200 0.0484 0.0399 0.0309 0.0218 0.0149

Notes: See notes to Table 1.
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Table 3: Simulation results for Experiment 3 with correlated loadings
and the full rank.

T/N 20 30 50 100 200 20 30 50 100 200
βCCEP βCCEMG

Bias
20 0.0728 0.0484 0.0301 0.0158 0.0086 0.0678 0.0459 0.0282 0.0155 0.0089
30 0.0727 0.0468 0.0297 0.0130 0.0088 0.0675 0.0440 0.0283 0.0130 0.0083
50 0.0750 0.0502 0.0287 0.0150 0.0074 0.0683 0.0471 0.0274 0.0145 0.0073
100 0.0746 0.0474 0.0304 0.0152 0.0073 0.0682 0.0444 0.0291 0.0149 0.0071
200 0.0767 0.0513 0.0298 0.0144 0.0075 0.0700 0.0482 0.0287 0.0141 0.0074

RMSE
20 0.1121 0.0808 0.0566 0.0346 0.0249 0.1060 0.0791 0.0570 0.0352 0.0250
30 0.1007 0.0738 0.0500 0.0330 0.0227 0.0955 0.0710 0.0493 0.0326 0.0225
50 0.1011 0.0711 0.0465 0.0291 0.0185 0.0940 0.0678 0.0450 0.0288 0.0184
100 0.0959 0.0644 0.0443 0.0273 0.0175 0.0886 0.0613 0.0432 0.0269 0.0175
200 0.0984 0.0675 0.0439 0.0261 0.0168 0.0901 0.0644 0.0428 0.0259 0.0167

βFEP βFEMG

Bias
20 0.6517 0.6528 0.6545 0.6564 0.6574 0.5413 0.5372 0.5364 0.5378 0.5389
30 0.6528 0.6562 0.6591 0.6606 0.6602 0.5371 0.5381 0.5383 0.5378 0.5383
50 0.6586 0.6568 0.6571 0.6629 0.6637 0.5384 0.5360 0.5344 0.5393 0.5388
100 0.6589 0.6596 0.6619 0.6625 0.6637 0.5403 0.5386 0.5393 0.5379 0.5385
200 0.6589 0.6623 0.6626 0.6624 0.6651 0.5396 0.5411 0.5387 0.5365 0.5382

RMSE
20 0.6595 0.6586 0.6588 0.6595 0.6602 0.5492 0.5435 0.5410 0.5408 0.5415
30 0.6587 0.6612 0.6623 0.6629 0.6621 0.5438 0.5434 0.5416 0.5401 0.5402
50 0.6643 0.6607 0.6599 0.6647 0.6650 0.5445 0.5403 0.5373 0.5411 0.5400
100 0.6639 0.6628 0.6642 0.6639 0.6644 0.5456 0.5422 0.5418 0.5393 0.5393
200 0.6635 0.6657 0.6648 0.6634 0.6657 0.5446 0.5446 0.5409 0.5377 0.5389

βPC
Bias

20 0.0012 -0.0028 -0.0014 -0.0018 -0.0010
30 -0.0056 -0.0048 0.0000 -0.0007 -0.0012
50 -0.0055 -0.0040 -0.0019 -0.0013 -0.0004
100 -0.0043 -0.0041 -0.0024 -0.0016 -0.0005
200 -0.0042 -0.0035 -0.0016 -0.0021 -0.0005

RMSE
20 0.0759 0.0613 0.0453 0.0329 0.0234
30 0.0653 0.0518 0.0403 0.0286 0.0193
50 0.0572 0.0453 0.0362 0.0254 0.0180
100 0.0528 0.0421 0.0333 0.0233 0.0160
200 0.0500 0.0391 0.0312 0.0214 0.0150

Notes: See notes to Table 1.
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Table 4: Simulation results for Experiment 4 with correlated loadings
and the rank deficiency.

