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Abstract

We use deep neural networks to estimate time-varying equity risk premia. The key innovations are

the nonlinear and non-parametric generalisation of Fama-Macbeth regressions through partial deriva-

tives of an arbitrary estimator function with respect to its input and the introduction of Jacobian

regularisation in the objective function to empirical asset pricing. Our methodology outperforms all

linear benchmarks out-of-sample. Moreover, we introduce the concept of sensitivity-sorted portfolios.

Most importantly, we move elements of interpretability and explainability to the foreground.

Keywords: Conditional asset pricing model, nonlinear factor model, cross-section of expected re-

turns, machine learning, deep learning, Jacobian regularisation, interpretability, explainability

1 Introduction

Asset pricing centres around the question of how to explain variations in expected returns across assets.

While being a notoriously challenging task empirically, the answer to this question from an asset pricing

theory point of view is clear. In the absence of arbitrage, variations in expected returns should be

reflected by an asset’s exposure to a stochastic discount factor (SDF) mt+1 for any excess return ri,t+1.

Borrowing notation from Kelly et al. (2019), it follows that

Et[mt+1ri,t+1] = 0 ⇐⇒ Et[ri,t+1] =
Covt(mt+1, ri,t+1)

Vart(mt+1)︸ ︷︷ ︸
β′
i,t

(
−Vart(mt+1)

Et[mt+1]

)
︸ ︷︷ ︸

λt

, (1)

∗We are grateful for the helpful comments and suggestions from Markus Pelger (Stanford University), Harald Lohre

(Invesco), Maximilian Stroh (Quoniam), and the seminar participants of the 2019 and 2021 Bank of England Conference

Modelling with Big Data and Machine Learning: Interpretability and Model Uncertainty, where we first presented the idea,

https://www.bankofengland.co.uk/events/2019/november/modelling-with-big-data-and-machine-learning.
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where βi,t denotes the exposures to systematic risk factors of assets i = 1, ..., Nt+1 and λt are risk prices

which is defined as compensation an investor can expect to receive for bearing systematic risk. Without

loss of generality, if the SDF is linear in factors ft+1 (i.e. mt+1 = a+ b′ft+1; see Cochrane (2009)), the

conditional mean estimator function of equation (1) is equivalent to a beta pricing model (e.g. see Ross

(1976) or Hansen and Richard (1987)), such that

ri,t+1 = αi,t + β′
i,tft+1 + ϵi,t+1, (2)

where Et[ϵi,t+1] = Et[ft+1ϵi,t+1] = 0 and Et[ft+1] = λt, with most asset pricing tests typically focussing

on Et[αi,t] = 0. The conditional expectation of equation (1) and the beta representation of equation (2)

are the starting point of two of the most widely used approaches in empirical asset pricing: cross-sectional

regressions on firm characteristics and (one or) two-pass regressions such as the original Fama-Macbeth

(FM hereafter; Fama and MacBeth (1973)) regressions on (conditional) portfolio sorts, respectively pre-

defined and common risk factors. Thus, in the former case, the betas are assumed to be observable

(e.g. Lewellen (2015)), while in the latter case, the risk factors are assumed to be observable (e.g.

see Jagannathan and Wang (1998)). What unifies both approaches is the estimation and testing of

the marginal importance of each characteristic, respectively risk factor. We show that our proposed

methodology can be applied universally in both settings.

Current literature has four key challenges regarding the empirical estimation and interpretation of

risk exposures and prices. First, in practice, neither factors nor risk exposures are directly observable

and could theoretically depend on all observable information, yielding a potentially high-dimensional

estimation problem. The empirical hunt for new risk factors or firm characteristics that can explain

variations in expected returns has produced hundreds of potential candidates in recent years, as docu-

mented by Harvey et al. (2016), Mclean and Pontiff (2016) or Hou et al. (2020). Consequently, modern

asset pricing models should be capable of handling high-dimensional data. It is in this environment that

Cochrane (2011) points to alternative methods to navigate this ever-growing factor zoo effectively.

Second, there is little intuitive justification and strong empirical evidence against the linearity as-

sumption in equation (2), as discussed, for example, by Campbell and Cochrane (1999), Bansal and

Yaron (2004) or He and Krishnamurthy (2013). Therefore, an asset pricing model should (at least

partly) capture intrinsic nonlinearities in the return data. Non-parametric modelling, such as machine

learning, offers the opportunity to impose no restrictions on the estimator’s functional form. This data-

driven approach allows for nonlinear estimations and yields statistical factors and exposures instead of

pre-specified (and potentially misspecified) factors and exposures.

Third, despite an abundance of dynamic models, the overwhelming majority of empirical research is

concerned with estimating risk premia unconditionally, meaning that the compensation an investor can
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expect to receive for bearing systematic risk is assumed to remain constant over time. Notable counter-

examples include Ferson and Harvey (1991), Ilmanen et al. (2019) or Umlandt (2020) who study time-

varying risk premia and risk exposures. Still, little is known about the time-variation of risk exposures

and premia and their non-parametric estimation. In addition, the ever-changing nature of financial

markets, technological advancements and even newly introduced regulation make it seem unlikely that

risk premia should remain constant over time; e.g. see Oh and Patton (2018). The poor performance

of traditional value investing (e.g. Agrawal (2020)) in recent years or changing cross-asset correlation

structures during times of crises support this hypothesis from an asset manager’s or regulator’s point of

view.

Fourth, researchers, asset managers, or regulators have the fiduciary duty to understand their models’

inner structure and communicate it clearly with all associated risks to their clients or stakeholders. Hence,

it is desirable to engineer models with powerful out-of-sample performance (which is laborious enough

already) and move elements of interpretability and explainability to the foreground. In this context, the

terms interpretability and explainability are only loosely defined in the machine learning literature. Miller

(2019), for example, states that interpretability can be summarised as the degree to which a human can

understand the cause of a model’s output, with Kim et al. (2016) or Murdoch et al. (2019) argue in the

same vein and point out that interpretability is a useful umbrella term that captures the identification

of relevant knowledge extracted from a machine learning model. Rudin (2019) differentiates between

the two terms and argues that interpretable models are intrinsically understandable, while explainable

models are black-box models whose outputs become interpretable post-hoc. In addition, Doshi-Velez and

Kim (2017) point out that single performance measures, such as the cross-sectional mean R2, predictive

R2 or even out-of-sample mean-squared errors, are incomplete descriptions for a model’s suitability and

elements of interpretability and explainability should be part of the model selection process.

Interpretable or explainable machine learning in empirical asset pricing is fundamentally different from

other disciplines. For example, consider the domain of image recognition, where the data is characterised

by extraordinarily high signal-to-noise ratios, combined with an abundant training data availability.

Rudin (2019)’s arguments of introducing interpretable layers into machine learning models, such as

neural networks, follows common sense: if, for example, a model detects the head of a bird and is

capable of comparing the bird’s head to an extensive library of other birds’ heads and, thus, bases its

classification on the most probable commonality, this type of model mechanic is highly interpretable

for humans. On the other hand, datasets in economics and finance are fundamentally different due to

their meagre signal-to-noise ratio. The extent to which a human can fully understand where the data’s

signal is extracted from is, thus, diametrically different compared to other disciplines, such as image

recognition. Therefore, direct comparability of model interpretability across disciplines is limited or at

least difficult.
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We build on existing research, such as Chen et al. (2019), Gu et al. (2020a) and Freyberger et al.

(2020), that presents compelling evidence in favour of modelling the conditional mean of equation (1)

non-parametrically and nonlinearly. To estimate risk premia, we conflate the seminal cross-sectional re-

gressions of Fama and MacBeth (1973) with machine learning. Machine learning certainly is already an

integral component of modern asset pricing literature. However, to the best of our knowledge, there exists

little insight into the direct implementation of FM regressions using machine learning. The main reason

for this is that previous research has often deemed periodic refitting as computationally too expensive.

However, thanks to easy access to increased and on-demand computing power and significantly reduced

computing costs, those limitations are slowly but surely reduced. Despite being computationally more

expensive, machine learning helps mitigate one of the central and well-documented problems present in

cross-sectional regressions: in-sample overfitting. By drawing on tools such as sample-splitting, hyper-

parameter tuning or regularisation, machine learning specifically attempts to avoid in-sample overfitting

and seeks to generalise well out-of-sample1. This shift in focus helps to improve statistical inference

about risk premia.

With this paper, we aim to make four key contributions. First, under the condition of differentiability,

we propose the use of partial derivatives of the conditional mean estimator function with respect to its

inputs (i.e. the input gradients) as a means to estimate nonlinear and time-varying risk premia (e.g. see

Dixon and Polson (2019)). The nonlinearity of the thereby estimated risk premia directly results from

the estimator’s inherent nonlinearity (e.g. see Kapetanios (2007)). Refitting periodically in the style of

Fama-Macbeth regressions induces a time variation in our estimation. Partial derivatives are a natural

way to conceptualise risk premia and distinguish themselves through easy and fast implementation. We

show that our proposed methodology is a generalisation that nests the Fama-Macbeth estimator as a

special case assuming that the conditional mean estimator function is linear. Most importantly, the

combination of nonlinear modelling and input gradients allows for more general pricing factors. Most

cross-sectional research fundamentally draws on the seminal works by Black et al. (1972), Fama and

MacBeth (1973) and Gibbons et al. (1989) and perform statistical inference on the time-series averages

of risk premia estimates, typically with some form of adjustment for multiple testing as proposed by

Newey and West (1987) or Benjamini and Yekutieli (2001). Using averages is an intuitive and well-

established procedure. However, evaluating an overall average fails to recognise that risk premia may

change over time. We explicitly allow risk premia to vary over time and transition in and out of empirical

importance by constructing tolerance bands. This transition is particularly beneficial when analysing

times of economic stress. Moreover, we show that nonlinear risk premia facilitate much richer insights

as we can conduct analyses, for example, by company size or industry, without refitting the model on

the subset of interest.

1For an introduction to machine learning in general or machine learning in finance, we refer readers to Bishop (1995),
Hastie et al. (2009), Goodfellow et al. (2016) or De Prado (2018).
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Second, we introduce Jacobian regularisation as part of the objective function to empirical asset pric-

ing. The objective function generalises variable selection and shrinkage for nonlinear models analogously

to LASSO, Ridge or Elastic Net (e.g. see Tibshirani (1996), Zou and Hastie (2005) or Hastie et al.

(2009)), and thus increases model interpretability. The objective function minimises the residual sum of

squares subject to the regularisation of the gradient norm2. While the concept of Jacobian regularisation

is not new in the general machine learning literature, and in particular in image recognition (e.g. see

Drucker and Cun (1992), Sokolić et al. (2017), Varga et al. (2018) or Hoffman et al. (2019)), we introduce

it to asset pricing. Due to the constrained loss function’s nature, certain risk premia are set exactly to

(or shrunk towards) zero. Financial machine learning fundamentally differs from machine learning ap-

plications in other disciplines, such as image recognition or natural language processing, where machine

learning thrives. Due to limited data availability, the dynamic nature of financial markets and a low

signal-to-noise ratio, out-of-the-box machine learning algorithms show a high failure rate in practice. De

Prado (2018) argues that one of the critical factors to make financial machine learning applications more

successful is to move away from a purely data-driven approach to a quantamental strategy. Quantamen-

tal, in this context, describes the combination of data-driven algorithms with economic and financial

theory. Our proposed objective function makes exactly that possible. Economic theory suggests that

the true but unknown asset pricing model is approximately low-dimensional as recognised, for example,

by Kozak et al. (2018) or Barillas and Shanken (2018). By setting specific risk premia to exactly zero,

the objective function performs model selection. The resulting model is, consequently, more easily inter-

pretable due to its reduced dimensionality. Additionally, from a practitioners’ point of view, it is desirable

to achieve competitive out-of-sample performance while manually imposing restrictions on the influence

of specific risk factors or firm characteristics in the model. A significant amount of academic research in

financial machine learning finds that the most influential factors can frequently be attributed to market

frictions or momentum and regularly attests short-term-reversal to be the source of the most significant

signal (e.g. Gu et al. (2020b), or Lewellen (2015)). However, those factors can be difficult to trade on

in real-life, due to high portfolio turnovers and trading cost considerations (e.g. Leung et al. (2021)).

Therefore, there is great demand for performant machine learning models such as deep neural networks

and the possibility of simultaneously imposing individual restrictions on the learning algorithm. While

many practical applications are imaginable, such as ESG (economic, social and governance) restrictions,

we merely focus on the objective function’s theoretical properties and implementation methods in this

paper.

Third, we explicitly do not wish to shift existing out-of-sample performance frontiers with our empiri-

cal analysis. Instead, the collectivity of all innovations mentioned above intends to move interpretability

and explainability elements to the foreground. Those aspects have become increasingly important in

2The flexible form of the objective function also allows for simultaneous weight penalisation.
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recent years, not least because of asset managers, regulators, and researchers’ fiduciary duty to commu-

nicate all associated risks of their models to all relevant stakeholders. For example, we show how the

nonlinear interaction of model sensitivities to changes in the input helps to understand complex inner

model mechanics better. Moreover, our proposed methodology allows for model analysis on the asset

level. Such granular model inspection is still underrepresented in current literature to the best of our

knowledge but offers valuable insights. Examples include detecting individual assets that the model is

not handling well or extreme sensitivity outliers. An inspection on the asset level also helps with software

debugging or the discovery of unwanted model biases. It further allows for computationally inexpensive

and detailed analyses on subgroups of assets, such as by industry or size class, defined by an asset’s

market capitalisation.

Finally, we introduce the concept of double-sorted portfolios based on model sensitivities. Portfolios

sorts are ubiquitous in the empirical asset pricing literature and are used to test fundamental asset

pricing theories, establish pricing anomalies or identify profitable investment strategies (e.g. see Cattaneo

et al. (2020)). Portfolio sorts are most fundamentally based on the idea of sorting firm characteristics

into baskets on which, for example, equal or value-weighted portfolios are constructed and has been

informally recognised as a non-parametric alternative to imposing linearity on the relationship between

the returns of assets and firm characteristics (e.g. see Fama and French (2008), or Cochrane (2011)). We

develop a framework by casting double-sorted out-of-sample portfolios as sorts that are based on firm

characteristics and the expected volatility in expected returns due to changes in firm characteristics.

By incorporating expected out-of-sample return sensitivities to (potentially unexpected) changes in firm

characteristics, we offer a tool to manage a double-sorted portfolio’s expected risk. The critical difference

to existing approaches in current literature is that our methodology fundamentally relies on an out-of-

sample estimation that is assumed to generalise well to unseen data. This out-of-sample approach, thus,

is an empirically more difficult task. As a consequence, we do not claim to discover previously unknown

anomalies. Instead, we show that incorporating model sensitivities into the portfolio construction exercise

can help to manage out-of-sample risk.

Our empirical study follows the standard procedure in the empirical asset pricing literature. We source

monthly stock returns from CRSP for firms listed on NYSE, AMEX, and NASDAQ and construct 103

firm characteristics based on fundamental data sourced from Compustat, I/B/E/S, FRED and BLS. The

list of firm characteristics includes current literature’s most relevant candidates. Further, we consider

an alternative scenario in which only 49 of the most commonly used firm characteristics are included.

We refer to these 49 firm characteristics as core characteristics. The data sample spans over 492 months

from January 1980 to December 2020, yielding over four decades of data. We investigate ten different

neural networks, each with a separate objective function. In particular, we consider objective functions

with no model parameter penalisation, model weights regularisation and various forms of Jacobian (input
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gradient) regularisation.

Moreover, we benchmark the neural networks’ model performances against five standard linear bench-

marks, including ordinary least squares (OLS), weighted least squares (WLS), ridge, elastic net and least

absolute shrinkage and selection operator (LASSO). All ten neural networks under consideration out-

perform the linear benchmarks out-of-sample . We compare the out-of-sample performances using the

two key metrics, cross-sectional mean R2 and predictive R2. The best performing models in the core

characteristics only case are the neural networks with L1 norm weight, respectively column-wise L1

norm Jacobian penalisation as part of their objective function, with 17.20%, respectively 15.83% cross-

sectional mean R2 and 0.12%, respectively 0.09% predictive R2. This paper primarily focuses on the

newly introduced methodological contributions, which is why we do not claim to shift existing state-

of-the-art prediction performance frontiers. The competitive empirical performances of neural networks

whose objective function includes Jacobian regularisation are robust across many sample-splitting and

data pre-processing regimes, input dimensionalities, asset size classes (defined by their market capitali-

sation) and specific microcap considerations (such as excluding microcaps entirely from the investment

universe).

The empirical findings are six-fold. First, we confirm the empirical insights presented by Gu et al.

(2020b) or Chen et al. (2019) that deep neural networks can explain intrinsic return structures due to their

non-parametric and nonlinear form. However, performances can be subpar when using out-of-the-box

neural network training regimes, including objective functions with no model parameter regularisation.

The crucial innovation is the inclusion of the Jacobian or input gradient penalty, as it not only generalises

the linear model selection techniques, such as the LASSO or Ridge- to neural networks. It also introduces

an economically interpretably penalty term.

Second, we confirm the theoretical properties of the Jacobian regularisation term and show that

input gradient penalisation does indeed yield non-parametric model selection. In addition, the empirical

asset pricing literature has long argued that a parsimonious model representation is desirable. Thus,

the marginal benefit of including the Jacobian penalty term in the objective function is relatively more

significant in high-dimensional settings compared to lower dimensionalities. For example, the cross-

sectional mean R2 in the case of using all 103 firm characteristics is nearly 18 times higher for neural

networks that are trained with an objective function that includes an L1 norm column-wise penalty

term of the Jacobian compared to a neural network with no model parameter regularisation as part of

the objective function (16.12%, compared to 0.92%). However, in the case of manually reducing the

firm characteristic universe from 103 to the most relevant 49 firm characteristics, this marginal benefit

is significantly reduced, as the cross-sectional mean R2 of neural networks with L1 norm column-wise

Jacobian penalisation in their objective function is merely 1.1 times higher compared to neural networks

with no model parameter penalisation in the objective function. In addition, the most critical variables
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selected by the best performing neural networks are significantly less correlated than, for example, the

linear OLS benchmark. The advantageous correlation structure of the most influential firm characteristics

suggests that the best performing neural networks are better capable of extracting signals from firm

characteristics, even in the presence of mild multicollinearity, making them an empirically robust model

choice.

Third, our applied study provides strong empirical evidence suggesting a time-varying nature of risk

premia. In particular, we show that the unconditional and constant risk premia, which are typically

reported in the empirical asset pricing literature, are far less informative compared to the time-varying

risk premia with tolerance bands that we report in this paper. In our empirical study, we show, for

example, that the estimated risk premium associated with being exposed to the systematic risk factor

return-on-assets spikes during the financial crisis but levels out in the following years. Moreover, the risk

premia estimates are robust across different asset size classes defined by their market capitalisation.

Fourth, similarly to Chen et al. (2019) we show that nonlinear firm characteristic interactions matter,

which is also discussed by Gu et al. (2020b), or Bryzgalova et al. (2019). Moreover, pairwise locally

weighted regressions help to understand the nonlinear interactions between return prediction sensitivities

to changes in input firm characteristics. These nonlinear interactions provide valuable model insights

to all stakeholders. They help explain the expected model prediction sensitivities to changes in one

firm characteristic, given the model prediction sensitivity to changes in another firm characteristic for a

particular asset.

Fifth, the input gradients provide valuable model insights on the asset level. In particular, we show

that they are beneficial for evaluating the general functioning of the objective function of choice. Further,

they can help with software debugging and the detection of unwanted biases in the model estimation.

In an empirical study, we also discuss the concept of prediction stability, which is closely related to

model sensitivity outliers. While individual assets typically do not negatively influence the overall model

performance, model stakeholders may still be interested in stable return predictions for individual assets.

In this context, we stress that the objective function choice should become an integral part of the model

design exercise, such that the general functioning of the objective function adequately fulfils the required

features.

Sixth, double-sorted portfolios on firm characteristics and sensitivities can offer a practical tool that

can help to manage expected out-of-sample portfolio volatilities. We show that for neural networks

with column-wise L1 norm Jacobian regularisation, double-sorted value-weighted portfolios sorted on,

for example, return-on-assets and low expected model prediction sensitivities yield a Sharpe ratio that

is nearly 38% higher than the Sharpe ratio of portfolios that are sorted on high model sensitivities.

A similar pattern emerges for equal-weighted portfolios where the portfolio sorted on low sensitivities

is nearly 28% compared to the portfolio constructed on high sensitivities. We do not claim that such
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patterns are universally applicable to all firm characteristics and models. A possible explanation for this

pattern – which is also closely related to the concept of prediction stability – is that given an estimator

function g that generalises well out-of-sample, assets with low return prediction sensitivities to changes

in a specific characteristic are expected to be less volatile compared to assets with high sensitivities.

We intend to extend several different strands of the empirical asset pricing and econometrics literature.

This paper seamlessly blends into the extensive asset pricing literature investigating the risk factor

identification and econometrics literature estimating factor models. However, our paper most closely

relates to the newly established literature utilising non-parametric and nonlinear machine learning to

shrink the high-dimensional cross-section in asset pricing.

Starting with the capital asset pricing model (CAPM) of Sharpe (1964), Lintner (1965) and Mossin

(1966), which is building on the mean-variance portfolio optimisation proposed by Markowitz (1952)),

empirical asset pricing has attempted to capture the implications of the SDF: the empirical estimation

of risk exposures β and prices of risk λ3. The most important theme of this early seminal research are

the testable implications (e.g. see Jensen (1968), Black (1972) or Gibbons et al. (1989)) of the null

hypothesis that the intercept (alpha) and time-series average of risk prices are zero. Subsequently, the

single-factor approach of the CAPM4 has been continuously extended. Fama and French (1993) propose

a three-factor model, while Hou et al. (2015) present a four-factor model. Fama and French (2015)

move on to a five-factor model and Barillas and Shanken (2018) suggest a six-factor model. Similarly to

Lewellen (2015), we aim to shed some light on the navigation of this ever-growing factor zoo.

Methodologically, the seminal contribution by Fama and MacBeth (1973) is the infamous two-step

procedure that combines time-series with cross-sectional regressions in order to estimate β’s and λ’s in

equation (2). FM regressions are still heavily used today. In a first step, excess returns are regressed

on previously constructed risk factor portfolio returns5 using rolling time-series regressions such as for

months t − 60 to t − 1. After estimating the betas, cross-sectional regressions of excess returns on the

betas are utilised to estimate prices of risk, where the null hypothesis is that the mean risk premium

is zero. We translate this fundamental principle into a nonlinear and non-parametric setting where we

allow risk exposures and risk premia to vary over time. Fama and French (2020) show that observable

firm characteristics are equivalent to time-varying risk exposures in cross-sectional regressions.

We also build on extensive econometrics research investigating time-varying models, in contrast to, for

example, static-beta models. Ferson and Harvey (1991), Ghysels (1998), Chaieb et al. (2018), Ilmanen

et al. (2019) or Umlandt (2020) study time-varying risk premia. Similarly, Jagannathan and Wang

3Other pioneering work includes Black (1972), Merton (1973), Ross (1976), Banz (1981), Basu (1983) or Rosenberg
et al. (1985)

4Empirical evidence against the static single-factor CAPM is presented, for example, by Banz (1981), Reinganum (1981),
Gibbons (1982), Basu (1983), Chan et al. (1985), Shanken (1985) or Bhandari (1988)

5Typically, they are constructed as long-short portfolio returns based on firm characteristics. For example, at time t all
firms are ranked based on their characteristic ct,ik where an investor would go long the top decile and short the bottom
decile.
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(1996a) allow risk exposures and risk premia to vary over time. We extend this approach by discussing

the usefulness of confidence, respectively tolerance bands for time-varying risk premia estimations. In

particular, we discuss theoretical methodologies such as bootstrapping and put them into practical

context by considering their computational cost. To keep computational costs feasible, we provide an

empirical approach that yields empirical tolerance bands, such that risk premia can transition in and out

of empirical importance, where we define risk premia as empirically important if the tolerance bands do

not include zero.

In times of unprecedented data and computing power availability machine learning has emerged as

a powerful alternative in modern asset pricing to study the cross-section of stock returns6. Gu et al.

(2020b) conduct a large-scale comparison of various different machine learning methods and show the

benefits of non-parametric and nonlinear modelling. In particular, they show the competitive perfor-

mance of deep neural networks, not least because of their universal approximation capabilities; see, for

example, Cybenko (1989) or Hornik et al. (1989). Similarly, Messmer (2017a), Feng et al. (2018) and Gu

et al. (2020a) predict stock returns using deep neural networks. Chen et al. (2019) propose to further

include macroeconomic time-series in their neural network training. Feng et al. (2020) utilise deep neural

networks in connection with an economic objective function that minimises pricing errors which shows

a significant improvement in the efficient portfolio7. We build on this strand of literature and also apply

deep neural networks in our empirical application. However, our proposed methodology generalises to a

large number of models under the condition of differentiability.

In addition to deep neural networks, we also build on the newly established strand of literature

studying the dimensionality reduction of the high-dimensional cross-section of returns. Rapach et al.

(2013) apply LASSO to predict returns using lagged information. Similarly, Messmer (2017b), Feng and

Giglio (2017) or Han et al. (2019) propose the LASSO for model selection in order to navigate through

the factor zoo8. Freyberger et al. (2020) and Kozak et al. (2020) use shrinkage and selection methods

to estimate the SDF. Kelly et al. (2019) propose the instrumented principal components that extends

typical PCA with time-varying loadings. Lettau and Pelger (2020b) study the estimation of latent factors

using a generalisation of PCA. Gu et al. (2020a) propose non-linear PCA using autoencoders.

Last but not least, our paper also relates to Dixon and Polson (2019) as they also draw on partial

derivatives of deep neural networks with respect to their inputs. However, our approach differs from

Dixon and Polson (2019) in three ways: First, we apply partial derivatives in the context of asset

pricing models and, therefore, estimate not only systematic risk factors but also risk compensation.

Second, we directly incorporate the partial derivatives as part of the objective function through Jacobian

6The rise of machine learning in asset pricing has arguably been fuelled even more by spillover effects from successes in
other disciplines such as such as computer vision (e.g. Goodfellow et al. (2014)), natural language processing (e.g. Kumar
et al. (2016)) or complex gaming (eg. Silver et al. (2016)).

7Other notable papers include Heaton et al. (2017), Messmer (2017a), Bryzgalova et al. (2019), Imajo et al. (2020),
Harvey and Liu (2014).

8Other examples include Chernozhukov et al. (2018).
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penalisation. Third, we use partial derivatives as an instrument to shed light on complex inner model

structures, which are often described as black boxes. Moreover, our empirical application more closely

resembles current state-of-the-art data as we replicate the factor zoo of Green et al. (2017).

The rest of this paper is structured as follows. Section 2 lays out our proposed methodology. Section 3

discusses the empirical estimation strategy. In section 4 we introduce the considered investment universe

and the empirical results. Section 5 presents concluding remarks. We relegate all additional empirical

results and discussion to the appendix.

2 Methodology

In the following, we do not impose any restrictions on the functional form of returns and generalise the

beta representation of excess returns from equation (2) as an additive prediction error model such that

ri,t+1 = Et[ri,t+1] + ϵi,t+1, (3)

with

Et[ri,t+1] = gt(xi,t; Wt, θt), (4)

where Et[ri,t+1] = E[ri,t+1|It] denotes the conditional expectation of returns given all available infor-

mation It that is observable by an investor up until time t = 1, ..., T , and ϵ ∼ i.i.d.(0, σ2
ϵ ) are random

errors. In its most general form, gt is arbitrary, unknown and only depends on the K-dimensional input

vector xi,t. Potential remaining model (hyper-)parameters are captured by Wt and θt. More specifi-

cally, we apply common terminology and refer to the model parameters captured by Wt as learnable

model parameters, as their optimal9 values are not set manually. Instead they are found as part of the

model fitting process, such as gradient-based optimisation. In contrast, the model parameters captured

by θt cannot be learned through optimisation, but need to be set manually. Their optimal values are

typically found through k-fold cross-validation10. Individual stocks in equations (3) and (4) are indexed

by i = 1, ..., Nt, where Nt describes the total number of stocks at time t. The time index emphasises

that financial data is generally unbalanced and that the number of stocks can vary over time.

2.1 Generalisation of Fama-Macbeth Two-Pass Procedure

In this section, we review the standard two-step FM regression procedure (see Fama and MacBeth (1973)

or Cochrane (2009)) that remains popular in asset pricing literature to this day due to its simplicity.

Our approach can be seen as a generalisation of the static FM asset pricing approach. What unites the

classical FM and our generalised approach is estimating the risk exposures and the prices of risk in two

9Where the term optimal does not necessarily refer to a global optimum.
10We refer readers to Hastie et al. (2009) for a more comprehensive discussion.
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separate steps. Equation (4) raises the central question of how to approximate and estimate the unknown

estimator function gt. The conditional asset pricing model in equation (1) and the beta representation

in equation (2) form the basis of FM regressions as they assume a linear relationship between the risk

exposures (β) and risk prices (λ) and, thus, defines gt as

Et[ri,t+1] = gt(βi,t,λ) = βi,tλt, (5)

where βi,t = (β
(1)
i,t , · · · , β

(k)
i,t , · · · , β

(K)
i,t ) denotes a K-vector of risk exposures for asset i = 1, ..., Nt+1 and

λt = (λ1,t, · · · , λk,t, · · · , λK,t)
′ is a K-vector of risk prices. The fundamental problem (and the starting

point of the first step in FM regressions) is that neither the risk exposures nor the risk prices are directly

observable and, therefore, must be estimated first. The standard procedure assumes (e.g. see Bai and

Zhou (2015)) that returns are governed by a K-factor model, which – expressed in vector and matrix

notation – yields

rt+1 = αt + β
(1)
t f1,t+1 + · · ·+ β

(K)
t fK,t+1 + ϵt+1 = αt +Btf t+1 + ϵt+1 (6)

for the cross-section of returns, with rt+1 = (r1,t+1, · · · , rNt+1,t+1)
′ is an Nt+1-vector of excess returns,

β
(1)
t , · · · ,β(K)

t are Nt+1-vectors of the multiple-regression betas, Bt = (β
(1)
t , · · · ,β(K)

t ) is an [Nt+1×K]

matrix, and f t+1 = (f1,t+1, · · · , fk,t+1, · · · , fK,t+1)
′, αt = (α1,t, · · · , αNt+1,t)

′, with Et[αt] = 0, and let

ϵt+1 = (ϵ1,t+1, · · · , ϵNt+1,t+1)
′ be an Nt+1-vector of errors.

In the first step of the classical FM procedure, we find the beta estimates through linear time-series

regressions for each asset i = 1, ..., N , where Fama and MacBeth (1973) suggest a rolling regression

approach to induce a time-variation in the betas (see also Chen et al. (1986), Ferson and Harvey (1991)

or Petkova and Zhang (2005))), following a fixed-window look-back period of window size W , such that

ri,t+1 = h
(i)
t (F t+1) = αi,t + F t+1β

′
i,t + ϵi,t+1, ∀i = 1, ...., N, ∀t = W, ..., T (7)

where N denotes the total number of assets in the sample, ri,t+1 denotes a W -vector of excess returns

for asset i, βi,t = (β
(1)
i,t , · · · , β

(k)
i,t , · · · , β

(K)
i,t ) is a K-dimensional vector, and F t+1 is a [W ×K] matrix of

observable factors. Consequently, running rolling time-series regressions for each asset across time yields

E[β̂i,t|F t+1] = β̂i,t = (F ′
t+1F t+1)

−1F ′
t+1ri,t+1, ∀i = 1, ..., N, ∀t = W, ..., T (8)

While equation (8) can also be estimated over the entire sample, there is compelling empirical evidence

in favour of time-varying betas (e.g. see Jagannathan and Wang (1996b) or Adrian et al. (2015)) which is

why we concentrate on a rolling estimation. Most importantly, in the standard Fama-Macbeth procedure,
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equations (6)-(7) assume that the the factors f t+1 are observable and may or may not be tradable. The

nuance on tradeability is subtle but important: as discussed by Giglio and Xiu (2016), if the factors are

themselves portfolios (i.e. they are tradable), the risk premium may be directly estimated as the time-

series average of the excess return of the factor (see Cochrane (2009) for a detailed discussion). However,

investors may be concerned about non-tradable risks (i.e. risks that are not themselves portfolios, such

as inflation, consumption or liquidity), requiring the second pass in the FM procedure.

Once the betas are estimated, they are considered observable and substituted into equation (6).

Subsequently, the second step consists of T cross-sectional regressions such that the conditional asset

pricing model takes the form

Et[rt+1] = gt(β̂t) = β̂tλt (9)

and the prices of risk are estimated through T cross-sectional regressions

λ̂t = (β̂
′
tβ̂t)

−1β̂
′
trt+1, ∀t = 1, ..., T (10)

where λ̂t = (λ̂1,t, · · · , λ̂K,t)
′ is a K-vector of estimated risk prices at t, and βt = (β

(1)
t , · · · ,β(K)

t ). For

simplicity, note that equation (9) does not include a constant (e.g. see Cochrane (2009)), such that the

intercepts are pricing errors. Typically, the unconditional risk price is estimated as the overall time-series

average (e.g. see Green et al. (2017))

λ̂k =
1

T

T∑
t=1

λ̂k,t. (11)

We do not intend to discuss all econometric properties – such as standard errors –– of the estimators in

their entirety as they are well-documented and refer readers to Shanken (1992), Jagannathan and Wang

(1998), Cochrane (2011) and Bai and Zhou (2015).

In the following, we build on Ullah (1988), Dixon and Polson (2019) and Farrell et al. (2021) to

generalise the first and second pass of the classical FM procedure and assume that ĥ(i), respectively ĥ
(i)
t

and ĝt, are consistent estimators (which are collective denoted by f̂) of the true but unknown function

f∗, that is continuous and differentiable everywhere. Moreover, we require f̂ to be Lipschitz continuous,

meaning that there is a positive real constant A such that ∀x1,x2 ∈ RK , ∥f̂(x1)− f̂(x2)∥ ≤ A∥x1−x2∥.

Then, for the first pass of the two-pass procedure, the partial derivative of the estimator function with

respect to its inputs is bounded and a consistent estimator of the risk exposures such that

β̂
(k)
i,t (fk,t+1) =

∂ĥ(i)(F t+1)

∂fk,t+1
= ∇kĥ

(i), ∀ i = 1, ..., N ; ∀ k = 1, ...,K (12)

respectively

β̂
(k)
i,t (f

(k)
t+1) = β̄

(k)
i,t (f

(k)
t+1), (13)
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with

β
(k)
i,t (f

(k)
t+1) =

∂ĥ
(i)
t (F t+1)

f
(k)
t+1

= ∇kĥ
(i)
t , ∀ i = 1, ..., N ;∀ k = 1, ...,K;∀ t = W, ..., T. (14)

Equation (12) describes the simplest case of estimating h for asset i once over the entire sample, whereas

equations (13) to (14) generalise the rolling window estimation from equation (8). Thus, in equation (14),

ĥ
(i)
t is a rolling window estimate over a fixed-window look-back period os sizeW for each asset i = 1, ..., N ,

where F t+1 denotes a [W ×K] matrix of observable factors11, and f
(k)
t+1 is a W -dimensional vector of the

k-th factor. In equation (13), β̂
(k)
i,t denotes the fixed response estimate, which requires an aggregation of

the W -vector of partial derivatives summarised by β
(k)
i,t . The aggregation into a fixed response estimate

is further highlighted by the bar notation in equation (13). We discuss various aggregation forms in

section 2.3, but examples include the expected value (e.g. see Ullah (1988) or the median.

Analogously for the second pass, the partial derivatives of ĝt with respect to the risk exposures yield

consistent and bounded estimates for the prices of risk, where

λ̂k,t(β̂
(k)

t ) = λ̄k,t(β̂
(k)

t ), (15)

with

λk,t(β̂
(k)

t ) =
∂ĝt(β̂t)

∂β̂
(k)

t

= ∇kĝt, ∀ k = 1, ...,K, ∀ t = 1, ..., T, (16)

where ĝt was estimated cross-sectionally at each t, and λ̄k,t(β̂
(k)

t ) is a fixed response estimate.

From equations (12)-(16) it is easy to see that if h and g are linear in factors, respectively betas,

the partial derivatives yield the classical Fama-Macbeth regressions as a special case. However, there

is little intuitive justification for the strong assumption of linearity. In contrast, there exists strong

empirical evidence in favour of non-linear return dynamics (e.g. see Campbell and Cochrane (1999), He

and Krishnamurthy (2013), Pohl et al. (2018) or Gu et al. (2020a)). Consequently, we do not intend to

impose any restrictions on the functional forms of h and g, allowing for (potentially strong) nonlinearities,

which offers advantageous properties, especially in the context of non-parametric estimation, which we

discuss in section 2.3.

2.2 Special Case: Observable Risk Exposures – Firm Characteristics

The previous section discussed the generalisation of the Fama-MacBeth two-pass procedure. In particu-

lar, we showed that the starting point of the first pass is that neither the betas nor the prices of risk are

observable. Consequently, the betas must be estimated first through time-series regressions. However,

Fama and French (2020) use the insight from Fama (1976), that the coefficients from cross-sectional re-

gressions of excess returns on firm characteristics are equivalent to zero-investment portfolio returns, and

11Note that in equation (12), F t+1 denotes a [T ×K] matrix of observable factors.
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show that if the cross-sectional regressions are stacked over t, the setup becomes an asset pricing model.

In other words, firm characteristics are treated as observable and time-varying betas. There exists a

myriad of research that investigates the explanatory power of firm characteristics in the cross-section

of returns (e.g. see Fama and French (1992, 1996), Daniel and Titman (1997), Avramov and Chordia

(2006), Chordia et al. (2015), Lewellen (2015), Kelly and Pruitt (2015) or Freyberger et al. (2020)).

Prominent examples include firm characteristics such book-to-market equity, 1-month momentum, size

or investments, but modern asset pricing literature lists over 300 different firm characteristics candidates

(e.g. see Mclean and Pontiff (2016), Harvey et al. (2016) or Hou et al. (2020)).

When we treat firm characteristics as observable and time-varying betas – analogously to Fama and

French (2020) – we skip the first step of the FM two-step procedure and directly run T cross-sectional

regressions of excess returns on firm characteristics in order to estimate the prices of risk. Consequently,

we substitute β̂t = ct into equations (15) and (16), with ct = (c
(1)
t , · · · , c(k)t , · · · , c(K)

t ), where c
(k)
t

denotes an Nt+1 dimensional vector of the k-th observable firm characteristic for assets i = 1, ..., Nt+1.

It follows that the k-th time-varying price of risk is

λ̂k,t(c
(k)
t ) = λ̄k,t(c

(k)
t ), (17)

with

λk,t(c
(k)
t ) =

∂ĝt(ct)

∂c
(k)
t

= ∇kĝt, ∀ k = 1, ...,K, ∀ t = 1, ..., T (18)

where ĝt was estimated cross-sectionally at each t, and λ̄k,t(c
(k)
t ) is a fixed response estimate which

can, for example, be defined as λ̄k,t(c
(k)
t ) = Et[λk,t(c

(k)
t )] (e.g. see Ullah (1988)), or see 2.3 for a more

comprehensive discussion. Note that the firm characteristics in equation (20) and (18) are treated as

observable to an investor at t.

The general model setup in equation (6) introduces a return forecasting approach using lagged firm

characteristics that is common in the empirical asset pricing literature. Our approach differs from a pure

forecasting exercise in that we are not only interested in estimating gt consistently, but also deriving

prices of risks as well as deeper model insights. The aspect of model interpretability and communication

of inner model mechanics in particular is underrepresented in current literature. We, therefore, intend

to shift the focus from a pure forecasting perspective and introduce elements of model interpretability.

Moreover, our approach yields an asset pricing model analogously to equation (1).

One of the key problems in current literature is that there is an abundance of cross-sectional pre-

dictors (firm characteristics) to chose from. Moreover, a large number of proposed predictors are highly

correlated, which calls for the need of a parsimonious model representation to effectively navigate the

current factor zoo. In a first step, equations (20) and (18) do not introduce the possibility for model

selection as they merely focus on a generalised way to estimate prices of risk as the partial derivatives

15



of ĝt with respect to its inputs (firm characteristics). Equally, equations (20) and (18) do not limit the

number of firm characteristics that can be used for return estimations, making the setup very flexible.

However, we introduce nonlinear and non-parametric model selection that is conform with the above

introduced methodology as part of the objective function in section 3.3.

Goyal (2012) points to the problem that in a high-dimensional setting, the amount of independent

information in firm characteristics is unclear. Backed by the empirical analyses conducted by Messmer

(2017a) or Gu et al. (2020a), we follow a non-parametric approach analogously to the second step

discussed in section 2.1, and allow for nonlinear interactions between firm characteristics through the

flexible functional form of gt.

Due to its popularity in the empirical asset pricing literature, we adopt the ”one-step” procedure

introduced in this section, which treats firm characteristics as observable betas, in an empirical study

in section 4, which also makes our results directly comparable to Green et al. (2017). Consequently,

we merely concentrate on the estimation and statistical inference of risk prices assuming we observe the

betas through firm characteristics in the following. However, all subsequently introduced methodologies

are analogously applicable to the beta estimates.

2.3 Economic Interpretation and Discussion

In the following, we discuss the benefits and economic interpretation of the proposed methodology,

starting with the first pass of the two-pass procedure. First, nonlinear estimator functions yield time-

varying estimates. Equation (12) shows that even if we estimate h only once over the entire sample, the

resulting risk exposure estimates are still time-varying since they are a function of the time-varying factors

f t+1 (e.g. see Kapetanios (2007)). The same also applies for the estimation of risk prices. In the context

of non-parametric modelling, a single estimation is particularly beneficial as it dramatically reduces

computational costs. Single estimations, rather than periodic model re-fitting, are not uncommon in the

empirical asset pricing literature using machine learning (e.g. see Gu et al. (2020b)). Moreover, there

exists a long-standing debate about the time-varying nature of betas and the prices of risk (e.g. see Fama

and French (1989), Harvey (1989), Chen (1991), Ferson and Harvey (1991, 1993), Ferson and Korajczyk

(1995), Ghysels (1998), Gagliardini et al. (2016) or Umlandt (2020)), which is not fully explored yet.

On top of existing empirical evidence indicating time-variations in the risk exposures and prices of risk,

we argue that due to the ever-changing nature of financial markets, the introduction of novel regulation

and disruptive technologies, allowing for the time-varying estimation of risk exposures and prices of risk

is reasonable. Therefore, the proposed methodology is aimed to contribute to the on-going debate about

the time-varying nature of risk exposures and prices of risk by offering an alternative way of estimation.

However, to make our proposed methodology directly comparable to traditional FM regressions, we

also allow for periodic re-fitting. While this also applies for the estimation of risk exposures (which,
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for example, could involve a rolling or expanding window approach, see equation (14)), we specifically

emphasise this approach for the cross-sectional risk price estimations as it directly corresponds to the

original FM regressions (see equation (16)).

Equation 16 raises some questions about the economic interpretation of the partial derivatives with

respect to the betas (or firm characteristics in equation (18)) – the Nt-dimensional vector12 λk,t. In the

linear regression case, Fama (1976) and Fama and French (2020) show that the regression coefficients

from cross-sectional regressions ∀t are equivalent to the month t zero-investment portfolio with weights

for the assets that set the month t − 1 portfolio value of that variable to one and zero for all other,

such that the portfolio weights are summarised by W t = (β′
tβt)

−1β′
t. Fama (1976) point out that OLS

implies a zero-investment portfolio, since
∑Nt+1

i+1 wik,t = 0. In other words, ordinary least squares yields

the portfolio weights for forming the k-th risk factor portfolio, with all constraint discussed in Fama

(1976). From this perspective, the partial derivative can be seen as a marginal return. To see why this

is, let us assume returns are linear in firm characteristics as summarised in equations (9) and (10). Thus,

if the conditional estimator function is linear in firm characteristics, it follows that

λ̂k,t = λ̂ik,t =
∂ĝt(Ct)

∂cik,t
= (CtC

′
t)

−1C ′
tRt+1, ∀i (19)

where C denoted the [Nt+1 × K] matrix of firm characteristics, and R is an Nt+1-vector of returns.

Most importantly, however, equation (19) states that the partial derivative conceptually coincides with

a portfolio return. The reason why we refer to this portfolio return as marginal is, that we can estimate

the partial derivative on the asset-level: the partial derivative is also a sensitivity, which quantifies the

expected change in expected return for a particular asset, given a unit change in the k-th characteristic.