T/N 20 30 50 100 200 20 30 50 100 200
βCCEP βCCEMG

Bias
20 0.4731 0.4771 0.4785 0.4777 0.4758 0.3478 0.3478 0.3434 0.3405 0.3384
30 0.4750 0.4766 0.4839 0.4857 0.4879 0.3469 0.3412 0.3453 0.3447 0.3429
50 0.4843 0.4839 0.4880 0.4895 0.4867 0.3472 0.3450 0.3458 0.3447 0.3395
100 0.4882 0.4939 0.4882 0.4873 0.4923 0.3518 0.3475 0.3429 0.3396 0.3425
200 0.4842 0.4887 0.4909 0.4925 0.4947 0.3466 0.3454 0.3444 0.3426 0.3427

RMSE
20 0.4926 0.4925 0.4902 0.4873 0.4856 0.3647 0.3607 0.3528 0.3470 0.3445
30 0.4915 0.4875 0.4927 0.4919 0.4934 0.3602 0.3499 0.3521 0.3491 0.3465
50 0.4960 0.4932 0.4949 0.4941 0.4906 0.3563 0.3526 0.3511 0.3482 0.3422
100 0.4990 0.5008 0.4933 0.4906 0.4947 0.3609 0.3535 0.3468 0.3421 0.3441
200 0.4946 0.4955 0.4950 0.4951 0.4963 0.3549 0.3512 0.3477 0.3447 0.3439

βFEP βFEMG

Bias
20 0.6495 0.6548 0.6516 0.6571 0.6558 0.5387 0.5403 0.5353 0.5375 0.5357
30 0.6504 0.6564 0.6600 0.6605 0.6617 0.5358 0.5382 0.5412 0.5399 0.5383
50 0.6563 0.6556 0.6608 0.6643 0.6628 0.5359 0.5361 0.5398 0.5418 0.5376
100 0.6601 0.6632 0.6591 0.6618 0.6654 0.5416 0.5399 0.5365 0.5377 0.5400
200 0.6576 0.6603 0.6618 0.6653 0.6665 0.5383 0.5379 0.5388 0.5388 0.5389

RMSE
20 0.6583 0.6608 0.6561 0.6603 0.6584 0.5483 0.5470 0.5402 0.5407 0.5383
30 0.6579 0.6612 0.6635 0.6627 0.6634 0.5435 0.5434 0.5447 0.5422 0.5400
50 0.6618 0.6599 0.6636 0.6660 0.6640 0.5417 0.5407 0.5427 0.5436 0.5389
100 0.6651 0.6665 0.6615 0.6632 0.6663 0.5471 0.5436 0.5389 0.5392 0.5408
200 0.6629 0.6635 0.6639 0.6664 0.6672 0.5434 0.5414 0.5409 0.5400 0.5396

βPC
Bias

20 0.0013 -0.0012 -0.0011 -0.0005 0.0002
30 -0.0028 0.0002 -0.0001 -0.0007 -0.0009
50 -0.0031 -0.0026 -0.0008 -0.0005 -0.0003
100 -0.0045 -0.0020 -0.0009 -0.0009 0.0004
200 -0.0019 -0.0018 -0.0013 -0.0008 -0.0005

RMSE
20 0.0738 0.0597 0.0460 0.0323 0.0227
30 0.0638 0.0530 0.0404 0.0277 0.0205
50 0.0575 0.0473 0.0350 0.0254 0.0175
100 0.0518 0.0403 0.0307 0.0232 0.0161
200 0.0500 0.0384 0.0306 0.0209 0.0154

Notes: See notes to Table 1.
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Table 5: Size and power of the HNON statistic and coverage rates at 95 % level.
Experiment 1 Experiment 3

Size Power
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.072 0.059 0.059 0.057 0.047 50 1 1 1 1 1
100 0.058 0.055 0.058 0.054 0.051 100 1 1 1 1 1
150 0.073 0.070 0.053 0.047 0.047 150 1 1 1 1 1
200 0.061 0.050 0.049 0.056 0.048 200 1 1 1 1 1
500 0.071 0.054 0.048 0.046 0.060 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.919 0.939 0.950 0.941 0.942 50 0 0 0 0 0
100 0.936 0.950 0.942 0.952 0.944 100 0 0 0 0 0
150 0.939 0.931 0.947 0.950 0.947 150 0 0 0 0 0
200 0.939 0.955 0.949 0.939 0.939 200 0 0 0 0 0
500 0.932 0.944 0.948 0.954 0.945 500 0 0 0 0 0

Coverage rates βPC Coverage rates βPC
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.920 0.939 0.943 0.936 0.950 50 0.922 0.942 0.937 0.941 0.947
100 0.917 0.923 0.926 0.953 0.955 100 0.925 0.948 0.936 0.942 0.953
150 0.910 0.936 0.938 0.957 0.937 150 0.931 0.921 0.933 0.942 0.942
200 0.916 0.934 0.933 0.951 0.951 200 0.918 0.938 0.939 0.932 0.935
500 0.911 0.929 0.924 0.934 0.948 500 0.927 0.937 0.943 0.945 0.948

Experiment 2 Experiment 4
Size Power

T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.090 0.059 0.061 0.044 0.038 50 1 1 1 1 1
100 0.073 0.050 0.052 0.059 0.054 100 1 1 1 1 1
150 0.051 0.053 0.037 0.056 0.051 150 1 1 1 1 1
200 0.076 0.051 0.058 0.049 0.047 200 1 1 1 1 1
500 0.072 0.057 0.042 0.069 0.048 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.925 0.943 0.939 0.944 0.961 50 0 0 0 0 0
100 0.927 0.956 0.945 0.936 0.941 100 0 0 0 0 0
150 0.951 0.955 0.962 0.950 0.941 150 0 0 0 0 0
200 0.928 0.947 0.947 0.948 0.951 200 0 0 0 0 0
500 0.935 0.942 0.956 0.933 0.953 500 0 0 0 0 0

Coverage rates βPC Coverage rates βPC
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.912 0.937 0.942 0.951 0.956 50 0.932 0.939 0.938 0.934 0.955
100 0.891 0.930 0.941 0.936 0.961 100 0.910 0.944 0.953 0.938 0.953
150 0.916 0.910 0.930 0.944 0.943 150 0.930 0.944 0.931 0.952 0.952
200 0.913 0.911 0.919 0.934 0.945 200 0.907 0.927 0.940 0.940 0.949
500 0.912 0.938 0.917 0.924 0.938 500 0.920 0.934 0.933 0.948 0.944

Notes: FE denotes the two-way fixed effect estimators; PC is the iterative principal component estimator in CHNY.

The PC estimator is bias-corrected and evaluated using the ICp1 criterion by Bai and Ng (2002). HNON is the

H-statistic defined in (25).
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Table 6: Size and power of the HHAC statistic and coverage rates at 95 % level.
Experiment 1 Experiment 3

Size Power
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.091 0.062 0.049 0.061 0.050 50 1 1 1 1 1
100 0.072 0.057 0.052 0.052 0.054 100 1 1 1 1 1
150 0.058 0.059 0.054 0.063 0.047 150 1 1 1 1 1
200 0.059 0.056 0.06 0.06 0.041 200 1 1 1 1 1
500 0.079 0.063 0.048 0.05 0.055 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.921 0.935 0.946 0.953 0.958 50 0 0 0 0 0
100 0.938 0.957 0.946 0.943 0.948 100 0 0 0 0 0
150 0.940 0.944 0.941 0.936 0.951 150 0 0 0 0 0
200 0.949 0.951 0.942 0.940 0.956 200 0 0 0 0 0
500 0.923 0.941 0.953 0.952 0.945 500 0 0 0 0 0