In equation (19), however, if g is linear, the marginal portfolio return is invariant across assets.

However, if g is nonlinear, the partial derivatives (and thus the marginal returns) vary across assets

and time, yielding a distribution of marginal portfolio returns, requiring an aggregation into a single

risk portfolio return (e.g. Kapetanios (2007)). Ullah (1988), for example, proposes an expected value

approach such that Et[λk,t(β̂
(k)

t )] denotes an aggregated estimate of the price of risk. This approach is

also followed by Dixon and Polson (2019)13. In the case of the expected value, and analogously to the

weight matrix in case of linear regressions, the portfolio weight for each asset is assumed to be 1/Nt+1.

However, the functional form of the aggregated portfolio remains unknown, which is why the aggregation

is not limited to the expected value approach. In this paper, for example, we propose the median as a

form of aggregation, which is a more robust estimate in the case of skewed partial derivative distributions.

Therefore, the economic interpretation of the aggregated derivative or price of risk is the expected

12Note that for notational simplicity we do not apply the commonly used hat notation to indicate an estimate.
13While Dixon and Polson (2019) do not explicitly mention the usage of the expected value in their paper, they seem to

apply it in their published code which can be found on https://github.com/mfrdixon/Deep_Fundamental_Factors/blob/

master/DNNs_vs_OLS.ipynb.
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change in return given a change in risk exposure across all assets. The reference to the risk price’s

conformity to all assets is subtle but important as it aligns the partial derivative approach with classical

asset pricing theory, where we assume that the price of risk must be the same for all assets – merely the

asset-specific risk exposure (or beta) causes cross-sectional variations in expected returns.

Empirically, however, we are confronted with a dilemma as the estimated risk prices naturally depend

on the investment universe choice. This choice induces an unavoidable arbitrariness, as it is up to the

researcher to decide which assets to include or what time horizon to consider in an empirical study. For

example, the empirical US-only investment universe considered by Gu et al. (2020b) includes almost

30,000 assets, while Chen et al. (2019) only consider assets for which all firm characteristics are always

fully observable (with no missing values), yielding an investment universe of 10,000 US-only assets. Other

studies, such as Hou et al. (2020) explicitly account for the influence of micro-caps and also exclude all

financial firms. This problem of fuzziness has recently gained more attention in the empirical asset

pricing literature, in particular in the context of result replication (e.g. see Jensen et al. (2021)).

Our proposed methodology helps to structure some of the above-mentioned empirical difficulties.

Since the estimated risk prices are aggregates of the partial derivatives, we could also estimate λ on

subsamples, such as by industry, market capitalisation or any other grouping of interest. This estimation

would yield an industry-specific (or market capitalisation-specific) price of risk, making our proposed

methodology more flexible. Moreover, a subsample-specific estimation does not require a separate model

re-fit, making the estimation computationally efficient, which is particularly appealing in the context

of machine learning, where the estimation of g might be computationally very expensive. Furthermore,

modern non-parametric models tend to be data-intensive, requiring as much training data as possible.

Consequently, excluding entire industries or size classes from the training data set would reduce the

training set dramatically, making complex model estimations more difficult. Thus, we may wish to

re-write equation (15) as

λ̂
(s)
k,t(β̂

(k)

t ) = λ̄k,t(β̂
(k)

t )
∣∣
i∈S, (20)

where S denotes a subsample of choice, for example, industries or groups of market capitalisation, and

the bar notation denotes an aggregate such as the expected value or the median. Appendix I provides

empirical details regarding the concerns mentioned above. As an example, classic FM regressions using

OLS yield an out-of-sample predictive R2 of −0.35% when evaluated across all assets, with manufacturing

assets – which make up the most considerable portion of assets – yielding an out-of-sample predictive

R2 of −0.22% while agricultural assets – which make up a minor portion of all assets – only yield an

out-of-sample predictive R2 of −2.15%. Without providing further empirical details at this point, this

short excursion alone provides initial evidence that we may be interested in a more granular analysis

than an overall aggregate across all assets. Even if we are only interested in an overall estimate of risk

prices that apply to all assets at time t, our proposed methodology still offers valuable attributes due to
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the more granular model insights resulting from partial derivatives’ distribution. For example, a separate

risk price estimation by industry or market capitalisation may still help detect biases in the estimation,

serve as a general sanity check, or even be helpful for code debugging.

While the proposed risk price estimation in equations (13), (15) and (20) fundamentally rely on

aggregation, we may still be interested in the asset-specific partial derivatives as they offer valuable

insights into the inner model mechanics and significantly improve model interpretability. Those asset-

specific partial derivatives are summarised in the Nt × K matrix λt and, besides their interpretation

of being marginal portfolio returns, capture an asset’s return’s sensitivity to changes in the k-th risk

exposure. The possibilities of analyses using those derivatives are too extensive to be discussed in their

entirety in this paper. However, possible avenues include, but are not limited to, pairwise locally-weighted

regression analyses, unsupervised clustering to discover intrinsic sensitivity clusters, correlation analyses

investigating cross-asset sensitivities, long-short portfolio construction based on sorted derivatives, or

distributional analyses.

In this paper, we limit the interpretability discussion to pairwise locally-weighted regressions, distri-

butional analyses, and investigate the k-th partial derivatives in relation to the k-th input variable, or in

relation to the j-th input variable or partial derivative, where j ̸= k. We are particularly interested in the

general distributional properties such as skewness, asset-specific outliers, and the effect of the objective

function which we discuss in section 4.12. Despite the fact that we do not pursue the idea any further,

it is worth mentioning that the estimation and evaluation of risk prices on subsamples naturally leads to

the notion of weak and strong risk factors, where we follow the definition of Lettau and Pelger (2020a)

and define strong risk factors as factors that affect all underlying assets. In contrast, weak factors only

affect a subset of the underlying assets. Moreover, time-varying risk compensation further closely relates

to the topic of factor timing, which is particularly heavily researched by practitioners (e.g. see Dichtl

et al. (2019)).

With this paper, we, therefore, intend to contribute to the on-going debate about the time-varying

estimation of risk exposures and prices of risk and model interpretability. In particular, we do not report

our findings as point estimates as it is typically done, but as time-varying estimates with confidence

(respectively tolerance) intervals. Moreover, in section 3.3 we further introduce non-linear and non-

parametric model selection which helps to navigate the factor zoo in current literature. Most importantly,

the methodology above is intended to offer a wide variety of applications that is universal for a large

class of estimator functions and that can be tailored to the specific means of the respective stakeholder.

We discuss a class of estimator functions that fulfil these above-mentioned requirements in section 3.

The overarching theme, however, is that we intend to move elements of model interpretability and

communications of inner model mechanics to the foreground.
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Figure 1:
Smoothing effect – example: asset-growth
The graph displays the smoothing effect exemplified by asset growth. The solid blue line corresponds to monthly
Fama-Macbeth regressions, while the dotted blue line visualises the respective unconditional estimate. The
solid green line displays the smoothed estimated through a rolling window average, with the green dotted line
corresponding to the unconditional estimate from the smoothed estimate. For direct comparison, the dotted red
line visualises the original estimate reported by Green et al. (2017).

2.4 Smoothing

There is considerable empirical evidence and rational economic intuition that the risk exposures and the

prices of risk vary smoothly over time (e.g. see Adrian et al. (2015) or Ang and Kristensen (2012)). One

of the returning arguments is that asset prices, and hence returns, are connected to economic cycles,

as argued, for example, by Ferson et al. (1987), Fama and French (1989), Harvey (1989) or Campbell

(1999), with economic cycles also evolving smoothly over time. As a consequence, we may wish to

smooth out the risk price estimates to only allow for gradual changes over time. A complete discussion

of various smoothing regimes is beyond the scope of this paper and shall not be the main focus. However,

the previously introduced methodology for risk price (and exposure) estimation can also be smoothed

using standard smoothing techniques, such as a rolling window estimations or backwards-looking rolling

averages. Lewellen (2015), for example, reports a ten-year rolling average of Fama-MacBeth slopes, which

are estimated using standard OLS regressions. As an example, consider the univariate OLS regression

model, where we regress adjusted excess returns on the firm characteristic asset growth analogously to

Green et al. (2017)14. The dotted lines in figure 1 display the unconditional risk price estimates, which

are derived from the time-series average of the conditional estimates visualised by the solid lines. It can

be seen that our unconditional estimates are almost identical to the original value reported by Green

et al. (2017)15. However, it can also be seen that the conditional risk price estimate resulting from cross-

sectional FM regressions for every t = 1, ..., T are not smooth. In contrast, the solid green line visualises

the smoothing effect of an exemplary 5-year rolling window average of the regression coefficients.

In this paper, we follow a similar approach. Section 2.3 discusses the fixed estimation of λ̂k,t, which

14See appendix A for a detailed variable definition
15See appendix E for further details on a replication study.
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is the nonlinear equivalent to the conditional Fama-Macbeth estimates visualised by the solid blue line

in figure 1. We smooth the risk price estimates, similarly to Lewellen (2015), by estimating λ̂k,t through

a five-year backwards looking rolling window approach. The rolling window approach is a balanced

trade-off between achieving a desirable level of smoothness and taking potential economic cycles into

account. We further investigate an expanding window approach as part of the robustness checks, with

results reported in appendix I.

2.5 Empirical Inference

For empirical inference, we diverge from to the traditional approach of reporting unconditional risk prices

as time-series averages following equation (11), where under the null risk prices are zero and the null

hypothesis is traditionally tested using asymptotic test statistics (e.g. see Gibbons et al. (1989)). In

contrast, we propose a data-driven approach to report the fixed response estimates along with time-

varying confidence intervals. Thus, risk prices transition in and out of statistical significance over time,

where statistical significance is defined as a confidence interval that does not include zero. This time-

varying statistical significance offers the opportunity to analyse estimated prices of risk at different points

in time, which may be of particular interest, for example, times of economic crisis.

In particular, we propose bootstrapping to obtain standard errors for the risk price estimates. How-

ever, we acknowledge that bootstrapping can be computationally expensive and, therefore, be an in-

feasible option in practice. Consequently, we also provide alternative estimation strategies, which are

computationally inexpensive and receive more practical attention at the cost of being less rigorous. As

pointed out by Cochrane (2009), modern asset pricing does not necessarily need to rely on asymptotic

theory to calculate accurate standard errors. Monte Carlo simulations or bootstrapping offer competitive

data-driven alternatives, especially in small sample, with Dixon and Polson (2019) proposing a similar

approach.

Following Kapetanios (2008), we propose non-parametric bootstrapping and define the non-parametric

bootstrap sample as {r∗t+1, c
∗(1)
t , · · · , c∗(K)

t }, where the star notation denotes some form of cross-sectional

resampling from the original return and characteristics data16. Thus, for example, we denote r∗t+1 =

(rj1,t+1, · · · , rjj ,t+1, · · · , rjNt+1
,t+1)

′ a Nt+1-dimensional vector of re-sampled returns, where the vector

of indices (j1, · · · , jNt+1
)′ is obtained by drawing with replacement from (1, · · · , Nt+1)

′. The same vector

of indices is used to draw from the betas as well. Kapetanios (2008) points out that the re-sampling

can be adjusted for cross-sectional dependence. We further remark, that the re-sampling can also be

adjusted to asset pricing specific data specifics: in section 4, we introduce the standard CRSP and Com-

pustat US-only dataset, which is the gold standard in empirical asset pricing. It is well-known, however,

that the dataset is strongly misbalanced, especially with regard to microcap stocks (e.g. see Hou et al.

16Note, that parametric bootstrapping would also be possible, but an in-depth discussion is beyond the scope of this
paper.
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(2020)). The above-mentioned re-sampling can, therefore, also follow a stratified approach, where the

re-sampling is done by sub-groups, such as market capitalisation and (or) industry.

For each bootstrap iteration b = 1, · · · , B, we re-fit gt, such that ĝt,b denotes the estimated function

using the b-th re-sampled dataset and λ̂
(b)
k,t the b-th fixed response estimation. Subsequently, standard

errors are SE(λ̂k,t) =
√

1
B−1

∑B
b=1 λ̂

(b)
k,t − λ̄k,t, with λ̄k,t =

1
B

∑B
b=1 λ̂

(b)
k,t, see Efron and Tibshirani (1986).

We propose confidence intervals to be CIk,t = (−ρ × SE(λ̂k,t), ρ × SE(λ̂k,t)), where ρ ≥ 3 guided by

Harvey et al. (2016) who argue that higher statistical hurdles are required to account for for multiple

testing and data mining issues.

We acknowledge, that the above-introduced bootstrap approach may be infeasible in practice, if the

estimation of g is computationally expensive and B is large, for example B = 1, 000. With this paper,

we intend to take real-life computational costs into account. In the following, we, therefore, introduce

computationally less expensive alternatives at the cost of being less rigorous. A full description is beyond

the scope of this paper and we refer readers to Kapetanios et al. (2019) for a more detailed discussion.

The alternatives include:

1. Instead of re-fitting ĝ for each bootstrap iteration, keep the original estimate and merely derive B

fixed response estimates, using the re-sampled data only such that λ̂
(b)
k,t = λ̄k,t(c

(b)
k,t) denotes the

fixed response estimate derived from the b-th re-sampled characteristics data denoted by c
(b)
k,t, with

SE(λ̂k,t) =
√

1
B−1

∑B
b=1 λ̂

(b)
k,t − λ̄k,t.

2. Instead of bootstrapping return and characteristics data to derive bootstrapped partial derivatives,

we can also bootstrap directly from the distribution λk,t(c
(k)
t ), such that λ

(b)
k,t denotes the b-th cross-

sectionally re-sampled Nt+1-vector of partial derivatives, with SE(λ̂k,t) =
√

1
B−1

∑B
b=1 λ̂

(b)
k,t − λ̄k,t.

3. Instead of performing any type of bootstrap, estimate distributional percentiles directly from

λk,t(c
(k)
t ), if Nt+1 is large.

4. Use the backwards-looking rolling standard deviation approach to construct tolerance intervals or

tolerance bands, such that TIk,t = (−ρ × σ(λ̂k,t), ρ × σ(λ̂k,t)), where σ is estimated through a

backwards-looking rolling window approach.

For all methods, except the fourth alternative, the re-sampling can either be done at time t, time s,

where s ̸= t, or over the entire sample. There are, however, certain real-life data issues which should be

considered. If, for example, g is estimated using machine learning (which we discuss further in section

3 and is common in modern empirical asset pricing), the input data is typically pre-processed in a way

that it is either cross-sectionally rank standardised or cross-sectionally rank-normalised. As a result, the

data is equally distributed across all t. If in addition Nt+1 is very large, it becomes irrelevant at what

t the data was re-sampled. For the purpose of computational ease and simplicity, we follow the fourth
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alternative in our empirical application. Due to the real-life considerations, we utilise the term tolerance

interval or tolerance bands, where risk premia are considered empirically important when the tolerance

bands do not include zero. To impose a rigorous empirical hurdle, the tolerance bands are constructed

with ρ = 3, in the style of Harvey et al. (2016). We appreciate that the derived empirical importance is an

ad-hoc approach, but more robust estimates are infeasible in practice due to an exponentially increasing

computational cost.

2.6 Comparison to Other Interpretability Measures

There exist a number of interpretability measures in current literature, in particular with regard to

nonlinear estimator functions. We do not intend to provide a holistic overview here and concentrate on a

brief comparison of our proposed methodology to the most commonly used measures and measures that

most closely relate to our methodology, including partial dependence, individual conditional expectation,

accumulated local effect, local interpretable model-agnostic explanations (LIME) and Shapley values. For

a more detailed discussion, we refer readers to Doshi-Velez and Kim (2017), Molnar (2020) and Miller

(2019). In general, there is a differentiation between model-agnostic and model specific interpretability,

where model-agnostic interpretability is universally applicable and, thus, very flexible. We see our

proposed methodology as a hybrid of model-agnostic and model specific interpretability tools, as it

generalises to a large number of models under the conditions discussed in section 2.1 (e.g. see Ribeiro

et al. (2016b)).

Partial dependence plots (PDP), introduced by Friedman (2001), are among the most popular graph-

ical interpretability tools and show the functional relationship between model inputs and the model’s

predictions. In particular, they plot an average effect an input variable has on the prediction. Our

methodology diverges from PDP in two key ways. First, our methodology is not concerned about an

average effect, but instead offers asset-specific model insights, which is, therefore, much more granular.

Second, partial dependence plots assume that the input variables are independent, an assumption that

is not required for our methodology.

Individual conditional expectation (ICE) expand the idea of partial derivative plots to the individual

item level, see Goldstein et al. (2015). In our setting, this would correspond to an individual line per

asset, which can result in overcrowded plots if N is large. While this makes an analysis on asset-level

possible, it does not allow for analyses in relation to other input variables. Moreover, our proposed

methodology offers the opportunity to even investigate sensitivities between each other.

Neither partial dependence plots nor individual conditional expectations can deal with correlated

input data. Accumulated local effect (ALE), introduced by Apley and Zhu (2020), offers a solution to

this problem by visualising how model predictions change in a small window of the input data around

a given point, by using differences in predictions rather than averages and taking changes in another
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variable into account. However, ALE does not allow for asset-level investigations.

Local interpretable model-agnostic explanations (LIME), proposed by Ribeiro et al. (2016a), intends

to make any (machine learning) classifier or regressor interpretable through local interpretable approx-

imations, which may not generalise globally, such as linear models or devision trees. While the local

approximation offers an intuitive motivation for model interpretability is poses the problem of correctly

defining the neighbourhood in which the approximation is taking place. With our methodology, we

also offer great interpretability through the interpretability lens, but do not need to worry about local

permutation and neighbourhood definitions.

Shapley values originates from game theory and coined by Shapley (1953), is a method for evaluation

”payouts” to ”players”, depending on their contribution to the ”total payout” and is defined as the aver-

age marginal contribution of a feature value across all possible coalitions. One of the key disadvantages

is that the computational cost increases exponentially with the number of input variables. While the

methodology has become increasingly popular, the model insights for asset pricing-specific interpretabil-

ity is limited compared to the partial derivative approach, due to the computational cost (we typically

have to deal with a large number of input variables) and the limited insight on asset-level.

Last but not least, Dimopoulos et al. (1995) propose a neural network specific interpretability tool

that is fundamentally based on the sum of the squared norm of partial derivatives of a neural network

with respect to its input. It is the tool that most closely relates to our methodology, but differs in two key

ways: first, the measure is an aggregate, meaning that it does not allow for asset-specific model insights.

Second, it does not allow for relative analyses in which we compare and contrast model sensitivities in

relation to other sensitivities.

What separates our approach from all the above-mentioned alternatives is, that model interpretability

is not a separate step and, therefore, does not involve a separate estimation. Instead, it is integral part

of the estimation already as we use the partial derivatives to estimate risk prices. This makes our

methodology readily available, computationally inexpensive and easily implementable. In addition, in

section 3.3, we introduce an objective function that directly makes use of the partial derivatives as part

of the optimisation. Furthermore, the possibility of further analyses does not stop with the partial

derivatives themselves. As discussed in the previous section, we can use the partial derivatives and run,

for example, unsupervised learning on top, which makes our methodology much more flexible to common

alternatives.

Although we do not follow this approach further at this point, it is theoretically conceivable, that

interpretability measures, such as Shapley values, are directly incorporated into an objective function,

analogously to the Jacobian in equation (30). We appreciate that such objective function can be com-

putationally expensive and, thus, infeasible in practice. However, our approach naturally eludes to the

concept of penalising other forms of variable significance.
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3 Machine Learning Estimation

In this section, we concentrate on the estimation of gt and discuss a class of estimator functions G that

satisfies the assumptions addressed in section 2 (e.g. see Farrell et al. (2021)). Although our proposed

methodology generalises to a large number of possible estimator functions under the condition of differ-

entiability, we particularly focus on deep neural networks in this section due to their recent popularity

in empirical asset pricing (e.g. Messmer (2017a), Gu et al. (2020a) and Chen et al. (2019)). However,

we are not necessarily plain supporters of neural networks, as their training can be computationally

expensive and data-intensive, especially if their architecture is complex. Those aspects can be limiting in

practice. In addition, practitioners frequently express their scepticism towards neural networks, partly

because out-of-the-box architectures and training regimes do not necessarily provide significantly better

(computational cost-adjusted) performances. In this context, De Prado (2018) points out what we can

verify empirically: the architectural design and training of a competitively performing neural network re-

quires in-depth domain knowledge in asset pricing, especially with regards to data-specific nuances, and

machine learning theory, with plain vanilla out-of-the-box models performance being underwhelming,

which we discuss in section 4.

We show that extensive hyperparameter tuning and asset pricing-specific training regimes are re-

quired to match standard and competitive benchmark models. Most importantly, however, our proposed

methodology sheds light on the complex inner network mechanics that are often perceived as ”black

boxes”. Our methodology, hence, significantly improves model interpretability and communication to

various stakeholders. On the other hand, improved model interpretability can help eradicate some of the

scepticism towards neural networks, making them a viable model choice.

The deep neural network literature is exceptionally vast and interdisciplinary, ranging from fields

such as natural language processing over image recognition to asset pricing. Each domain requires

specific tweaks to the data preprocessing, architectural design and training regimes. We find that asset

pricing-specific solutions currently being underrepresented in literature, as most studies primarily apply

out-of-the-box schemes. With this paper, we intend to transfer and combine interdisciplinary approaches,

by, for example, incorporating estimation strategies stemming from the field of image recognition and

giving them an interpretable meaning in asset pricing (see section 3.3). However, due to the sheer

amount of literature, we cannot provide a holistic overview of all potential model architectures, training

or regularisation schemes, so we primarily focus on fully connected feed-forward networks in this section.