Coverage rates βPC Coverage rates βPC
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.926 0.937 0.942 0.941 0.936 50 0.922 0.935 0.934 0.945 0.937
100 0.903 0.927 0.953 0.949 0.953 100 0.929 0.941 0.932 0.941 0.947
150 0.908 0.946 0.935 0.938 0.940 150 0.926 0.913 0.951 0.939 0.952
200 0.926 0.932 0.943 0.944 0.945 200 0.928 0.926 0.950 0.947 0.950
500 0.904 0.939 0.94 0.931 0.935 500 0.921 0.942 0.939 0.950 0.950

Experiment 2 Experiment 4
Size Power

T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.070 0.070 0.056 0.060 0.054 50 1 1 1 1 1
100 0.076 0.050 0.065 0.055 0.049 100 1 1 1 1 1
150 0.070 0.073 0.050 0.051 0.045 150 1 1 1 1 1
200 0.064 0.061 0.061 0.061 0.054 200 1 1 1 1 1
500 0.059 0.065 0.060 0.052 0.048 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.935 0.938 0.949 0.947 0.949 50 0 0 0 0 0
100 0.914 0.952 0.942 0.946 0.942 100 0 0 0 0 0
150 0.931 0.926 0.954 0.948 0.960 150 0 0 0 0 0
200 0.933 0.936 0.937 0.943 0.945 200 0 0 0 0 0
500 0.941 0.937 0.944 0.951 0.954 500 0 0 0 0 0

Coverage rates βPC Coverage rates βPC
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.934 0.931 0.943 0.935 0.946 50 0.933 0.944 0.937 0.949 0.949
100 0.899 0.945 0.929 0.945 0.956 100 0.924 0.931 0.948 0.939 0.954
150 0.900 0.924 0.940 0.941 0.949 150 0.918 0.931 0.948 0.944 0.945
200 0.916 0.914 0.918 0.946 0.957 200 0.915 0.943 0.949 0.929 0.948
500 0.913 0.930 0.921 0.929 0.952 500 0.935 0.934 0.927 0.928 0.945

Notes: see notes to Table 5. HHAC is the H-statistic defined in (26).
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Table 7: Size and power of the HNON statistic and coverage rates at 95 % level.
Experiment 1 Experiment 3

Size Power
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.068 0.057 0.054 0.043 0.054 50 1 1 1 1 1
100 0.061 0.049 0.065 0.062 0.046 100 1 1 1 1 1
150 0.073 0.057 0.052 0.049 0.042 150 1 1 1 1 1
200 0.059 0.055 0.066 0.048 0.051 200 1 1 1 1 1
500 0.060 0.062 0.054 0.061 0.057 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.944 0.948 0.945 0.951 0.948 50 0 0 0 0 0
100 0.942 0.952 0.938 0.949 0.955 100 0 0 0 0 0
150 0.932 0.943 0.945 0.957 0.949 150 0 0 0 0 0
200 0.941 0.941 0.931 0.947 0.952 200 0 0 0 0 0
500 0.926 0.937 0.952 0.934 0.939 500 0 0 0 0 0

Coverage rates βPC Coverage rates βPC
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.926 0.914 0.942 0.941 0.941 50 0.933 0.933 0.946 0.948 0.936
100 0.922 0.948 0.951 0.943 0.937 100 0.925 0.948 0.936 0.934 0.944
150 0.919 0.924 0.936 0.945 0.941 150 0.924 0.943 0.937 0.947 0.957
200 0.919 0.929 0.944 0.945 0.935 200 0.927 0.937 0.934 0.942 0.954
500 0.916 0.945 0.938 0.914 0.952 500 0.915 0.926 0.949 0.958 0.943

Experiment 2 Experiment 4
Size Power

T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.064 0.054 0.062 0.057 0.055 50 1 1 1 1 1
100 0.056 0.068 0.055 0.05 0.044 100 1 1 1 1 1
150 0.061 0.053 0.051 0.052 0.051 150 1 1 1 1 1
200 0.067 0.05 0.064 0.048 0.054 200 1 1 1 1 1
500 0.072 0.062 0.065 0.062 0.053 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.938 0.933 0.942 0.946 0.953 50 0 0 0 0 0
100 0.943 0.943 0.933 0.937 0.955 100 0 0 0 0 0
150 0.943 0.945 0.956 0.949 0.946 150 0 0 0 0 0
200 0.941 0.951 0.935 0.957 0.943 200 0 0 0 0 0
500 0.924 0.944 0.949 0.938 0.950 500 0 0 0 0 0