For a more detailed and general discussion of neural networks, we refer readers to Bishop (1995) and

Goodfellow et al. (2016).
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3.1 Deep Artificial Neural Networks

Fully connected feed-forward neural networks are comprised in the collective term deep learning, a subfield

of machine learning17. They are among the most potent estimators due to their universal approximation

capabilities, which means that they can approximate an arbitrary function with arbitrary accuracy (e.g.

see Hornik et al. (1989) or Cybenko (1989)), with Farrell et al. (2021) showing that they are consistent

estimators. In the empirical asset pricing literature and other disciplines, they are currently among the

most popular model choices because of their competitive out-of-sample performances (e.g. see Messmer

(2017a), Chen et al. (2019), and Gu et al. (2020a)). Section 1 introduced current challenges in modern

asset pricing, including high-dimensional datasets and pronounced nonlinearities. Neural networks thrive

in this environment through their extreme functional flexibility, which stems from the interconnection

of (potentially many) so-called layers, enabling nonlinear estimations. Figure 2 visualises an arbitrary

fully connected feed-forward neural network and displays its three core hierarchical elements: the input,

hidden, and the output layer(s). While there does not exist an exact definition, the term deep typically

refers to neural networks with more than one hidden layer. This biological imitation is the origin of the

model’s name. In simple terms, the input data flows from the left input layer through all hidden layers,

where the nonlinear transformations take place in the neurons, to the output layer, which results in a

final prediction – in our case, a return prediction analogously to equation (3).

More specifically, the model displayed consists of L+2 layers, where l = 0 denotes the K-dimensional

input layer, with the dimension of the input layer corresponding to the input data dimension. Further,

the displayed neural network consists of L hidden layers and an output layer, where the dimension of the

output layer corresponds to the dimension of the target variable – in our case, an asset’s return. Each

hidden layer consists of Hl nodes that are all fully connected through weights with all Hl−1 nodes from

the preceding layer. In addition, the shaded nodes in figure 2 display the biases.

All nodes in the hidden layers perform a nonlinear transformation of their inputs through an activation

function, where each node’s input is a linear combination of the outputs from all preceding nodes plus

a bias. There are many potential activation function candidates. Some of the most common activation

functions are visualised in figure 3. Interestingly, and to the best of our knowledge, there does not yet

exist an asset-pricing specific activation function. Thus, the activation functions displayed in figure 3

are universally applicable across domains, including asset pricing.

While there is no clear guideline for which activation function to use for asset pricing applications,

rectified linear unit (ReLU) is the most commonly used activation function in recent empirical asset

pricing literature. Furthermore, Farrell et al. (2021) show that neural networks designed with ReLU as

activation functions in their hidden layers are consistent estimators. However, ReLU is vulnerable to the

17There exist other types of neural networks, such as recurrent or long-short term memory (LSTM) neural networks,
which also find occasional applications in asset pricing, or at least finance or economics in general, but are beyond the
scope of this paper.
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Figure 2:
Example of an arbitrary deep neural network architecture
The displayed fully-connected feedfworward neural network consists of an input layer with K input nodes (anal-
ogously to a K-dimensional input vector ci,t), l = 1, ..., L hidden layers, where Hl denotes the number of nodes
in the l-th layer, with H0 = K denoting the input nodes and a single output node. Furthermore, each hidden
layer features a fully-connected bias, visualised by the shaded nodes.

vanishing gradient problem, which is sometimes referred to as dying ReLU problem (e.g. see Hu et al.

(2021)). Section 3.2 introduces an exemplary optimisation algorithm, which can be used to train neural

networks. What unites all training algorithms is that they are fundamentally based on gradient descent

in combination with backpropagation. Thus, effective learning requires the existence of a gradient with

respect to the model parameters, particularly with respect to the neural network’s weight. However,

due to the functional form of ReLU, the vanishing gradient problem describes a scenario in which the

gradients of the network weights approach zero. Consequently, the optimisation is stuck as there is

no clear direction for the next model parameter update. To the best of our knowledge, this well-known

problem associated with ReLU has not yet been well-documented in the empirical asset pricing literature.

Leaky ReLU is an alternative activation function that is specifically designed to avoid the vanishing

gradient problem. Instead of the output being zero (i.e. producing no model parameter gradient) when

the input is negative, leaky ReLU produces a small positive slope (in PyTorch, for example, the default

value is 0.01). That is, leaky ReLU computes f(x) = 1(x < 0)(ax) + 1(x >= 0)(x), where a = 0.01.

Leaky ReLU and other alternatives that are specifically designed to avoid the vanishing gradient problem

have gained popularity in recent years in the general machine learning literature, with examples including,

Maas et al. (2013) or Xu et al. (2015). Due to the popularity and easy implementation, the empirical

application presented in section 4 also applies leaky ReLU. Besides ReLU and leaky ReLU, figure 3
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(a) Leaky rectified linear
unit (ReLU)

(b) Rectified linear unit
(ReLU)

(c) Sigmoid (d) Hyperbolic tangent
(tanh)

Figure 3:
Common activation functions
From left to right, the figure displays the most commonly used activation functions in the general machine
learning literature, and particularly in asset pricing. They range from leaky rectified linear unit (Leaky ReLU),
rectified linear unit (ReLU), to sigmoid and hyperbolic tangent. Section 4 primarily focuses on an application
using leaky ReLU.

summarises common activation functions in the literature, which includes the sigmoid and hyperbolic

tangent. However, a full discussion of all possible activation function candidates is beyond the scope of

this paper, and we refer readers to Nwankpa et al. (2018) for a more detailed discussion.

A natural critique for the choice of leaky ReLU in the context of this paper – and in particular

with regard to sections 2.1 and 2.2 – is that leaky ReLU is not continuously differentiable. While

mathematically correct, this issue is negligible in practice, as discussed by Goodfellow et al. (2016),

since software implementations (for example, PyTorch) are prone to rounding errors. Those rounding

errors make it very unlikely to land exactly on the singularity point. Additionally, even if the singularity

point was reached, leaky ReLU is commonly implemented so that the right-hand side derivative is used,

meaning that software implementations always produce a gradient.

The fact that there exists no clear guideline for the choice of the activation function introduces a

fuzziness as part of the empirical application. The term fuzziness in this context describes that there is

no right or wrong when it comes to the activation function choice in empirical asset pricing applications.

In this context, section 2 introduces the term hyperparameter, which describes model parameters that

cannot be optimised algorithmically as part of the optimisation procedure. Thus, hyperparameters

must be set manually instead. Their (locally) optimal value can be found, for example, through cross-

validation. The activation function choice is one of such hyperparameters. Theoretically, each node in

each layer could apply a different activation function, which would require manual tuning to find a (local)

optimum. However, to dramatically reduce the computational cost of the grid search finding (locally)

optimal hyperparameter values, we assume that each node in each hidden layer applies the same activation

function, namely leaky ReLU. Unfortunately, the list of hyperparameters does not only include the

activation function and can be extensive. The list of potential hyperparameters includes but is not limited

to: the learning rate, batch size, number of epochs, number of epochs before early stopping is activated,

penalisation parameters or even architectural hyperparameters, such as the number of hidden layers or
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the number of nodes in each layer. Section 4.3 discusses the considered hyperparameters and their tuning

regime in detail, with a particular focus on the computational cost, since the computational cost increases

exponentially with the number of hyperparameters. While it is well-known that hyperparameter tuning

is the computational bottleneck of neural networks, we find that current literature pays little attention

to this crucial step. Thus, we intend to be as transparent as possible about our hyperparameter tuning

regime to increase reproducibility.

Mathematically, figure 2 simplifies to

gt(ci,t;Wt, θt) = (f1 ◦ · · · ◦ fl ◦ · · · ◦ fL)(ci,t; Wt, θt), (21)

where Wt captures all learnable model parameters, such as weights and biases, while θ collects all

remaining model (hyper-)parameters. For reasons of simplicity, we assume that the activation functions,

denoted by σ, are the same in each hidden layer, such that σ = σl,∀l. Zooming in on an arbitrary j-th

node in the l-th hidden layer, the nonlinear transformation is summarised by

f
(l)
j = σ(

Hl−1∑
j=1

w
(l−1)
ji x

(l−1)
i + b

(l−1)
ji ) = x

(l)
j , (22)

where w
(l−1)
ji denotes the weight connecting the i-th node from the preceding layer l − 1 with the j-th

node in the l-th hidden layer. The same notation applies for the biases. The output of the i-th node from

the preceding l−1-th layer is denoted by x
(l−1)
i , where for the input layer (l = 0) x0 = ci,t. Consequently,

we can rewrite equation (21) as

gt(ci,t;Wt, θt) = W(L)σ(· · ·σ(W(l)(· · ·σ(W(0)ci,t + b0)) + bl) · · · ) + bL, (23)

where W(l) denotes a Hl−1 × HL matrix, capturing all weights connecting the l − 1-th with the l-th

layer. The same notational logic applies to the biases. Note that equation (23) means that we do not

apply another nonlinear transformation through an activation function in the output node.

3.2 Standard Objective Function and Optimisation

This section reviews the standard objective function and stochastic optimisation algorithm that we use in

this paper to train deep neural networks and are commonly used in the literature. In addition, we propose

an alternative objective function that allows for non-linear model selection and sensitivity penalisation

in section 3.3.

One of the main reasons neural networks have become popular in the empirical asset pricing literature

is their data-driven estimation approach. This form of estimation does not impose any substantial direct
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restrictions on the functional form of the estimator function. During an iterative process, called learning,

we minimise a stochastic objective function through first-order gradient-based optimisation to find an

optimal set of (learnable18) model parameters19.

Such a data-driven approach is particularly appealing in data-rich environments and when the un-

derlying true data-generating process is unclear, as in return data. However, the main disadvantage is

that fitting a neural network does not necessarily involve any economic or financial theory. Therefore,

letting the data speak for itself is prone to data-snooping or allows for statistical estimators that have

little economic intuition. We discuss solutions to these challenges in section 3.3.

We find that domain-specific knowledge is still crucial regarding the data pre-processing, the archi-

tectural design of the network or even the objective function. In this section, we review the standard

procedure of finding an optimal set of learnable model parameters, where learnable parameters refer to

model parameters that are not found manually but iteratively updated during the training procedure.

At the heart of the training of neural networks and finding this set of model parameters is an objective

function that is minimised iteratively through a stochastic optimisation algorithm, evaluated concerning

the actual data generating process (DGP). Algebraically, this is summarised by

Jt(Wt, θt) = Eci,t,ri,t+1∼pDGP
[L(g(ci,t;Wt, θt); ri,t+1)], (24)

where L denotes a loss function, and the time index indicates that the objective function corresponds to

the T cross-sectional estimations (e.g. see Goodfellow et al. (2016)). However, the actual data generating

process is unknown. Hence, we replace the underlying DGP with the empirical distribution (e.g. see

Messmer (2017a)), such that equation (24) can be re-written as

Ĵt(Wt, θt) = Eci,t,ri,t+1∼pci,t,ri,t+1
[L(g(ci,t;Wt, θt); ri,t+1)], (25)

with the objective function

L(c;Wt, θt) =
1

2Nt

Nt∑
i=1

(ri,t+1 − gt(ci,t;Wt, θt))
2 +Ω(Wt), (26)

where we follow the standard assumption that the loss function L is the mean-squared-error. Equation

(25) extended equation (24) with a penalty term, denoted by Ω(Wt), which analogously to Friedman

et al. (2010), is defined as

Ω(Wt) = λ

(
(1− α) ∥Wt∥11 + α

1

2
∥Wt∥22

)
. (27)

18Not all model parameters are learnable and, therefore, found through training. The optimal values of hyperparameters,
such as the learning rate or penalty terms, are found manually through cross-validation.

19The term optimal generally refers to model parameters that lead to a local minimum, as a global minimum is elusive.
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The penalty term in equation (27) allows for L1, L2 or L1 and L2 norm weight penalisation (note that

the penalty is only applied to the weights, not the biases). In general, any form of regularisation is aimed

at preventing in-sample overfitting in order to achieve better out-of-sample generalisations. There exists

a variety of ways to introduce regularisation, which we discuss further in section 4.3, and include early

stopping or batch normalisation in addition to the weight penalties from equation (27).

The optimal set of weights is found first-order gradient-based optimisation in combination, along with

backpropagation which is used to calculate the gradient of the loss function with respect to the learnable

model parameters (e.g. see Rumelhart et al. (1986)), such that

W∗
t = min

Wt

Nt∑
i=1

(
ri,t+t − gt(ci,t;Wt, θ)

)2
+Ω(Wt) (28)

denotes the (learnable) model parameters which minimise the objective function. Any additional model

hyperparameters, such as the penalty parameter λ in equation (27), are tuned through, for example, cross-

validation, which we discuss in section 4.3. It follows that the estimated function becomes ĝ = g(· ;W∗
t ).

The optimisation of the neural network’s objective function is almost exclusively non-convex (e.g. see

Messmer (2017a)). As a consequence, the objective function is optimised numerically, using gradient-

based optimisers. One of the most common optimisers used in current literature is stochastic gradient

descent (SGD). However, there are some challenges regarding the use of SGD, including the difficulty

of finding an optimal learning rate (if the rate is too small, convergence is too slow, if the rate is too

large, it can hinder convergence), and the fact that SGD applies the same learning rate to all learnable

model parameters. To tackle those challenges, we focus on the Adaptive Moment Estimation or Adam,

proposed by Kingma and Ba (2015)), as a gradient descent optimisation algorithm to solve equation (28)

and find that Adam performs well empirically. The algorithm is summarised in algorithm 1.

Adam allows for adaptive learning rates for each learnable model parameter and learning rate de-

cay, which is beneficial when a minimum is approached. The optimisation dynamics of Adam is often

described with the analogy of a heavy ball with friction rolling down the loss function, see Heusel et al.

(2017). Similarly to other optimisers such as Adadelta, Adam stores an exponentially decaying average

of past partial derivatives of the loss function with respect to the model parameters in addition to an

exponentially decaying average of past gradients, similarly to optimisers with momentum (e.g. Nesterov

accelerated gradient descent). For a more detailed overview on gradient-based optimisation, see Ruder

(2016).
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Algorithm 1:Adam algorithm, analogously to Kingma and Ba (2015). g2i indicates the element-

wise square gi ⊙ gi. Empirically well-performing default values are β1 = 0.9, β2 = 0.999 and

ϵ = 10−8. With βi
1 and βi

2 we denote β1, respectively β2 to the power i, where i is the iteration

step.

Require: α: stepwise

Require: β1, β1 ∈ [0, 1): Exponential decay rates for the moment estimates

Require: f(w): Stochastic objective function with learnable parameters w

Require: w0: Initial parameter vector

m0 ← 0 (Initialise 1st moment vector) v0 ← 0 (Initialise 2nd moment vector)

i← 0 (Initialise iteration step)

while wi not converged do
i← i+ 1

gi ← ∇wfi(wi−1) (Get gradients w.r.t. stochastic objective at iteration i)

mi ← β1 ·mi−1 + (1− β1) · gi (Update biased first moment estimate)

vi ← β1 · vi−1 + (1− β1) · g2i (Update biased second raw moment estimate)

m̂i ← mi

1−βi
1
(Compute bias-corrected first moment estimate)

v̂i ← vi

1−βi
2
(Compute bias-corrected second raw moment estimate)

wi ← wi−1 − α · m̂i√
v̂i+ϵ

end

return wi (Resulting parameters)

3.3 Jacobian Objective Function

Section 3.2 introduced a standard objective function and optimisation strategy. One of the key advantages

of the objective function in equation (26) in combination with gradient descent-based optimisation is its

purely data-driven approach: a local minimum is reached without imposing any economic or financial

theory. The resulting statistical estimator is particularly advantageous in data-rich environments, where

the true data-generating process is unknown, and we wish to let the data speak for itself. There are,

however, asset-pricing specific conditions, which should be considered during training.

First, return data is characterised by a notoriously low signal-to-noise ratio. Therefore, a purely data-

driven approach poses the danger of data-snooping and finding apparent statistical relationships even

though they are not there. In combination with our previous discussion about model interpretability,

this is particularly disadvantageous from a communication perspective. For example, a neural network

might find a nonlinear statistical link between specific firm characteristics and returns for which it is

difficult to find an economic justification. In turn, an investor might be sceptical about the model and

decide to use a simpler model with more interpretable and economically meaningful firm characteristic

interactions instead at the cost of inferior model performance.

Second, despite the abundance of potential regressors, there is considerable empirical evidence, such

as presented by Kelly et al. (2018), Kozak et al. (2020) or Freyberger et al. (2020), in favour of an
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economically motivated sparse representation of the asset pricing model using a reduced number of

regressors. Such a parsimonious representation can either be achieved through prior data pre-selection,

where only a small number of regressors is hand-picked before training the neural network or through

model selection analogously to, for example, Lasso.

Third, as part of the regularisation strategy, we wish to limit an individual asset’s influence on the

predictions to make the model performance more robust. As discussed previously, compared to other

disciplines, the standard datasets used in empirical asset pricing comprise a comparatively small number

of observations. This relative data sparsity is combined with the severe unbalancedness of financial

datasets, where microcaps make up the vast majority of observations but are the least relevant stock

group for investors due to their illiquidity and high transaction costs. We are, therefore, in a dilemma:

do we keep all observations, including microcaps, in our training dataset, or do we throw out a significant

portion of the dataset, making training complex models more difficult. Limiting an asset’s influence on

the model performance can help mitigate this dilemma, as it allows us to keep all observations while also

ensuring that microcaps are not primarily driving model performance.

On this basis, we propose an objective function that helps mitigate those asset pricing specific chal-

lenges, particularly by allowing for model selection as part of the training algorithm. Our proposed

objective function can be used for an arbitrary choice of gt under the assumption that gradient descent

optimisation is used in order to determine its optimal parameters and the standard assumptions discussed

in section 2.

Let

Lt(c,Wt, θt;Jt) =
1

2Nt

Nt∑
i=1

(ri,t+1 − gt(ci,t;Wt, θt))
2 +Ω(Jt) (29)

be the objective function, where Ω denotes a ”Jacobian”-based regulariser, defined as

Ω(Jt)) = λ

(
(1− α) ∥Jt∥11 + α

1

2
∥Jt∥22

)
, (30)

where ∥·∥pp denotes the Frobenius norm of the ”Jacobian” Jt ∈ RNt×K . We use quotation marks to

indicate that Jt is not strictly the Jacobian. Instead, each row in Jt corresponds to the partial derivatives

of gt with respect to the asset’s K firm characteristics, such that the dimension of Jt correspond to the

dimension of the input data. We acknowledge the nuances in the Jacobian definition, but for the purpose

of simplicity we omit the quotation marks in the following.

Moreover, we differentiate between two type of Jacobian regularisation: element-wise and column-

mean. In the case of element-wise Jacobian regularisation, each element of the Jacobian enters the

penalty term, for example when p = 2, as ∥Jt∥22 = (
∑Nt

i=1

∑K
k=1 d

2
ik,t)

1
2 , with dik,t =

∂gt(·)
∂cik,t

. This means

that we penalise the sum of each element or partial derivative in Jt. In contrast, columns-mean Jacobian

regularisation, which we denote by J̄t, penalises the sum of the column-mean for each firm characteristic,
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such that for example, when p = 2, such that
∥∥J̄t

∥∥2
2
= (

∑K
k=1(

1
Nt

∑Nt

i=1 dik,t)
2)

1
2 . Although we do pursue

this path further in this paper, other variants of penalisations are imaginable, such as a value weighted

average penalisation, where the weights correspond to the inverse of an asset’s market capitalisation,

meaning that microcaps are penalised more heavily. Although we do not pursue this idea further in the

empirical application, it is conceivable that the objective function includes a penalty term for both – the

Jacobian and the model parameters – such that

Lt(c,Wt, θt;Jt) =
1

2Nt

Nt∑
i=1

(ri,t+1 − gt(ci,t;Wt, θt))
2 +Ω(Jt,Wt), (31)

with

Ω(Jt,Wt) = λW

(
(1− αW ) ∥Wt∥11 + αW

1

2
∥Wt∥22

)
+ λJ

(
(1− αJ) ∥Jt∥11 + αJ

1

2
∥Jt∥22

)
, (32)

Gradient regularisation offers three key advantages. First, any form of regularisation is generally

helpful for preventing the model from overfitting. As in equation (28), weight regularisation is intended

to keep the outputs of each hidden layer away from the saturated regions of the activation function,

as, for example, discussed by Goodfellow et al. (2016). On the other hand, gradient regularisation

penalises large output changes due to small changes in input. Thus, Jacobian regularisation enforces a

smoothness prior (e.g. see Drucker and Cun (1992) or Hoffman et al. (2019)) and thereby increases model

robustness. In general, the idea of gradient regularisation as a method to increase model robustness is

not new to machine learning literature. In the field of image recognition, in particular, it is a common

strategy to deal with adversarial examples, where minimal changes in the input can lead to grossly wrong

classifications (e.g. see, Goodfellow et al. (2015), Lyu et al. (2016), Varga et al. (2018) or Barrett and

Dherin (2020)). With this paper, we propose Jacobian-based regularisation for asset pricing, where due

to the low signal-to-noise ratio present in financial data, it is also desirable to be protected against large

changes in output due to small changes in input.

Second, gradient regularisation is deeply rooted in economic theory and motivated by economic

intuition. Unlike image recognition, where it is difficult to interpret the partial derivatives, they have a

precise and well-defined economic meaning in our setup: risk prices. The penalty in equation (30) shrinks

specific risk prices in equation (20) towards zero, or even precisely to zero depending on the norm and size

of the penalty. There exists a large body of literature in asset pricing, such as Kelly et al. (2018), Kozak

et al. (2020) or Freyberger et al. (2020), who argue for an economically motivated sparse representation

of the asset pricing model using a reduced number of risk factors. Our proposed objective function

makes precisely this possible and is, therefore, a generalisation of model selection, where model selection

deals with the question of which firm characteristics have incremental predictive power, given all other

characteristics. Moreover, due to the time-varying nature of our proposed methodology, we allow this
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variable selection to vary over time. Finally, our proposed objective function has a low computational

cost and is directly implementable as part of the training algorithm.

3.4 Linear Benchmarks

To make the neural networks’ empirical results more comparable, we benchmark them against a range of

commonly used alternative models. In addition to the ordinary least-squares (OLS) and neural network

estimations discussed in sections 2.1 and 3.1, we also investigate weighted least squares (WLS) and

three penalised linear regressions, including Ridge, Lasso and Elastic Net. While the primary numeric

evaluation metric constitutes the out-of-sample performance (see section 2.6 for performance definitions),

we also consider a model’s interpretability and general insights that we can gain from it to paint the

complete model comparison picture. This total evaluation package includes, but is not limited to, the

time-varying model performance or a model’s performance consistency, the firm characteristics the model

puts the most weight on, how those change over time, or the interpretability of a model’s output.