Coverage rates βPC Coverage rates βPC
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.915 0.931 0.945 0.950 0.938 50 0.934 0.940 0.923 0.936 0.952
100 0.918 0.938 0.935 0.933 0.960 100 0.904 0.936 0.946 0.933 0.955
150 0.916 0.945 0.943 0.930 0.935 150 0.920 0.946 0.945 0.959 0.953
200 0.903 0.931 0.936 0.945 0.957 200 0.920 0.943 0.939 0.948 0.953
500 0.927 0.950 0.954 0.944 0.952 500 0.913 0.944 0.940 0.937 0.951

Notes: see notes to Table 5.
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Table 8: Size and power of the HHAC statistic and coverage rates at 95 %.
Experiment 1 Experiment 3

Size Power
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.068 0.074 0.045 0.054 0.053 50 1 1 1 1 1
100 0.068 0.053 0.054 0.052 0.045 100 1 1 1 1 1
150 0.070 0.064 0.056 0.053 0.047 150 1 1 1 1 1
200 0.053 0.060 0.058 0.059 0.043 200 1 1 1 1 1
500 0.068 0.055 0.062 0.059 0.053 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.937 0.941 0.940 0.947 0.950 50 0 0 0 0 0
100 0.929 0.938 0.947 0.943 0.950 100 0 0 0 0 0
150 0.924 0.933 0.940 0.947 0.954 150 0 0 0 0 0
200 0.943 0.943 0.943 0.928 0.956 200 0 0 0 0 0
500 0.924 0.944 0.952 0.931 0.946 500 0 0 0 0 0

Coverage rates βPC Coverage rates βPC
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.923 0.941 0.951 0.938 0.939 50 0.900 0.932 0.947 0.942 0.959
100 0.909 0.937 0.939 0.944 0.960 100 0.928 0.939 0.931 0.954 0.941
150 0.916 0.911 0.936 0.937 0.953 150 0.916 0.925 0.945 0.938 0.945
200 0.911 0.931 0.938 0.950 0.959 200 0.930 0.939 0.946 0.949 0.938
500 0.906 0.937 0.937 0.941 0.932 500 0.926 0.952 0.926 0.938 0.937

Experiment 2 Experiment 4
Size Power

T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.078 0.054 0.057 0.051 0.050 50 1 1 1 1 1
100 0.075 0.051 0.052 0.059 0.063 100 1 1 1 1 1
150 0.064 0.064 0.042 0.054 0.053 150 1 1 1 1 1
200 0.091 0.044 0.060 0.051 0.036 200 1 1 1 1 1
500 0.086 0.055 0.066 0.040 0.049 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.929 0.948 0.937 0.936 0.952 50 0 0 0 0 0
100 0.918 0.942 0.951 0.942 0.925 100 0 0 0 0 0
150 0.943 0.942 0.959 0.937 0.952 150 0 0 0 0 0
200 0.914 0.954 0.942 0.946 0.957 200 0 0 0 0 0
500 0.925 0.941 0.938 0.954 0.952 500 0 0 0 0 0

Coverage rates βPC Coverage rates βPC
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.918 0.942 0.937 0.928 0.934 50 0.929 0.917 0.935 0.942 0.940
100 0.910 0.936 0.925 0.936 0.941 100 0.937 0.929 0.938 0.952 0.947
150 0.920 0.930 0.938 0.942 0.947 150 0.926 0.940 0.943 0.945 0.936
200 0.907 0.929 0.949 0.945 0.940 200 0.918 0.925 0.944 0.946 0.945
500 0.922 0.932 0.941 0.944 0.952 500 0.930 0.940 0.945 0.944 0.948

Notes: see notes to Table 6.
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