3.4.1 Weighted Least Squares

In the empirical asset pricing literature, it is well-documented that market capitalisation significantly

impacts model performance. For example, in the standard US-only dataset sourced from CRSP and

Compustat, microcaps make up nearly 60% of all stock while their total market capitalisation merely

represents around 3% of the total market capitalisation of all stocks on average. The two main problems

arising from this are that OLS overstates the importance of microcaps, while at the same time, microcaps

are much harder to trade on in practice due to their limited liquidity and higher trading costs. As a

consequence, the least-squares loss function is replaced with

L(g(·)) = 1

2Nt

Nt∑
i=1

wi,t(ri,t+1 − gt(ci,t))
2, (33)

where gt is linear in firm characteristics, analogously to standard OLS, with gt = Ctλt and λ̂t =

(Ĉ
′
tWĈt)

−1Ĉ
′
tCrt+1, ∀t = 1, ..., T , and W is a diagonal matrix containing the weights.

We use a stock’s market value of equity at time t as the weight wi,t. The weighted least squares

objective in equation (33) allows us to place more weight on statistically or economically informative

observations. In particular, due to the limited liquidity and increased trading costs of microcaps, WLS

tilts estimates towards higher liquidity and lower trading costs, as the objective function underweights

stocks with a smaller market capitalisation in favour of large stocks. Therefore, it helps mitigate the

challenges arising from the unbalancedness present in typical asset pricing datasets while being compu-

tationally very cheap at the cost of imposing a strong assumption about the linear functional form of

gt.
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3.4.2 Penalised Linear Regressions

The main econometric disadvantage of the unregularised linear benchmarks (OLS and WLS) is that they

fail in high-dimensional settings when the number of predictors K reaches the number of cross-sectional

observations Nt, as the model becomes inefficient or even inconsistent. In a low signal-to-noise environ-

ment as present in return data, these concerns are particularly troublesome. In addition, and as pointed

out by Han et al. (2019), ordinary or weighted least squares may suffer from the problem of overfitting

in high-dimensional multivariate regressions. To avoid overfitting, parsimonious regression models with

a reduced number of parameters are crucial. As briefly discussed in section 3.2, and more specifically

in equation (26), the most common machine learning solution for imposing parameter parsimony is to

append the objective function with a penalty term, such that the new objective function is

Lt(Ct,λt) =
1

2Nt

Nt∑
i=1

(ri,t+1 − gt(ci,t))
2 +Ω(λt), (34)

where Ω(λt) denotes a penalty, defined as

Ω(λt) = λ

(
(1− α) ∥λt∥11 + α

1

2
∥λt∥22

)
(35)

and gt is a linear estimator function. The hyperparameters, such as the penalty term λ and α, are found

manually through cross-validation (e.g. see Friedman et al. (2010)). This form of regularisation mechan-

ically diminishes a model’s in-sample performance to boost its out-of-sample performance stability. As

argued by Gu et al. (2020b), the model’s performance stability is particularly improved if regularisation

reduces the fit of noise while preserving the signal fit.

In equation (35), the case of α = 0 corresponds to the lasso or L1 penalisation, which is capable

of model selection due to the geometry of the objective function (e.g. see Hastie et al. (2009)). Lasso,

therefore, imposes sparsity. The case of α = 1 corresponds to the ridge regression, or L2 penalisation,

which shrinks parameters towards (but not exactly) to zero. This form of shrinkage limits the magnitude

of coefficients and, hence, prevents coefficients from becoming too large. All intermediate cases, where

0 < α < 1, correspond to the elastic net, a lasso and ridge regression mixture.

The penalised linear regression model and its objective function clarify the link between our proposed

methodology and the linear regression case. The main difference between standard objective functions,

such as equation (26), for neural networks and objective functions for the linear case, such as equation

(34), is that in the linear case, the coefficients are penalised, while in the neural network case we penalise

the network’s weights, which are not equivalent to coefficients. On the other hand, our proposed objective

function in section 3.3 uses the same analogy to the objective function in equation (34) as the penalisation

of the partial derivatives is the non-linear generalisation of the penalisation of the coefficients.
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Last but not least, we acknowledge that there exists a myriad of potential additional benchmarks

such as principal components, partial least squares or instrumented principal components (e.g. see Kelly

et al. (2018)). However, with this paper, we do not intend to present a comprehensive model horserace.

Instead, we aim to shift the focus to our proposed methodology of increased interpretability using neural

networks and keep the model benchmarks with OLS, WLS, Lasso, Ridge and Elastic Net to an extensive

minimum.

4 An Empirical Study of U.S. Equities

This section provides a detailed overview of the investment universe we consider, consisting of monthly

stock returns and 103 firm characteristics, which we construct analogously to Green et al. (2017). We

show that deep neural networks are a reasonable model choice from a performance perspective and have

substantial interpretability advantages. We explicitly do not wish to shift existing out-of-sample perfor-

mance frontiers and are not plain supporters of deep neural networks. However, this section shows that

conditional on the model choice, deep neural networks add significantly from an interpretability perspec-

tive leveraging our proposed methodology, compared to standard linear benchmarks. In particular, we

show which risk factors help explain cross-sectional returns over time and how our results compare to

existing research such as Green et al. (2017).

4.1 Data

We follow standard procedure, source monthly stock returns from CRSP for firms listed on NYSE,

AMEX, and NASDAQ, and obtain firm-level data from Compustat and I/B/E/S. We use the Effective

Federal Funds rate as a proxy for the risk-free rate of return, which we source from the Federal Reserve

Economic Data repository (FRED) and obtain price level data directly from the US Bureau of Labor

Statistics (BLS). Stock returns are adjusted for delistings and are matched in month t with firm char-

acteristics that are most recently available to an investor at the beginning of month t. We assume that

firm characteristics based on annual accounting information become available at least six months after

the fiscal year ending and firm characteristics based on quarterly accounting data become available at

least four months after the fiscal quarter ending to avoid information leakage.

The sample period spans over 492 months from January 1980 to December 2020, yielding over four

decades of data. The sample period choice in empirical asset pricing is somewhat arbitrary. This paper

primarily focuses on fitting non-linear machine learning models whose training is data-intensive and,

therefore, requires a minimum amount of data. However, data availability varies considerably over time.

For example, the NASDAQ only began its operations in the early 1970s, adding a significant number of

stocks to the sample at that time. Moreover, I/B/E/S data only became available in the late 1980s and
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early 1990s. Thus, our sample choice yields a balanced trade-off between data availability, comparability

to other existing research and timespan over economically relevant and heterogeneous periods. Figure 4

visualises the time-series properties of an unrestricted US-only investment universe.

We consider stocks with share code20 10 or 11 only and impose no restrictions on the company size,

industry or time since a company has been listed on an exchange to minimise data-snooping biases

(e.g. see Lo and MacKinlay (1990)). We adopt standard company size definitions based on market

capitalisation analogously to Fama and French (1993) and define microcaps as stocks whose market

capitalisation is smaller than the 20th percentile of the market equity of NYSE stocks. In contrast, the

market capitalisation of small stocks is greater than the 20th percentile but smaller than the median (50th

percentile) market capitalisation for NYSE stocks. Subsequently, large stocks are all remaining stocks

whose market capitalisation is larger than the median market equity of NYSE listed stocks. Figure

4 and table 1 reveal that microcaps merely represent around 3% of aggregated market capitalisation

while making up around 60% of the total number of stocks. This well-known misbalance poses specific

difficulties. Conversely, the general machine learning mantra that more data is better than less data

also holds in asset pricing. From this point of view, microcaps provide the vast majority of training

data. On the other hand, empirical asset pricing frequently faces criticism from practitioners as many

findings heavily rely on microcaps, but microcaps are generally less liquid and more expensive to trade.

We acknowledge the existence of such problems and explicitly discuss those in our empirical analysis.

We build a large collection of stock-level firm characteristics based on the cross-section of stock

returns literature. Similarly to Gu et al. (2020b), and for comparability, we adopt the firm characteristic

definitions of Green et al. (2017) and compute 103 predictive firm characteristics, with 63 of those being

based on annual data. In contrast, 15 are based on quarterly data, and 25 are of monthly frequency21.

Appendix A provides a detailed description of the variable definitions and assumptions that go into the

firm characteristics calculations. Moreover, we acknowledge that Fama and French (1993) or Hou et al.

(2020) propose slightly divergent definitions for certain characteristics such as book-to-market. However,

we intend to primarily focus on our proposed methodology and leave diverging characteristic definitions

open to the reader.

4.2 Data Cleaning and Preprocessing

We follow Green et al. (2017) and impose minor restrictions on our investment universe. More specifically,

we only consider stocks with observable month-end market capitalisation and non-missing common equity

and one-month momentum. While those restrictions downsize the unrestricted universe, our investment

20US-based common stocks are identified with share codes 10 and 11, where the second digit refers to securities that have
not been further defined (0), and securities that need not be further defined (1), see https://wrds-www.wharton.upenn.

edu/data-dictionary/form_metadata/crsp_a_stock_msf_identifyinginformation/shrcd/.
21We are particularly grateful that Jeremiah Green publishes his SAS code on his website, https://drive.google.com/

file/d/0BwwEXkCgXEdRQWZreUpKOHBXOUU/view. We translated his SAS into Python. In particular, appendix A shows that
our data has a median correlation of 98.8% with Green’s dataset and explains the origin of minor differences.
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Figure 4:
Summary of unrestricted investment universe, January 1967 - December 2020
Microcaps are smaller than the 20th percentile of market equity of NYSE stocks, while small stocks have a
market cap of larger than the 20th percentile of NYSE stocks but smaller than the median (50th percentile),
large stocks are larger than the median of NYSE market equity. Analogously to Hou et al. (2020), we report the
time-series properties of the size clusters from January 1967 to December 2020. Panel A shows the total number
of investable stocks per month. Panel B shows the the time-series of the total number of microcap, small and
big stocks over time as a fraction of the total number of stocks, expressed in percentage. Panel C displays the
NYSE breakpoints for microcaps and small stocks. Panel D plots the total market capitalisation of microcaps
and small stocks as a fraction of total market capitalisation, expressed in percentage. Panel B and D show that
on average, microcaps make up nearly 60% of the total number of stocks while only representing circa 3% of
aggregated market capitalisation.

universe still includes over 19,600 individual stocks, averaging 4,473 per month. Each month, to control

outliers, we winsorise continuous characteristics at the 1st and 99th percentile (and positively bounded

characteristics at the 99the percentile only). Moreover, we consider two different data preprocessing

regimes. First, we cross-sectionally standardise all characteristics and replace missing values with the

post-standardisation mean of zero. The advantage of this approach is the convenient interpretation

of coefficients as they correspond to the expected change in returns, given a unit change in standard

deviation in the characteristic of interest, keeping all other characteristics constant. Additionally, it

makes our results directly comparable to those of Green et al. (2017).

While this standardisation imposes a common mean of zero and a standard deviation of one for each

characteristic, it does not affect the vastly different magnitudes of each characteristic. However, machine

learning models are known to perform best when their input features (in this case, firm characteristics)

are identically distributed and of the same magnitudes. Therefore, firm characteristics are typically
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Number
of firms

% of total
market cap.

Value-weighted
adj. excess returns

Equal-weighted
adj. excess returns

Cross-sectional std of
adj. excess returns

Mean Std Mean Std

Market 4473 100.00 0.69 4.49 0.87 5.83 17.05
Large 916 90.78 0.69 4.42 0.76 4.93 8.81
Small 932 6.60 0.82 5.96 0.82 6.04 11.95
Micro 2625 2.62 0.68 6.34 0.95 6.51 20.40
All-but-micro 1848 97.38 0.69 4.47 0.79 5.41 10.57

Table 1:
Data summary – average monthly values:
The table shows averages of monthly value- and equal-weighted average returns, monthly cross-sectional standard
deviations (Std) of returns for all stocks (Market) and microcaps (Micro), small, big, and all-but-micro stocks. The
table also shows the average number of stocks and the average percentage of the aggregate market capitalisation
in each size group each month.

cross-sectionally rank normalised such that

c̃ik,t−1 =
rank(cik,t−1)

Nt + 1
(36)

is the rank-normalised characteristic and lies in [0, 1], examples include Gu et al. (2020b) or Freyberger

et al. (2020). The advantage of this approach is an increased model performance, at the cost of a

more difficult interpretation of the coefficients as the firm characteristics in equation (36) are uniformly

distributed. In order to benefit from the advantages of both worlds, we cross-sectionally rank-normalise

the data following

c̃ik,t−1 = Φ−1

(
rank(cik,t−1 − c̄k,t−1)

Nt + 1

)
, (37)

where c̄k,t−1 denotes the cross-sectional mean of the k-th characteristic at time t − 1, and Φ−1 denotes

the truncated normal quantile function. Similarly to equation (36), the cross-sectionally normalised

characteristics in equation (37) are also bounded as we force them to lie in [−3, 3]. However, because

they are (nearly) normally distributed, the interpretation of the coefficients is easier as they correspond

to a unit change in standard deviation in rank of the characteristic of interest, keeping all else constant.

4.3 Estimation strategy

The key advantage of using machine learning compared to classical linear models, such as OLS, in FM-like

regressions is the possibility to actively mitigate in-sample overfitting through regularisation, which yields

much more robust results. We apply a variety of regularisation techniques, with gradient regularisation

(see section 3.3) being one of them. In addition, we also apply early stopping (e.g. see Finnoff et al.

(1993)), learning rate shrinkage as part of the Adam optimiser (Kingma and Ba (2015)), dropout (e.g.

see Srivastava et al. (2014)) and batch normalisation (e.g. see Ioffe and Szegedy (2015)). Regularisation

strategies vary across disciplines and depend on the use case and the network type. In general, there

does not seem to be a standardised consensus for which regularisation strategy generally works best.
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Figure 5:
Sample splitting strategy
This figure displays the sample splitting strategy used for cross-validation as part of the hyperparameter tuning.
We follow a time-series approach in which the timely order of the data is preserved in order to prevent information
leakage. The displayed splitting strategy is utilised for all neural networks and penalised benchmark regressions,
including Ridge, LASSO and Elastic Net, which are introduced in section 3.4. In section 4.4, we discuss in greater
detail that we differentiate between splitting the data by calendar versus financial year.

For example, Srivastava et al. (2014) argue to insert batch normalisation before the activation function,

whereas Bianchi et al. (2021) apply batch normalisation after the activation but before dropout. Li et al.

(2019) argue that conflicting problems between batch normalisation and dropout are best mitigated by

applying dropout after batch normalisation, conditional on a low dropout probability. van Laarhoven

(2017) shows that weight decay combined with batch normalisation does not have a regularisation effect

but influences the effective learning rate instead. We apply batch normalisation after the activation

function but before dropout22.

We follow standard machine learning practice and split our data into three subsamples: a training set

which is used for training the model, a validation set which we use for evaluating the model (particularly

as part of the hyperparameter tuning), and a test set which we use for out-of-sample assessment. There

exists a variety of different schemes for splitting the data. Gu et al. (2020b) or Bianchi et al. (2021), for

example, use an expanding window approach. We intend to resemble FM-like regressions as closely as

possible. For that reason, we do not use an expanding window approach but refit our model periodically

using a fixed window. However, we diverge from the original FM approach23 and refit our model annually

in order to reduce computational cost.

Concerning the data splitting, the size of the training and validation split is ultimately an empirical

question and largely depends on data availability (e.g. see Arlot and Celisse (2010)). The type of data

splitting (for example, k-fold, stratified k-fold, or shuffle split) depends on the empirical application. With

financial data, we must avoid information leakage from the future when splitting the data. Therefore,

we apply k-fold time-series splitting, which is visualised in figure 5.

22Note that backtesting a large number of different strategies is itself a form of overfitting (e.g. see De Prado (2018)), in
combination with low dropout probabilities. In order to minimise problematic issues arising from this backtest overfitting,
we only used a small subsample of randomly chosen 24 consecutive months to evaluate several strategies before picking the
one that worked best empirically.

23The standard FM approach is to refit the model monthly.

41



We periodically refit our model on data from year t, using the described k-fold time-series cross-

validation, and forecast excess returns for all months in year t+ 1. In particular, we use k = 3 to find a

balanced trade-off between data availability and computational cost, with the smallest observed training

split containing circa 13,330 observations. This scheme allows us to make results comparable to existing

research that uses traditional FM regressions. To further increase comparability, we replicate the results

from Green et al. (2017) by refitting the model monthly and annually (as done in their paper). The

results can be found in appendix E.

Moreover, we are particularly interested in the time-series aspect of risk-premia estimations, feature

selections and performance. Therefore, we allow for different network specifications at each time as we

periodically tune all hyperparameters applying random grid search. By doing so, we follow Bergstra and

Bengio (2012) and draw the respective hyperparameters independently from the distributions summarised

in table 2. Random grid search has advantages over brute-force grid search, as it dramatically reduces

the computational cost. Bergstra and Bengio (2012) show that a small subset of all hyperparameter

combinations is sufficient to minimise the validation error crucially.

In addition to hyperparameters such as learning rate or parameter penalties, we are also interested in

tuning what we call architectural hyperparameters. These include the number of layers, number of nodes

in each hidden layer and the layer structure. There exists no deterministic rule for deriving an optimal

neural network design (e.g. see Heaton (2008)). Therefore, a kind of arbitrariness exists regarding a

network’s layer structure and design, which is frequently criticised. We generally differentiate between a

tapered and constant architecture type, which are described in detail in appendix D). For the constant

architecture type, the number of nodes remains the same in each hidden layer and is drawn from the

distribution shown in table 2. For the tapered-type architecture, a starting number of nodes for the first

hidden layer is drawn from the distribution shown in table 2, denoted N1, where all subsequent layers

follow the rule Nl =
⌈
Nl−1

2l

⌉
, with the boundary condition N1/2

HL ≥ 1. Most importantly, however, the

networks’ architectural structure directly correlates with the model complexity, which we can capture

numerically, for example, through the total number of model parameters.

Regarding the tuning of architectural hyperparameters, our paper takes a different approach than

other studies, such as Gu et al. (2020b) or Bianchi et al. (2021). While different architectures are

commonly benchmarked in a horserace, they typically remain constant over time. In the end, an overall

(or on average) architectural structure is picked as the best. In this paper, on the other hand, we

are fundamentally interested in the time-varying model complexity, particularly during times of crisis.

Therefore, we allow the neural network to flexibly change its architecture every time we refit as part of

the hyperparameter tuning.
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Hyperparameters – general

weight penalty weight penalty
ratio

gradient
penalty

gradient
penalty ratio

dropout
probability

learning rate

λ(w) = 10a α(w) λ(d) = 10a α(d) D LR = 10a

a ∼ U(−8,−4) ∈ B∗ a ∼ U(−8,−4) ∈ B∗ ∼ U(0.05, 0.25) a ∼ U(−5,−3)

Hyperparameters – architecture

layer structure # of nodes # of hidden layers
LS N = ⌊ea⌋ HL ∈ [1, a],HL ∈ Z+

∈ {tapered, constant} a ∼ U
(
log(K

2
), (1.1×K)

)
∗∗ a =

⌊
log(K/2)
log(2)

⌋
∗∗

∗ where B = {0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99}.
∗∗ where K is the number of factors / characteristics.

Table 2:
Hyperparameter tuning
Each time we refit a model that requires hyperparameter tuning, we perform a random grid search, analogously
to Bergstra and Bengio (2012). In particular, we independently draw 80 different combinations from the distri-
butions shown above. We find that this number is a good trade-off between validation error minimisation and
computational cost.

4.4 Calendar Year vs. Fiscal Year

Section 4.3 introduces the estimation strategy, including the proposed data splitting protocol. In order

to reduce computational cost while simultaneously retaining the typical Fama-Macbeth approach, we

re-fit the model under consideration annually rather than monthly. This approach is supported from a

computation cost point of view and a data dynamics perspective. In section 4.1 and in appendix A, we

discuss that 63 of the considered characteristics are based on annual accounting information. Therefore,

despite the cross-sectional rank normalisation, which can result in small monthly changes even in annual

firm characteristics due to a change in rank, a significant number of the firm characteristics under

consideration only changes considerably once a year – namely when a new annual report with novel

fundamental accounting data is released. The fact that most firm characteristics are constructed based

on information that merely becomes available once a year also supports the idea of re-fitting the model

annually. Subsequently, the key question is what year the re-fitting is referring to. The calendar year or

the fiscal year? The fiscal year appears to be the natural choice due to the aforementioned connection

of annual firm characteristics to annual reports. However, not every company’s fiscal year ends in the

same month.

Figure 6 shows that the average change in book-to-market (which serves as a placeholder represen-

tative for annual characteristics) is not evenly distributed over all months but peaks in July. Most

companies’ fiscal year in our investment universe ends in December, causing this uneven distribution.

The time lag between December and July is explained by the publication lag as discussed in section 4.1

and the fact that we match monthly returns with lagged firm characteristics as discussed in section 2.

Subsequently, we define the fiscal year (from an information availability perspective) to span from July
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Figure 6:
Average annual changes, book-to-market
On the left hand side, the figure shows the average change in book-to-market (as an arbitrarily chosen annual
firm characteristic) per month over the entire sample. It can be seen that, on average, the most significant
changes happen in July, meaning that after aligning returns with lagged firm characteristics and including a
publication lag of six months, that for most companies included in the investment universe, the fiscal year seems
to end in December. On the right hand side, the rank-normalised book-to-market of an arbitrarily chosen asset
(Beverly Enterprises, permno = 47992) confirms that the observations tend to change only once every 12 months,
emphasised by the step-like pattern.

to June, as this is true for the average company in our investment universe. As an example, figure 6 also

shows the time-series of rank-normalised book-to-market values of an arbitrarily chosen asset – Beverly

Enterprises (permno=47992). The step-like pattern confirms that significant changes merely occur once

a year. Therefore, we consider both cases in our analysis: re-fitting by calendar year spanning from

January to December and by fiscal year, which spans from July to June.

4.5 Model Comparison

We evaluate model performances using two key measures: the out-of-sample cross-sectional mean R2

(XS-R2) and the out-of-sample predictive R2. In general, assessing an asset pricing model should in-

clude evaluating how well the model describes systematic risk and how well the model explains risk

compensation. We follow Chen et al. (2019) and define24 the cross-sectional mean R2 – which indicates

the model’s ability to describe common variation in realised returns across stocks – as

XS-R2 = 1−
1
N

∑N
i=1

1
T

(
1
Ti

∑
t∈Toos

ϵ̂i,t+1

)2

1
N

∑N
i=1

1
T

(
1
Ti

∑
t∈Toos

ri,t+1

)2 (38)

where Toos denotes the out-of-sample test split, with ϵ̂i,t+1 = ri,t+1 − r̂i,t+1 and r̂i,t+1 = ĝt(ci,t;Wt, θ).

Analogously to Gu et al. (2020b), we do not de-mean the denominator in equation (38) due to the

non-stationarity and noise in the mean estimation. Note that the cross-sectional mean R2 differs slightly

from a conventional total R2 measure, which is also commonly used in empirical asset pricing. Since we

24On page 19 in the original paper by Chen et al. (2019), equation (38) appears to be using the estimated re-
turn in the denominator. However, analogously to the common R-squared definition, and the Github repository
https://github.com/jasonzy121/Deep_Learning_Asset_Pricing/blob/6c26b9dad01e76b214ab8f5566c42a29e99677c9/

src/model/model_utils.py#L57, we follow (38) and use the actual excess return instead of an estimated return.
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only impose very mild restrictions on our investment universe, including no restrictions on the time a

stock must have been listed on an exchange, our empirical dataset is unbalanced25. This unbalancedness

means that while observations range over decades for some stocks, they can be extremely limited for

others. Taking the time-series average of the residuals first and weighting the estimated means by their

convergence rate accounts for differences in precision and, therefore, makes it less prone to outliers.

Next, we report the predictive R2, which indicates the model’s ability to explain cross-sectional

differences in expected returns, defined as

Predictive R2 = 1−
∑

(i,t)∈Toos

(
ri,t+1 − β̂′

i,tλ̂t

)2

∑
(i,t)∈Toos

(
ri,t+1

)2 . (39)

The predictive R2 measures the explained variation in ri,t+1 due to β̂′
i,tλ̂t, where λ̂t denotes a vector

of conditional risk price estimates, using only information that is available up until t− 1. Equation (39)

follows a restricted approach, in which we assume that the model’s ability to describe risk compensation

is solely based on the exposures to systematic risk (for a more detailed discussion on the topic, see for

example Kelly et al. (2019)).

Note that compared to Kelly et al. (2019) we do not use the unconditional but the conditional

risk price estimate. The conditional risk price estimate in combination with annual re-fitting yields

conservative out-of-sample performances compared to existing literature. However, we are particularly

concerned about invalid future information leakages as part of the empirical backtesting exercise. Thus,

we intend to follow the mantra of the general machine learning literature and do not allow any information

spillovers from the test dataset into the training or validation set but in an asset pricing setting. Section

4.4 discusses that we re-fit our models annually, rather than monthly (as is typically done with linear

models), to maintain the general spirit of the original Fama-Macbeth regressions while dramatically

reducing the computational cost. Thus, in order to estimate a neural network on data from year t,

all data from year t must have been observable for estimation at the time. For example, if λt refers

to the risk prices estimate for September in year t, and to avoid invalid information leakage from the

future, all data from year t must have been observable before the risk price for September could have

been estimated. In the example of re-fitting the model by calendar year, the corresponding risk price

in September could have only been estimated at the end of December – the point in time when all of

the data was observable. In contrast, Kelly et al. (2019), for example, apply the unconditional risk

price estimate to evaluate the predictive R2. While predictions are performed at each point in time, the

unconditional risk price estimate induces an unclean information leakage, as the unconditional risk price

estimate is based on data from the entire sample, not just on data observable at time t.

25Our approach in this regard differs from other studies, such as Chen et al. (2019), who only consider stocks for which
all characteristics are fully observable.
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Furthermore, in section 2.4 we discuss the smoothening of the risk price estimates by using a five-

year backwards-looking rolling window approach. Thus, we evaluate the predictive R2 based on the

year-end risk price estimate and return predictions for the entire year t+1. This procedure is clean from

an information leakage perspective, as it only uses information that would have been observable at the

time. In the example of re-fitting our models by calendar year, this equates to a risk price estimate based

on available data until December of year t. Without the backwards-looking smoothening of the risk price

estimates, and in a scenario where the models would be re-fitted monthly, the described procedure would

induce a heavy December bias. However, since we smooth the risk price estimate using all information

from the previous five years, there is no unwanted December bias while being clean from a general

machine learning perspective. However, since the risk price estimates are only updated once a year,

the out-of-sample prediction task is much more difficult than a monthly update, as new information is

incorporated at a much lower frequency. The increased difficulty of the prediction task resulting from

this methodology, is one of the reasons why our empirical performances are conservative compared to

existing literature yet competitive.

4.6 Robustness

The previous sections 4.2 and 4.4 discuss the different data pre-processing and splitting regimes under

consideration. In addition, we also examine a more restricted universe in which we exclude all microcap

stocks from the sample. In a different approach, only a smaller subset of 49 characteristics is consid-

ered, which we call core characteristics and which comprise the most commonly used characteristics

in the empirical literature (see appendix B for a description). This manual pre-selection reduces the

dimensionality of the investment universe by nearly 50%. However, reporting all results for all scenario

combinations would be too expansive and confusing. We, therefore, primarily focus on results for the

baseline case: re-fitting by calendar year, using all and the core rank-normalised characteristics, and

estimating risk prices on a rolling window basis. Additionally, appendix G summarises all scenarios’

results as a robustness analysis. We show that our results are qualitatively stable across all scenarios.

There are, however, minor quantitative differences that we discuss in appendix C. For example, split-

ting by fiscal year is a more ”difficult” out-of-sample task for any model as the test dataset predominantly

includes new accounting data from newly released annual reports, making predictions harder. We also

show that one metric alone (either XS-R2 or predictive R2) is frequently insufficient to evaluate a model’s

overall performance. There are also minor differences in performance regarding the conditional risk price

estimates, which depend on an expanding or rolling window estimation. While appendix I presents a

more detailed discussion, these examples highlight that many assumptions directly impact model perfor-

mances, posing specific difficulties. In particular, out-of-sample model performances are the first sanity

check for any empirical analysis and precede an economic interpretation of the results (if a model does

46



not perform well out-of-sample, do we trust its outcomes?). Consequently, the assumptions that go into

the model fitting process also directly impact inference. Controversially, and in most cases, there is no

clear right or wrong regarding these assumptions, such as splitting the data by calendar or fiscal year.

4.7 The Cross-section of Stock Returns

We compare fifteen different models and report their out-of-sample cross-sectional meanR2 and predictive

R2 in table 3. In particular, we investigate ten different neural network types that we benchmark

against five commonly used linear benchmarks, including ordinary least squares, weighted least squares,

Elastic Net, Ridge and Lasso. While all neural networks can take any of the flexible architectural forms

discussed in section 4.3, they differ in the type of regularisation that is used in their respective objective

function. We consider neural networks with no regularisation in their objective function (NN), neural

networks with weight constraints, including L1 (NN-W1), L2 (NN-W2), and both L1 and L2 (NN-W1W2)

regularisation, element-wise Jacobian constraints, including L1 (NN-J1), L2 (NN-J2), and both L1 and

L2 (NN-J1J2) regularisation, as well as column-mean Jacobian constraints, including L1 (NN-J1-m), L2

(NN-J2-m), and both L1 and L2 (NN-J1J2-m) regularisation.

The left panel in table 3 reports R2’s at the individual stock level for the case of using all 103 firm

characteristics. The table shows that a model’s ability to describe the total variations in returns by

the common variation among returns (i.e. describing risk) does not necessarily correlate with a model’s

ability to explain cross-sectional differences in expected returns (i.e. describing risk compensation).

This difference in performance measure is evidenced, for example, by a positive cross-sectional mean

R2’s for OLS or Ridge, but a corresponding negative predictive R2. Consequently, we evaluate model

performances hereafter following a combined approach, taking both performance measures into account.

Table 3 shows that OLS, Lasso, Ridge and Elastic Net yield positive cross-sectional mean R2’s of

5.57%, 13.79%, 5.58%, and 13.81% (with WLS being the only model producing a negative XS-R2 of

−1.96%), but they fail to produce positive and non-zero predictive R2’s, indicating that they are less

effective in estimating risk prices – at least in the FM-like setup of this paper. This finding may not be

surprising for unregularised models, such as OLS or WLS, as they are prone to in-sample overfitting in

a high-dimensional environment. However, even highly regularised linear models such as Lasso, Ridge,

or Elastic Net do not seem to capture risk prices satisfactorily, as they produce out-of-sample predictive

R2’s of 0.00%, −0.35%, and 0.00% respectively and are, therefore, dominated by (or on par with) a

naive return forecast of zero to all stocks. Overall, our results question the usage of typical linear

Fama-Macbeth regressions when they are analysed from an out-of-sample perspective.

In contrast, neural networks produce positive R2’s across all performance measures, with the XS-

R2’s ranging from 0.92% (NN) to 16.12% (NN-J1-m), and with the predictive R2’s ranging from 0.04%

(NN-J1J2) to 0.12% (NN-W2). Despite the apparent outperformance of neural networks, valuable and
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All Characteristics Core Characteristics

XS-R2 [%] Pred. R2 [%] XS-R2 [%] Pred. R2 [%]

OLS 5.57 −0.35 6.91 −0.07
WLS −1.96 −1.81 7.20 −0.37
Lasso 13.79 0.00 13.81 0.00

Ridge 5.58 −0.35 6.91 −0.07
Elastic Net 13.81 0.00 13.67 0.00

NN 0.92 0.11 14.75 0.10

NN-W1 9.17 0.11 13.42 0.10

NN-W2 9.74 0.12 17.20 0.12

NN-W1W2 11.16 0.07 13.96 0.12

NN-J1 14.88 0.05 16.15 0.04

NN-J2 14.32 0.09 15.72 0.08

NN-J1J2 8.15 0.04 13.45 0.03

NN-J1-m 16.12 0.10 15.83 0.09

NN-J2-m 14.99 0.07 14.03 0.05

NN-J1J2-m 14.78 0.08 15.77 0.06

Table 3:
Out-of-sample performance summary:
The table summarises the cross-sectional mean R2 and predictive R2 in percentage for all fifteen models under
consideration. The left panel displays model performances using all 103 characteristics. The right panel displays
model performances using a subset of 49 core characteristics. All models are periodically re-fitted by calendar
year, firm characteristics are cross-sectionally rank-normalised, and λ̂t is estimated on a 5-year backward-looking
rolling window basis.

transferable insights can be gained from the linear models’ results. In particular, model selection (or even

regularisation in general), as in the case of Lasso, significantly improves the estimation of systematic risk

and the prices of risk. This improvement becomes evident when comparing the XS-R2’s of OLS with

Lasso (5.57% – 13.79%) and the XS-R2’s of NN with NN-J1 (0.92% – 14.88%). The results show that

applying an element-wise L1 penalisation to the Jacobian during training yields a cross-sectional mean

R2 that is 16 times higher than using an unregularised objective function.

The general insight that sparse model representations, for example, through the implementation of

L1 norm regularisation, are favourable – especially in a data-rich environment, as is the case with using

all 103 firm characteristics – is not new to the empirical asset pricing literature (e.g. see Kozak et al.

(2020), or Freyberger et al. (2020)). However, to the best of our knowledge, we provide the first evidence

that this insight can be confirmed using Jacobian regularisation as part of a non-linear model’s objective

function. In particular, with 16.12%, NN-J1-m produces the highest cross-sectional mean R2 and the

third-highest predictive R2 with 0.10%, providing strong evidence in favour of Jacobian regularisation.

The right panel in table 3 reports R2’s at the individual stock level for the case of using a subset

of the 49 core characteristics only. Like the all-characteristics case, neural networks dominate all linear

benchmarks and consistently yield positive R2’s on both performance metrics. As expected, due to the
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reduced dimensionality, the performances of the unregularised linear models have improved relative to

the higher dimensional setting. For example, while WLS only produces a negative XS-R2 of −1.96% in

the all-characteristics case, it yields a positive XS-R2 of 7.20% using the core characteristics only. A

similar pattern emerges for neural networks, where the XS-R2 of NN improved from 0.92% to 14.75%.

However, even in an environment with reduced dimensionality, no linear model produces positive and

non-zero predictive R2’s.

Consequently, as expected, the relative importance of L1 penalisation is reduced for all models in

the core characteristics case. For example, while all Jacobian-regularised neural networks still produce

competitive out-of-sample R2’s, penalising the network’s weights26 only appears to yield the most robust

results for the core-characteristics case, with NN-W2 producing the highest XS-R2 (17.20%) and the

highest predictive R2 (0.12%). Overall, table 3 shows that neural networks consistently produce positive

out-of-sample R2’s that appear to be stable across the all-characteristics and core-characteristics case.

Moreover, neural networks trained with objective functions applying Jacobian regularisation are among

the most robust models, with neural networks, in general, being the best-performing models overall.

In addition to the overall model performances in table 3, figure 7 summarises model performances by

company size for the all-characteristics case only, with an analogous analysis for the core characteristics

case in appendix G. A differentiation by company size, measured by market capitalisation (see section 4),

is essential since there is empirical evidence that risk factor performance is dependent on the investment

universe definition and the inclusion of micro-caps. Bartram et al. (2021) argue that micro-caps are

characterised by lower liquidity, higher idiosyncratic volatility, and pose more significant short-selling

frictions. Systematic risk factors that empirically depend on micro-caps are frequently deemed irrelevant

by institutional investors, as, for example, trading on their signal is capital-intensive. At the same time,

and as discussed before, micro-caps provide the vast majority of data in asset pricing. The commonly

used investment universe of US stocks only consists of 60% micro-caps, meaning they provide the largest

share of training data. From this point of view, the evolution of modern machine learning in asset pricing

towards more complex and computationally more intensive models relies heavily on micro-caps simply

from a data providing perspective.

This paper does not intend to replicate an institutional investor’s mandate and does not fully account

for real-world frictions since our primary focus lies on the universally applicable methodology. However,

we take the criticism seriously. In particular, we are cautious about identifying small scale inefficiencies

that are merely driven by illiquidity.

The top panel in figure 7 shows the cross-sectional mean R2 for all models in percentage. The

performance is based on estimated models using all stocks but focuses on fits among the size class

subsamples. A similar pattern to the overall performances from table 3 emerges as linear models fare

26Note, that penalising the weights does not yield in model selection as it does for Jacobian regularisation.
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Figure 7:
Performances summary by size
The top panel shows the out-of-sample XS-R2 in percentage for all models grouped by size (i.e. Large, Small, and
Micro). The middle panel displays the predictive R2 on a logarithmic scale, where the predictive R2 is estimated
using risk prices that are estimated over all assets. The bottom panel shows the predictive R2 on a logarithmic
scale, where a separate risk price estimate is used for each size class.

poorly, while neural networks are the best performing models, especially among large stocks, with XS-R2s

ranging from 14.27% (NN) to 45.93% (NN-W1). The panel in the middle reports the predictive R2, where

the performance is again based on a risk price estimate using all stocks. The results are reported on a

logarithmic scale to make even small differences visible. Neural networks are the only models producing

positive R2’s for all size classes. While the performance of large stocks is still particularly successful, with

predictive R2’s ranging from 0.07% to 0.32%, the dichotomy between model performances of large and

non-large stocks is less distinct compared to the performance differences measured by the cross-sectional

mean R2, as micro-caps produce predictive R2’s ranging from 0.04% to 0.13%.

With the criticism expressed by Bartram et al. (2021), the question becomes: how reliable are these

estimates? Are we potentially overstating the performances of large stocks? As a form of robustness

check, the bottom panel in figure 7, reports predictive R2’s, where lambda is estimated separately for

each size class. This approach does not require any model re-fitting and is, therefore, computationally

inexpensive. Due to the linear nature of OLS, WLS, Lasso, Ridge and Elastic Net, the risk price

estimate does not change, and their performances continue to fare poorly. For the nonlinear neural

networks, however, the size class-specific lambda estimate differs from the overall estimate. Ideally, the

performances between the panel in the middle and the bottom do not change significantly, indicating

robust estimates.
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Interestingly, in the high-dimensional all-characteristics case, neural networks with weight penalisa-

tion show less robust results, as the large stock performance of NN-W1 drops from 0.17% to −0.02%.

L2 weight penalisation seems to offer more robust results as the performance of large stocks remains

constant (0.22% to 0.21%). The most robust model is NN-J1-m, which produces the highest predictive

R2 for the case of using an overall lambda estimate (0.32%) and a size class-specific estimate (0.30%).

The bottom panel supports the argument of including L1 norm Jacobian regularisation in the objective

function in a high-dimensional environment, as NN-J1 and NN-J1J2-m also produce competitive and

stable predictive R2’s (together with NN-W2).

The superior out-of-sample performances shown by neural networks in this section suggest that non-

linear models estimate systematic risk and risk compensation more effectively. In addition, and as

expected, we find that the importance of including forms of regularisation that enable model selection

increases with the dimensionality of the input data. More specifically, this paper provides further evi-

dence for the ongoing debate in empirical asset pricing that systematic risk and risk compensation are

intrinsically nonlinear. The neural networks under consideration show favourable inner model mechanics

that produce consistent and robust estimates — consequently, understanding why a model produces a

particular outcome is of utmost importance.

4.8 The Impact of the Objective Function

The primary focus of this paper is the estimation of time-varying risk premia and the focus on model

interpretability while simultaneously offering competitive and stable model performances. As a con-

sequence, we are particularly interested in the partial derivatives’ distributions as they directly relate

to the topic variable importance (see section 4.9), offer valuable insights about the degree of certainty

regarding the risk premia estimation (see section 4.11) and the inner model mechanics (see section 4.12).

Ideally, we observe partial derivatives that are clear of extreme outliers and offer meaningful tolerance

bands for the risk premia estimation. In this section, we show that the choice of the objective function

directly impacts the objectives mentioned above and must become an integral part of the training regime

design of neural networks.

Sections 3.2 and 3.3 mathematically introduce the two different types of objective functions that

include either the penalisation of a neural network’s weights or the penalisation of the input-output

Jacobian. In general, any form of regularisation – including weight or Jacobian penalisation – primarily

serves the purpose of reducing overfitting, e.g. see Goodfellow et al. (2016). In this section, we further

show that the objective function choice directly impacts economic interpretability. Therefore, the ob-

jective function choice is relevant from a performance point of view and crucial in the domain-specific

application in empirical asset pricing. Section 3.3 discusses how the idea of Jacobian regularisation is

generally not new to the broader machine learning literature and has so far been predominantly used in
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the field of image recognition, for example, in the context of adversarial examples. However, we argue

that Jacobian regularisation becomes economically interpretable in asset pricing, besides boosting per-

formance, as it enables time-varying variable selection by setting the influence (or in an economically

interpretable term: risk premium) of certain input variables close to or precisely to zero. This feature

is not straightforward in the case of weight regularisation. Further, in this section, we specifically only

focus on the regularisation that is directly implemented through the objective function and do not discuss

other forms of regularisation, such as dropout or early stopping and refer to section 4.3.

Starting with the regularisation of the model weights, the objective function in equation (24) forces

the weights closer to the origin by adding the regularisation term to the objective function motivated by

the intention to improve the model’s ability to generalise better out-of-sample or, equally, to reduce over-

fitting, e.g. see Goodfellow et al. (2016). Empirically, we confirm the theoretical properties of the weight

penalisation strategy. Both L1 and L2 norm weight regularisation can have a positive impact on the

out-of-sample performance. As shown in table 3, the cross-sectional mean R2 for neural networks using

either L1 or L2 weight penalisation is nearly ten times higher in the case of using all 103 characteristics.

Compared to the high-dimensional case of using all 103 characteristics, this performance boost is less

pronounced in the case of using the core characteristics only, where L2 weight regularisation improves

the XS-R2 and the predictive R2 from 14.75% to 17.20%, respectively from 0.10% to 0.12%, compared

to a neural network without any weight penalisation in the objective function. We conclude that weight

penalisation has its most considerable influence in high dimensional settings, as expected.

While weight penalisation improves out-of-sample performance, it is more difficult to interpret its

effect economically. The economic interpretability is particularly difficult when weight penalisation

is combined with other forms of regularisation, such as batch normalisation. For example, combining

weight penalisation with batch normalisation merely affects the effective learning rate, as discussed by van

Laarhoven (2017). Unlike ridge or lasso regressions, where the penalisation directly impacts the regression

coefficients (economically interpretable), weight penalisation does not intentionally and directly penalise

the coefficients (in the form of the derivatives) or even variable selection. More importantly, due to

the intrinsic nonlinearity of g, penalising the weights does not necessarily impose any boundaries on

the distribution of the partial derivatives, meaning that they are not clear of (potentially extreme)

outliers27. To see why this is, consider the single-hidden layer neural network g(x,w) = σ(wTx+b), such

that ∂g
∂x = σ′w, where σ′ denotes the derivative of the activation function, σ, with respect to its input.

Jacobian regularisation, on the other hand, and as discussed in section 3.3, does precisely this: due to

the imposed penalty in the form of the Frobenius norm on the Jacobian, the magnitude of the derivatives

is bounded and dependent on the penalty forced towards zero, allowing for risk premia selection. Since

the partial derivatives are used to estimate time-varying risk premia, the Jacobian regularisation is

27We discuss the importance of outliers and how they are related to the notion of stable predictions in section 4.12
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economically interpretable and particularly useful in asset pricing. Moreover, in section 4.12, we further

discuss the benefits of the Jacobian objective function in the context of model stability.

To illustrate the practical effects of the various objective functions, we present the empirical distri-

butions of the partial derivatives, measured as the overall, cross-characteristic time-series interquartile

ranges average, the cross-sectional time-series average of the maximum number of outliers28 and the

maximum cross-sectional spread between the maximum and minimum value of derivatives, which are

summarised in figure 8. The maximum max-min spread and all time-series averages are both based on

monthly values. The interquartile range serves as a first impression of the spread of partial derivatives,

while the outliers indicate the frequency of extreme values. Lastly, the max-min spread serves as an

indication for the spread of the most extreme values.

Due to the cross-sectionality and the summarising nature of the aggregated interquartile range, gran-

ularity is lost. Nonetheless, figure 8 shows that the partial derivatives’ distribution depends on the

objective function. In particular, those neural networks trained with an objective function using element-

wise L1 norm Jacobian regularisation (i.e. J1, J1J2, J1-m, J1J2-m) appear to be characterised by the

most narrow distribution. Moreover, when compared to the objective function without any additional

penalties (NN, neither weight nor Jacobian penalty), the impact of the element-wise Jacobian penalty is

most significant for the all-characteristics case. This empirical finding is valuable insight, as we ideally

wish to reduce the dimensionality of the input data. The effect is smaller for the already dimensionality

reduced core characteristics case. In addition, figure 8 shows that all neural networks that used Jaco-

bian regularisation as part of their objective function produce less extreme values, as their maximum

max-min spread is smaller compared to the spread of any neural network that was trained with weight

regularisation.

However, figure 8 does not account for the time-variation in the distributions of the partial derivatives.

This time-varying distribution is not only different for each neural network. It also differs across all

characteristics. A holistic analysis of the time-varying distributional properties of each characteristic

and model is beyond the scope of this paper. Instead, figure 9 exemplary shows the interquartile ranges

as an indication for the distribution of the partial derivatives for the characteristic return-on-assets, as

it is one of the most relevant variables, which we discuss in section 4.9. The left column of figure 9 refers

to the year 2008, and the right column to the year 2019. We intentionally picked a crisis and non-crisis

year, as defined by the NBER recession indicator. The bottom panel displays the same box plot as the

top panel but includes a visualisation of outliers.

Figure 8 shows that the spread of the partial derivatives on characteristic level is indeed time-

dependent. Moreover, the magnitude of the partial derivatives can be vastly different across model

and time. Without further discussing the distributions concerning this particular characteristic, our

28Where we define an outlier as a partial derivative that lies outside [Q1− 1.5× IQR,Q3+ 1.5× IQR], with Q1 and Q3
being the 25th, respectively 75th percentile and IQR the interquartile range, defined as IQR = Q1−Q3.
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Figure 8:
Overall distributional summary of partial derivatives
The left panel shows the overall, cross-sectional time-series average of the interquartile range for. The middle
panel displays the time-series average of the maximum number of outliers across characteristics. The right panel
displays the maximum max-min spread across characteristics. The distributional properties are shown for each
model and the all and core-characteristics case.

Figure 9:
Exemplary distributional properties: return-on-assets (2008, 2016)
The left column shows the distributional properties, summarised by the interquartile range, of the partial deriva-
tives of the characteristic return-on-assets for the crisis year 2008, and the right column refers to the year 2019. In
addition, the visualisation of in the bottom row is identical to the top row, but it additionally visualises outliers,
which are not included in the top row.

critical finding is that out-of-sample performance alone constitutes an incomplete metric on which model

selection should be based. Due to the economic interpretability of the partial derivatives, the distribu-

tion, including the spread, outliers and consistency, should also be considered when picking a model for

further analyses. Therefore, we propose considering secondary and interpretable model qualities such as

the distributional properties of the partial derivatives as part of the model selection exercise. To the best

of our knowledge, this paper is the first to propose considering such a secondary and indirect measure
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for the process of model selection in asset pricing.

One of the critical problems is that there is no unambiguous way to value the various derivative

distributions. A too sizeable interquartile range across all characteristics is undesirable as it does not

allow for clear variable selection and induces more significant uncertainty. Equally, an interquartile

range that is too small may pose limitations due to a variable selection that is too strong. We find that

NN-W2 and NN-J1-m portray a reasonable middle ground as these models offer strong out-of-sample

performances and desirable partial derivative distributions, especially in the core-characteristics case.

Moreover, they represent a mix of models that use model weight and Jacobian regularisation as part of

their objective function. Therefore, in section 4.11, we primarily focus on those two models to make our

analysis more straightforward and clear, with more analytical output in appendix I.

4.9 Which Firm Characteristics Matter?

The competitive model performances of neural networks presented in section 4.7 provide empirical evi-

dence in favour of a nonlinear model choice. In section 4.8 we show that the objective function not only

has a profound impact on model performance but also on the interpretability of the partial derivatives.

In particular, we conclude that NN-W2 and NN-J1-m provide competitive model performances in com-

bination with desirable partial derivative distributions. They are the primary models we focus on in this

section, with more empirical results presented in appendix H.

In this section, we investigate the relative importance of individual firm characteristics (variable

importance) for the performance of each model. We build on existing research such as Ruck et al.

(1990), or Leray and Gallinari (1999) and measure variable importance as the absolute median of the

partial derivatives at time t, such that variable importance is defined as

VIt,k =
∣∣d̄t,k

∣∣ , (40)

where dt,k denotes an Nt-dimensional vector of partial derivatives with respect to the k-th firm charac-

teristics at t, and the bar notation in equation (40) indicates the median. Thus, the variable importance

definition in equation (40) is closely related to the estimation of risk premia, which is conceptually mean-

ingful: For a given risk exposure, a higher risk compensation is more important. However, in contrast

to the risk price estimation, the estimated variable importance is not smoothed. Equation (40) yields

a time-series of variable importances measured in absolute median values, which we rank at each t.

Thus, we can further analyse variable importance, for example, for specific periods or the entire sample.

For example, table 4 reports the overall most important input variables and the most important input

variables over the most recent five years, where the aggregated variable importances are the median of

the time-series variable importances over the respective period. Using the median rather than the mean
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is justified because the time-series of median partial derivatives can vary significantly over time. These

significant changes in absolute value result from the periodic re-fitting, the architectural freedom of the

neural networks, and their nonlinearity. Therefore, to reduce the effect of extreme outliers in variable

importance, which may be caused by a relatively short period, where an input variable becomes empiri-

cally very important compared to the remaining periods, we use the median to aggregate the time-series

of variable importances into a fixed estimate. In addition to the examples discussed in this section,

appendix H provides further empirical details on the time-varying variable importances.

Empirically, we confirm the well-documented fact that variable importance varies over time and

depends on the time horizon over which it is estimated (e.g. see Gu et al. (2020b) who also report time-

varying variable importance). Our main contribution is two-fold. First, the objective function profoundly

influences which input variables turn out to be the most important. To the best of our knowledge, we

are the first to document the importance of the objective function in the context of variable importance

in empirical asset pricing estimated by deep neural networks. Secondly, we empirically confirm the

theoretical variable selection ability of Jacobian regularisation and show that, for example, in an overall

estimation, the total number of firm characteristics considered influential for NN-J1-m (28) is reduced

by nearly 25%, compared to NN-W2 (38).

Variable or feature importance and model interpretability is a fundamental part of modern machine

learning literature in general, not just in asset pricing (e.g. see Molnar et al. (2020)). The most commonly

used methodologies to assess variable importance include the R2 reduction from setting all values of a

given predictor to zero (e.g. see Gu et al. (2020b)), the sum of squared sensitivities (e.g. see Dimopoulos

et al. (1995)), partial dependence plots (e.g. see Friedman (2001)), individual conditional expectations

(e.g. Goldstein et al. (2015), accumulated local effects (e.g. see Apley and Zhu (2020)), Shapley values

(e.g. see Shapley (1953)) and absolute derivatives (e.g. see Ruck et al. (1990) or Leray and Gallinari

(1999)). The literature in this field is vast, so we do not claim to provide a holistic overview. However,

one shortcoming of all these measures is that they are typically reported as an aggregated summary

over the entire sample. However, aggregated point estimates make time-dependent analyses or economic

model output interpretations difficult. In asset pricing, particularly, stakeholders may be interested in

asset-level model insights that are also time-varying. One of the key reasons for this is that financial

markets are dynamic and, thus, constantly evolving. Under the assumption of efficient markets, tradable

risk factors that may earn an investor abnormal returns at a certain point in time should be arbitraged

away. Moreover, regulatory changes, geopolitical events or even technological advancements, such as

high-frequency (or at least electronic) trading, support the idea that variable importance should vary

with time because the underlying risks are changing themselves. For this reason, we estimate variable

influence estimated over the entire sample, as well as time-varying. In particular, we separately report

an overall and most recent variable importance, which we estimate over the most recent five years in
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our data sample. Further analysis is presented in appendix H, which serves as a robustness check and

confirms our general findings.

Variable importance is crucial from an interpretability point of view and an asset pricing and domain-

specific perspective. Variable importance in the context of model interpretability helps to understand

which input features are primarily driving predictions. Improved model interpretability, as a consequence,

is beneficial for any form of communication about the model and can help detect biases or even debug

software. In asset pricing, in particular, variable importance may directly translate into trading strategies.

While there is a myriad of different trading strategies – too large to be discussed in their entirety in

this section – a common strategy involves the construction of long-short portfolios based on the most

influential characteristics. In another exemplary approach, portfolios may be constructed based on

return prediction, where an investor buys stocks with high return predictions and shorts stocks with low

predictions29.

In this domain-specific context, the link between partial derivatives, variable importance and Ja-

cobian regularisation is intriguing. Although we do not pursue the issue further at this point, it is

conceivable that an objective function applies semi-automated Jacobian regularisation. Semi-automated

regularisation could mean that the penalty is not necessarily applied freely or entirely data-driven but is

manually imposed instead. This imposition suggests that an investor may wish to manually penalise the

influence of specific characteristics or even individual assets more than others. Two possible practical

applications may be economic, social and governance (ESG) investing, where an investor may wish to

limit the influence of non-ESG assets.

Another example may be 1-month momentum, which can be an expensive signal to trade on due to

high turnovers and potentially high transaction costs, as it is mainly driven by illiquid and expensive to

trade microcaps. An intuitive counter-argument would be to exclude particular assets or firm character-

istics from the training sample. However, as we discuss in section 1, at a monthly frequency, financial

data is relatively scarce compared to other domains in which machine learning models thrive, making

training ultra-complex neural networks or other machine learning models difficult. In this setting, making

use of all available data is crucial. Therefore, semi-automated Jacobian regularisation may be a way for

institutional investors, for example, to use all available data but to manually limit the signal extracted

from certain assets, industries, or even entire firm characteristics.

Table 4 summarises the most important characteristics by model, measured as the absolute median

partial derivative and estimated over the entire sample (left panel) and the most recent five years only

(right panel). Our definition for variable importance, summarised in equation (40) is not new to the

general machine learning literature. Similar approaches are proposed, for example, by Ruck et al. (1990)

or Leray and Gallinari (1999). As a consequence, we do not claim to propose a generally new concept

29In this context, the model must not necessarily be good in predicting returns but predict the rank of future returns.
Nonetheless, model performance is reliant on the most influential firm characteristics.
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Most important characteristics: entire sample Most important characteristics: 2016-2020

1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

NN beta mom1m mve std turn mom12m ep mom12m invest sp pchsale pchinvt
NN-W1 mom1m std turn mom12m turn retvol mom36m beta roavol retvol mom1m
NN-W2 mom12m mom1m beta ill retvol roavol turn pchsale pchrect indmom ear
NN-W1W2 mom12m mom1m std turn retvol mve mom12m ep sgr gma currat
NN-J1 std turn mom1m maxret retvol mve lev roavol currat cfp turn
NN-J2 mom12m roavol mom1m roaq mve mom12m salecash ep indmom roavol
NN-J1J2 mom12m beta roavol mom1m mve mve roavol agr maxret sgr
NN-J1-m mom12m mom1m mom36m roaq ill indmom mve dy beta pchsale pchinvt
NN-J2-m mom12m std turn beta mom1m mve chpmia beta mom36m ill chinv
NN-J1J2-m mom1m beta mom12m std turn mve cashpr indmom salecash lgr ill

Legend:

momentum profitability trading frictions intangibles value vs growth investments

Table 4:
Most important characteristics:
The table summarises the most important characteristics measured in absolute median partial derivatives. The
left panel reports the most important characteristics estimated over the entire sample, while the right panel
focuses on the most recent five years (2016-2020). The categories by which the characteristics are grouped by
follow the definitions of Hou et al. (2020).

in this section. Instead, we point out that due to the economic interpretation of the partial derivatives

in the domain-specific setting of empirical asset pricing, variable importance is closely related to the

estimation of risk premia (see section 2.2 and 2.4). Moreover, while table 4 reports aggregated variable

importances (for the overall sample, or the most recent five years), in section 4.12 we further discuss that

the partial derivatives on asset-level provide even more granular insight into the inner model mechanics.

The table serves two purposes. First, it offers a guide for which characteristics we investigate further

in subsequent sections. Second, it provides initial evidence for the time-varying nature of variable im-

portance, despite being reported as an aggregate. For example, while momentum and trading friction

characteristics dominate variable importances that have been estimated over the entire sample, charac-

teristics that fall into the value vs growth, intangibles or investments category seem to have moved to the

foreground in more recent years indicating that the estimated variable importance is time-dependent.

At the same time, table 4 serves as a sanity check, as the firm characteristics that can be found in the

table are also frequently discovered by other literature. For example, table 4 includes nine of the ten

overall most important firm characteristics that are discovered by the neural network designed by Gu

et al. (2020b). Differences in the order of characteristics or the absence of specific characteristics in table

4 in comparison to existing literature may be caused by diverging data preprocessing, network architec-

tures, objective function designs, or even training regimes (e.g. including/excluding batch-normalisation,

dropout or learning rate shrinkage). Nonetheless, the fact that table 4 includes commonly referenced

firm characteristics boosts the confidence in our findings.

The findings summarised in table 4 are particularly interesting with the dataset-specific dynamics

discussed in section 4.4 and allow for a critical evaluation. The fact that firm characteristics that fall into

the momentum and trading frictions category dominate in an overall estimation may not be surprising.

The reason for this is that momentum and trading friction characteristics tend to be more volatile than

the majority of other firm characteristics, as they are updated more frequently than firm characteristics

that are predominantly based on annual report information. The visualisation of the time-series of the
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rank-normalised book-to-market values shown in figure 6, for example, illustrates the limited volatility

of firm characteristics that are predominantly based on annual report information. Thus, in order to

increase model performance, it may be desirable to increase the volatility of the input variables, for

example, through firm characteristic interactions with other economic or return time-series (e.g. see

Gu et al. (2020b)). Since we do not claim to provide a new out-of-sample performance benchmark but

primarily focus on the proposed methodology, we do not include such an empirical study in this paper.

However, the observation that fast-moving firm characteristics tend to come out on top in the empirical

asset pricing literature compared to relatively slow-moving firm characteristics is currently not discussed

enough. This paper provides further empirical evidence in this direction.

A common and reoccurring criticism in the context of variable importance is the correlation structure

of the most influential input variables. If a model’s most influential input variables are highly correlated

with each other, it is unclear how much independent signal each is adding. Equally, if two different

models pick different firm characteristics, but they are themselves highly correlated, it is again unclear if

it was simply by chance that one model picked one variable over the other. In high-dimensional settings,

such as in contemporary empirical asset pricing, (minor) multicollinearity is typically present in the

input data. Therefore, the model’s top selections should ideally be uncorrelated and uncorrelated to

other models’ selections, where the other models provide similar performance benchmarks.

Figure 10 visualises the spearman correlations of the top five most influential firm characteristics for

NN-W2 and NN-J1-m. The left column includes OLS as a linear benchmark. The top panel refers to the

overall estimate, while the bottom panel refers to the top picks of the most recent five years. The figure

clearly shows that the firm characteristics picked by OLS are much stronger correlated than those picked

by the two neural networks. The top five most influential input firm characteristics for NN-W2 and NN-

J1-m in the over and most recent five years estimation are only very weakly correlated. An exception

are illiquidity and return volatility, which are moderately correlated in the overall estimation for NN-

W2 with a Spearman correlation of 0.43. We conclude that NN-W2 and NN-J1-m are better capable of

extracting independent signals from different firm characteristics when compared to linear regressions. In

addition, figure 11 investigates the correlations of the overall most influential firm characteristics across

models, including OLS, NN-W2 and NN-J1-m. The left panel shows the correlation matrix estimated

over the entire sample, and the right panel shows the correlation matrix estimated using only data from

the most recent five years. Moreover, the most influential characteristics for OLS are boxed in the top

left corner. It can be seen that the firm characteristics that are considered most influential for NN-W2

and NN-J1-m are only weakly to moderately correlated when analysed over the entire sample and much

less correlated in recent years. The fact that the most influential firm characteristics are largely weakly

correlated (or at least only moderately) strengthens the confidence in the signal extracted from each of

the characteristics due to the low multicollinearity. In combination with previous sections, we conclude
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Figure 10:
Spearman correlations of most significant firm characteristics within models
The graph displays the spearman correlation matrices of the top five most influential firm characteristics by
model, including OLS, which serves as a linear benchmark, NN-W2 and NN-J1-m. The top row displays the
correlation matrices estimated over the entire sample, and the bottom row is estimated over the most recent five
years only.

Figure 11:
Spearman correlations of most significant firm characteristics across models
The graph displays the spearman correlation matrices of the top five most influential firm characteristics across
models, including OLS, which serves as a linear benchmark, NN-W2 and NN-J1-m. The left panel refers to the
overall estimated correlation matrix, while the right panel refers to the most recent five years only.

that the nonlinear estimation through neural networks offers competitive out-of-sample performances

and desirable properties regarding the distribution of the partial derivatives.
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4.10 Asset Selection

Table 5 summarises the effect of the objective function on the dimensionality reduction, where partial

derivatives within the empirical range of [−5e−4, 5e−4] are considered empirically less critical or unim-

portant. The table 5 reports the cross-characteristic and time-series average percentage30 of partial

derivatives that are empirically unimportant. Due to the aggregated nature of table 5, granularity is

lost. Therefore, appendix H provides further detail on the time-varying nature of the empirical variable

selection. Moreover, due to the evaluation on the asset-level, we use the term asset selection and the

more general machine learning term dimensionality reduction interchangeably in this section. From this

perspective, table 5 reports the percentage of de-selected assets, that empirically do not drive model

predictions.

Our critical empirical findings are four-fold. First, the asset selection or dimensionality reduction

effect is most pronounced in the case of Jacobian regularisation, compared to penalising the weights in

the objective function. While this theoretical property of the Jacobian regularisation is evident, due to

the nature of the objective function, table 5 confirms it empirically. For example, in the case of training

neural networks on the sub-selection of the 49 core characteristics only, L1 norm Jacobian regularisation

reduces the dimensionality by 49.6%. In contrast, in the case of no regularisation in the objective

function, merely 26.4% of the partial derivatives are considered empirically unimportant.

Second, the variable selection strength is most substantial in the case of element-wise Jacobian regu-

larisation. In the example of using the core characteristics only, element-wise L1 norm Jacobian regulari-

sation empirically deselects 49.6% of the assets on average, compared to 29.6% in the case of column-wise

L1 norm Jacobian regularisation. Due to the nature of the different Jacobian penalisations, the difference

in the strength of asset selection is expected. For example, penalising the column means towards zero

does not necessarily mean that every asset’s partial derivative must be close to zero, as in the case of

element-wise penalisation. Third, we empirically find that the variable selection effect of Jacobian regu-

larisation is more pronounced in higher than lower dimensions. For example, in the case of training the

neural networks on all 103 firm characteristics, with column-wise L1 norm Jacobian regularisation, 40.6%

of the partial derivatives are considered empirically less critical, compared to only 29.7% in the case of

the 49 core characteristics only. This relative difference in the strength of dimensionality reduction,

dependent on the dimensionality of the input, is expected, as we expect the actual but unknown data-

generating process to be sparse (e.g. Kozak et al. (2020)). Thus, we find that Jacobian regularisation

yields empirical results that are in line with prior expectations.

Fourth, however, we find no significant difference in average asset selection across size classes—.

For example, for column-wise L1 and L2 Jacobian regularisation, and in the core characteristics case,

30At each month, we calculate the percentage of the asset-level partial derivatives that lie within the empirical threshold
of [−5e−4, 5e−4], average the percentage across firm characteristics. In the last step, we report the time-series average of
the time-varying cross-characteristic average in table 5.
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Core Characteristics All Characteristics

Overall Large Small Micro Overall Large Small Micro

NN 26.4 28.4 27.2 25.2 31.6 35.1 32.5 29.8
NN-W1 26.6 29.8 27.9 25.1 31.0 33.8 31.1 29.8
NN-W2 27.9 30.0 28.4 26.7 32.5 35.5 33.8 30.8
NN-W1W2 30.0 32.4 30.8 28.9 44.8 49.5 45.7 42.8
NN-J1 49.6 52.9 51.0 48.1 60.0 62.3 60.7 58.8
NN-J2 35.6 37.4 36.0 34.8 36.3 41.2 38.0 34.0
NN-J1J2 56.1 59.5 57.3 54.3 58.4 63.7 59.8 56.0
NN-J1-m 29.7 31.8 30.3 28.8 37.2 40.6 37.8 35.7
NN-J2-m 30.9 33.0 31.5 29.8 34.5 36.1 34.8 33.9
NN-J1J2-m 34.0 35.4 34.0 33.6 39.7 43.0 40.3 38.2

Table 5:
Average dimensionality reduction [%]:
The table reports the cross-characteristic and time-series percentage average of partial derivatives that are con-
sidered less empirically important, where partial derivatives within [−5e−4, 5e−4] are considered less important.

the overall dimensionality reduction is 34.0%, 35.4%, 34.0% and 33.6% for large, small, respectively

microcaps. This finding further generalises across all types of objective functions considered in this

paper. We have previously discussed the unbalancedness of financial datasets and the practical problems

that are imposed by microcaps. Thus, the marginal influence of information extracted from microcaps

would ideally be less than for small or large stocks. It is conceivable to impose stricter penalties on

microcaps manually to counter this empirical behaviour of the Jacobian regularisation. However, an

empirical evaluation of this alternative fitting strategy is beyond the scope of this paper.

This brief excursion in the effects of the objective function on the influence on the asset level demon-

strates the strength of our proposed methodology. To the best of our knowledge, there exist limited

empirical insights in current literature into which particular assets drive asset pricing models in an (al-

most) unrestricted investment universe. A further model investigation on the asset level is beyond the

scope of this paper. However, it is conceivable to further evaluate which particular assets or industries

are the most dominant drivers in the models under consideration. We return to an asset-level model

insight in section 4.12.

4.11 Risk Compensation

In this section, we focus on the risk price estimation, with the methodology introduced in section 2.

In particular, this section emphasises the advantages of our proposed methodology, as risk prices can

be estimated by economically meaningful subgroups such as industries or size classes. In addition, the

derived tolerance bands allow particularly useful insights into the estimated time-variability of risk prices,

which is far superior to aggregated point estimates reported in tables.

Similarly to Lewellen (2015), figure 12 summarises the time-varying risk premia, estimated by NN-

W2 and NN-J1-m. The risk premia are estimated following the methodology presented in section 2.2
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and 2.4. For clarity, we again focus on results from models trained on the core characteristics only.

Additional risk premia estimates, such as for models trained on all firm characteristics, different forms

of data-preprocessing and risk premia estimations when microcaps are excluded entirely, can be found

in appendix I.

The figure shows that our proposed methodology yields a time-varying risk premium estimate with

tolerance bands. We consider risk premia to be empirically important if the tolerance bands do not

include zero. To make our results directly comparable to existing literature, we also report risk price

estimates following standard Fama-Macbeth regression (e.g. see section 2.1). In particular, the linear

risk price estimates are reported as a constant time-series average, which is common in literature (e.g.

see Green et al. (2017)). To increase the comparability of results, we diverge slightly from the method-

ology presented in Green et al. (2017) and apply the same cross-sectional rank-normalisation as data

preprocessing for the linear estimates. Consequently, the input data for all neural network estimates

is the same as in the case of linear regressions. Secondly, while Green et al. (2017) also consider an

estimation using all firm characteristics, we are primarily focussing on the core characteristics case in

this section. However, this core selection diverges slightly from the methodology presented in Green et al.

(2017). Third, analogously to the training of the neural networks (which is done annually to reduce com-

putational cost), the linear regressions are re-fitted annually to make the results from linear regressions

directly comparable to the neural networks’ output. Due to these slight differences compared to the

original paper presented by Green et al. (2017), there are minor differences in the risk price estimates.

The signs of the linearly replicated risk price estimates are broadly identical to those reported in Green

et al. (2017), boosting the confidence in our empirical results. There are only four firm characteristics,

including change in 6-month momentum (chmom), current ratio (currat), illiquidity (ill) and 12-month

momentum (mom12m), for which our linear estimates seem to be of the opposite sign, compared to

the signs reported in Green et al. (2017). These minor differences may be due to the diverging data

preprocessing, annual re-fitting and slightly diverging firm characteristic subset selection. Interestingly,

the sign of the risk premium for 12-month momentum estimated linearly is contrary to the economic

intuition. The risk premium estimated by the neural networks, on the other hand, is economically

plausible. Most importantly, however, the signs of the risk premia earned by each firm characteristic,

estimated by neural networks, are also broadly in line with existing research, such as Lewellen (2015) or

Green et al. (2017). This alignment with existing research is one of the most important findings: the

risk premia estimated through our proposed methodology are economically meaningful and in line with

existing research. This critical finding fills our previous argument about model interpretability with life,

as economically meaningful estimates are essential when communicating model output.
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Figure 12:
Time-varying risk premia, by size class – NN-J1-m, NN-W2, core characteristics
The graph plots the time-varying risk premia estimations for NN-J1-m (blue) and NN-W2 (orange), where the dotted green line represents the analogous linear estimation as
a benchmark or sanity check.
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Further, figure 12 shows that for a small number of risk premia, such as illiquidity (ill), size (mve),

volatility of liquidity (std turn), and turnover (turn), the estimates by the linear benchmark are extreme

outliers. On the other hand, none of the risk premia estimated by the neural networks can be classified

as extreme relative to each other. This stability is a strong advantage of the neural network estimation

compared to the linear benchmark. In particular, the opposite signs of estimated risk premia for the

volatility of liquidity (std turn) and turnover (turn) in the case of linear estimation is particularly worry-

ing as both firm characteristics are highly positively correlated (see appendix F). Therefore, we confirm

the well-documented fact that linear regressions can be unstable in the presence of multicollinearity. In

contrast, both neural networks (NN-J1-m and NN-W2) provide much more stable estimates.

Overall, figure 12 emphasises the strength of our proposed methodology as it can be seen that risk pre-

mia are time-varying and transitioning in and out of empirical importance. This time-variation suggests

that a time-dependent risk premia consideration offers richer insights than an aggregated perspective, for

example, if risk premia are estimated as time-series averages. Further, figure 12 demonstrates that the

choice of the objective function directly impacts the risk price estimation. To exemplify the importance

of the objective function, figure I.1 in appendix I plots the risk premia estimates for neural networks

with no weight or Jacobian regularisation (NN) and the element-wise L1 norm Jacobian regularisation.

As discussed in section 4.10, element-wise L1 norm Jacobian regularisation is arguably the strongest

and, therefore, not necessarily the ideal regularisation due to an overly strong asset selection. The other

extreme – no regularisation – is not beneficial either. As a result, the figure shows that most risk premia

estimated by NN-J1 are empirically insignificant, with only a few exceptions. On the other hand, no reg-

ularisation hardly yields any variable selection, with most risk premia remaining empirically significant

over time. To the best of our knowledge, the importance of the objective function in the context of risk

premia estimation is not yet well-documented in current literature. This section intends to provide first

empirical evidence supporting an ongoing debate about an economically meaningful objective function

choice.

The risk premia displayed in figure 12 are estimated across all size classes. However, in section 4.1,

we discuss how the investment universe under consideration consists to 60% of microcaps. Further,

microcaps are expensive to trade due to their illiquidity and increased transaction costs. To check the

robustness of our estimates across firm size classes (large, small and microcaps), figures 13 and 14 plot

the risk premia estimated separately by size class. As discussed in section 2.3, our proposed methodology

allows for size class-specific estimations without the need to re-fit the model. Figures 13 and 14 show

that the risk premia estimates provided by neural networks are robust across size classes, indicated by

only minor differences in each separately estimated risk premium.
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Figure 13:
Time-varying risk premia, by size class – NN-J1-m, core characteristics
The graph plots the time-varying risk premia estimations by size class for NN-J1-m (blue = large, orange = small, red = microcaps), where the dotted green line represents
the analogous linear estimation as a benchmark or sanity check.
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Figure 14:
Time-varying risk premia, by size class – NN-W2, core characteristics
The graph plots the time-varying risk premia estimations by size class for NN-W2 (blue = large, orange = small, red = microcaps), where the dotted green line represents
the analogous linear estimation as a benchmark or sanity check.
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Figure 15:
Time-varying risk premia: NN-J1-m and NN-W2 (roaq, mom12m)
The left panel shows the estimated time-varying risk premium for being exposed to the firm characteristic
return-on-assets. The right panel shows the estimated time-varying risk premium for being exposed to the firm
characteristic 12-month momentum. the blue line with tolerance bands refer to the estimation by NN-J1-m,
and the orange line with tolerance bands refer to the estimation by NN-W2. The green line indicates the linear
replication, analogously to Green et al. (2017), but translated into our setting to make the results directly
comparable.

Figures 12 to 14 respectively plot all 49 firm characteristics, which are included in the core charac-

teristics sub-selection. An individual and separate discussion of each of the 49 estimated risk premia is

beyond the scope of this paper. Instead, we handpick two firm characteristics as examples and discuss the

risk premium exposure to those firm characteristics earns over time. Those two include return-on-assets,

which is among the overall most influential characteristics for NN-J1-m (see section 4.9), and 12-month

momentum, which is the overall most influential characteristics for NN-W2 and NN-J1-m. Figure 15

plots the time-varying risk premia estimates for being exposed to each of the two firm characteristics

return-on-assets and 12-month momentum. Similar to the previous plots, the solid green line refers to the

linear replication of risk price estimates, analogously to Green et al. (2017), but translated into the same

data preprocessing and annual re-fitting as the neural networks to make the results directly comparable.

The figure shows that the unconditional risk price estimate, analogously to equation (11), are far inferior

to the time-varying risk price estimates, especially in combination with the empirical tolerance bands.

We do not claim that all estimated risk premia by neural networks are always consistent with eco-

nomic theory. The examples discussed above, however, show that neural networks can indeed provide

economically meaningful estimates. Due to their time-varying nature, an investor may use this additional

information for further research, such as market timing. While a complete discussion is beyond the scope

of this paper, and there is compelling evidence showing severe difficulties investors are facing when timing

the market (e.g. Dichtl et al. (2019)), the discussion in this section shows that approaching the risk price

estimation from a time-varying perspective, an investor may have more meaningful information at hand,

compared to an aggregated time-series average.

First, we focus on the left panel in figure 15 which refers to the risk premium estimated by NN-J1-m
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and NN-W2 an investor is estimated to receive for being exposed to the return-on-assets characteristic.

The graph shows that the risk premium over time slowly shrinks towards zero but lies almost entirely on

the positive side of the x-axis, suggesting a positive relationship between the risk exposure and expected

returns. This positive relation is also well-documented in the literature, for example, by Balakrishnan

et al. (2010). Similar to Lewellen (2015) who identifies a similar pattern, the slight decrease in magnitude

in compensation suggests that past risk premia estimates are likely to overstate the cross-sectional

dispersion in actual expected returns going forward. This diminishing effect seems to be more pronounced

in the case of J1-m, compared to NN-W2, for which the tolerance bands more often include zero and

are, therefore, more frequently considered empirically less important.

An interesting pattern in the case of the risk price estimation based on NN-J1-m emerges during the

great financial crises. As argued by Balakrishnan et al. (2010), return-on-assets is particularly indicative

regarding losses. In particular, they argue that if past earnings announcements report a loss, there is an

increased probability of loss reports going forward. Since there is a positive relationship between earnings

(losses) and returns, it is interesting to see that this relationship seems to be strengthening during the

financial crisis in the case of NN-J1-m – a period characterised by significant abnormal losses. We do

not claim that all risk premia estimated by the neural networks follow stringent economic reasoning.

Moreover, a complete discussion of all risk premia is beyond the scope of this paper. However, the

example of return-on-assets shows that it is possible to find economic meaning in the neural network’s

estimations. It is important to note that in the example above, the period of the great financial crisis

was particularly turbulent, and return-on-assets is a quarterly variable, meaning that new information

becomes available more frequently compared to characteristics of annual frequency. It is not necessarily

clear if the frequency also influences the increased magnitude of risk prices.

Second, the right panel in figure 15 refers to the risk premium estimated by NN-J1-m and NN-

W2 an investor is estimated to receive for being exposed to the 12-month momentum characteristic.

Surprisingly, the linear estimation is on the wrong side of the x-axis, as economic intuition suggests a

positive relationship between risk premia and expected returns (e.g. see Jegadeesh (1990)). Similarly

to the previous discussion about return-on-assets, the risk premia estimated by the two neural networks

are on the right side of the x-axis. However, the magnitude seems to be diminishing over time. It can

also be seen that the two different objective functions yield different time-dependent risk premia.

A potential criticism of the analysis presented above is that the time-varying nature of the estimated

risk prices is not exclusive to nonlinear models such as neural networks. In fact, instead of estimating

the risk prices unconditionally – as is typically done in classical, linear Fama-Macbeth regressions – one

could report the conditional risk premia estimates of OLS. A complete comparison of all conditional risk

premia across all models and firm characteristics is beyond the scope of this section. Instead, figure 16

exemplarily focuses on the time-varying risk premia estimates by NN-J1-m, NN-J1, and NN-W2 for an
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Figure 16:
Conditional risk premia comparison – dividend-yield
The graph compares the conditional risk premia estimates of the linear benchmark OLS with three different
neural networks, including NN-J1-m (left), NN-J1 (middle), and NN-W2 (right).

exposure to dividend-yield, where, for clarity, no tolerance bands are reported. The figure provides solid

empirical evidence favouring our nonlinear methodology: Due to the annual re-fitting and the intrinsic

linearity of OLS, the conditional risk prices merely change once a year (when a new model is re-fitted). In

contrast, due to the nonlinearity of neural networks, despite the annual re-fitting strategy, the estimated

risk prices are still varying. In addition, figure 16 shows that with nonlinear neural networks, a risk price

estimation by market capitalisation is possible without the need to re-fit the model. Such insight cannot

be gained from linear regressions unless the model is re-fitted on a subgroup only.

In the example of dividend yield, the risk prices estimated by NN-J1-m are broadly in line with the

linear estimation until the early 2010s (except for the late 1990s and early 2000s, where the risk premium,

estimated by NN-J1-m, is near zero). However, in more recent years, the two estimates diverge starkly,

as the risk premia estimated by NN-J1-m (and NN-J1 and NN-W2) are zero, while the linear model

estimates negative premia. The middle panel of figure 16 shows the risk premia estimated by NN-J1. It

can be seen that compared to the other two neural networks, NN-J1 much more strictly estimates no risk

premia resulting from exposure to the dividend yield. The risk premia estimated by NN-W2, displayed

in the right panel, are less rigorously set to zero than NN-J1 but diverge slightly from the risk premia

estimated by NN-J1-m. For example, OLS and NN-J1-m estimate negative risk premia associated with

exposures to dividend yield in the mid-2000s, while NN-W2 does not seem to estimate such a negative

relationship. However, what unites all three neural networks is the possibility of a separate risk premia

estimation by market capitalisation, which can be very insightful. For example, it can be seen that in

the early 1990s, NN-J1-m estimates opposite signs for the risk premia expected to be earned by large

stocks and microcaps. A total economic discussion is beyond the scope of this paper. However, figure

16 provides an insightful example for the usefulness of our proposed methodology as it allows for much

more granular analyses compared to regular linear modelling.

We conclude that the risk premia estimated by the two neural networks presented in this section

are robust across size classes, are economically meaningful, and broadly in line with existing research.

Moreover, the time-varying estimation in combination with tolerance bands offers helpful insights that
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are superior to constant time-series averages, resulting from traditional Fama-Macbeth regressions. The

choice of the objective function should become an integral part of model design. Further robustness

checks and results are presented in appendix I.

4.12 Model Interpretability and Inner Model Mechanics

This section explores the inner model mechanics of neural networks further and shows that leverag-

ing the partial derivatives offers valuable model insights that help improve model interpretability and

explainability. In particular, we present empirical evidence suggesting strong nonlinear input variable

interactions. We exemplify how the neural networks’ return sensitivities for changes in firm character-

istics vary nonlinearly across assets, given return sensitivities for changes in other firm characteristics.

The crucial finding is that these nonlinear sensitivity interactions are time-dependent and depend on the

assets’ market capitalisation. An analogous analysis by industry or market capitalisation and industry

is also conceivable. However, a complete discussion about inner model mechanics by industry is beyond

the scope of this section. Instead, we provide an exemplary analysis in appendix J.

Further, we discuss how analysing the partial derivatives of neural networks with respect to firm

characteristics on asset level relative to the firm characteristic inputs can offer relevant insights into the

functioning of the objective function and can help with software debugging. Moreover, the detection of

extreme partial derivative outliers can also be worthy. While individual assets usually do not significantly

influence the overall model performance, mainly when the model performance is evaluated based on

thousands or tens of thousands of assets, an investor may still be interested in how the model handles

individual assets. Extreme partial derivatives help identify individual assets that the model does not seem

to be handling well. In particular, extreme partial derivatives can indicate unstable return predictions,

where the term unstable in this context describes the circumstance that even minor changes in the input

variables can lead to substantially varying return predictions. This form of model instability may be

undesirable for an investor.

Similar to previous sections, reporting all empirical results across all models, different data pre-

processing regimes, or points in time is beyond the scope of this section. Thus, we primarily focus on the

neural networks NN-J1-m and NN-W2 and draw our analysis to a small selection of different time points

to exemplify our general findings and refer readers to appendix J for further empirical analyses. Figures

17 and 18 visualise how the neural networks’ return sensitivities for changes in firm characteristics vary

nonlinearly across assets, given return sensitivities for changes in other firm characteristics. The non-

linear sensitivity interactions are estimated by market capitalisation (i.e. large, small and micro stocks)

following the locally weighted regression method proposed by Cleveland (1979). Most importantly, the

figures only refer to a single point in time. Since the nonlinear sensitivity interactions are time-varying,

the findings in figures 17 and 18 cannot necessarily be generalised to other points in time. Further,
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Figure 17:
Nonlinear sensitivity interactions NN-J1-m – exemplary date 2017-06-30:
The graph visualises in the off-diagonals how the sensitivities with respect to the firm characteristics listed on
the y-axis are expected to change, given a change in sensitivity with respect to the firm characteristics listed on
the x-axis. The nonlinear sensitivity interactions are estimated by market capitalisation. The diagonal displays
the distribution of sensitivities by market capitalisation. The selection of firm characteristics corresponds to the
overall most influential firm characteristics for model NN-J1-m, analogously to table 4.

NN-J1-m and NN-W2 were both estimated using 49 firm characteristics. However, figures 17 and ??

merely visualise the nonlinear sensitivity interactions of the most influential firm characteristics over the

most recent five years for each model, analogously to table 4.

In simple terms, the figures show that for a given level of return prediction sensitivity to the firm

characteristics on the x-axis, the lines represent the expected return prediction sensitivity to changes

in the firm characteristics listed on the y-axis. As a specific example, consider the top panel in the

center column of figure 17. The panel shows that for the neural network NN-J1-m and date 2017-06-30,

assets that show a positive return prediction sensitivity to changes in dividend yield (dy) are expected to

be negatively sensitive to changes in industry-momentum (indmom). Moreover, the greater this return

prediction sensitivity is to changes in dividend yield, the more negative we expect the sensitivity to be to

changes in industry momentum, with this relationship being stronger for small and large stocks. However,

for microcaps, this relationship is relatively weakened or even of the opposite sign, where the expected

sensitivity to industry momentum is positive, given a positive sensitivity to changes in dividend yield.

For stocks for which the model estimates a negative return prediction sensitivity to changes in dividend

yield, the effect on the return prediction sensitivity to changes in industry momentum is expected to

remain negative, with this relationship being more pronounced for microcaps.

A complete discussion of all interactions presented in figures 17 and 18 is beyond the scope of this

section, which is why we merely concentrate on the methodology to estimate interaction in the following.
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Figure 18:
Nonlinear sensitivity interactions NN-W2 – exemplary date 2017-06-30:
The graph visualises in the off-diagonals how the sensitivities with respect to the firm characteristics listed on the
y-axis are expected to change, given a change in sensitivity with respect to the firm characteristics listed on the
x-axis. The nonlinear sensitivity interactions are visualised by size class. The diagonal displays the distribution
of sensitivities by size class. The selection of firm characteristics corresponds to the overall most influential firm
characteristics for model NN-W2, analogously to table 4.

To the best of our knowledge, we are the first to propose the analysis of nonlinear derivative interactions

in empirical asset pricing to improve model interpretability and explainability. Input feature interaction

and the detection of nonlinearities in the model estimation mechanism are widely studied fields in the

general machine learning literature. In particular, in fields such as asset pricing, where machine learning

models are designed for critical decision making, an understanding of the inner model mechanics is

paramount (e.g. see Goodman and Flaxman (2017) for an interdisciplinary approach to the issue of

model interpretability). The idea of leveraging the input gradients to increase model interpretability

is generally not new to the general machine learning literature and in the field of image recognition in

particular. Exemplary approaches leveraging the input gradients include Simonyan et al. (2013), Ross

et al. (2017) or Sundararajan et al. (2017). The methodology shown in figures 17 and 18 differs from the

common approaches used in image recognition in that they are concerned with the question of how the

sensitivity to changes in a characteristic is expected to be for a given asset and given the sensitivity to

a change in another characteristic.

Besides the nonlinear sensitivity interactions, a neural network’s interpretability and explainability

can further be improved by investigating the relationship between the partial derivatives of a neural

network with respect to an input characteristic and the input characteristic itself. Since the partial

derivatives are calculated on asset level, this approach helps to confirm the implications of an objective

function and visually discovers outliers. For example, we examine the firm characteristic 1-month mo-
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Figure 19:
Input gradients – 1-month momentum:
The top panel shows the input gradients with respect to 1-month momentum plotted against the input values
themselves. The top row refers to 1999-08-31 and the bottom row to 2002-02-28. The plot shows the distributional
properties of the input gradients of neural networks with no regularisation (NN), element-wise, respectively
column-wise, L1 norm Jacobian regularisation (NN-J1, NN-J1-m) and L2 norm weight regularisation (NN-W1).

mentum further – a characteristic frequently reported as one of the overall most essential input features.

Table 4 shows that 1-month momentum is also estimated to be among the top five most influential

firm characteristics when the variable importance is estimated over the entire sample for NN, NN-W1,

NN-W2, NN-W1W2, NN-J1-m, NN-J2-m and NN-J1J2-m, making it a relevant characteristic in our

empirical analysis. Figure 19 visualises the input gradient of four different neural networks for 1-month

momentum on the y-axis (the input gradients are multiplied by 100), relative to the rank-normalised

1-month momentum input on the x-axis. It is important to note that the distributional patterns shown

in figure 19 do not necessarily generalise to other points in time. To emphasise the time-varying nature

of the input gradient, the top row in figure 19 refers to the date 1999-08-31, and the bottom row to the

date 2002-02-28. Each dot in the figure represents a single asset (identified by a unique stock ID).

The first and most noticeable takeaway is that the distribution of partial derivatives varies significantly

depending on time and objective function. For example, figure 19 shows that for NN-W2, the input

gradients are much more widespread in 1999-08-31, with the partial derivatives ranging from -7.08 to

3.03, compared to an input gradient spread ranging from -1.08 to 0.70 in 2002-02-28. Furthermore, in

1999-08-31, the element-wise L1 norm Jacobian regularisation yields an extremely narrow distributional

band around zero, meaning that 1-month momentum was not selected as an essential feature for that

particular neural network then. Even though this feature selection does not generalise to all points in

time, it is an empirical confirmation of the functioning of the Jacobian penalty as part of the objective

function. Interestingly, in 2002-02-28, NN-J1 yields almost exclusively negative partial derivatives, which

is in line with economic theory. A similar but less pronounced pattern becomes apparent for NN-J1-m

in 2002-02-28.

The previously discussed but rather naive approach of analysing the distributional properties in
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general (see also section 4.8), figure 19 naturally alludes to the notion of a section-wise analysis, where,

for example, the distributional properties in the extreme or equally in common values are of interest. For

example, in figure 19, in 2002-02-28, for the neural network with no regularisation, the input gradients

are relatively evenly distributed across the input values. In comparison, for NN-J1-m, the distribution

is the widest for typical input values of 1-month momentum and much more narrowly distributed for

extreme input values.

After highlighting the general finding that the partial derivatives are time-varying and dependent

on the objective function, we focus on the possibility and usefulness of investigating marginal model

sensitivity on asset-level in the following. As an example, figure 20 visualises the input gradients with

respect to the firm characteristic size in 1992-06-30 plotted against the rank-normalised firm characteristic

input (the input gradients are multiplied by 100). The graph summarises the distributional shapes of

the four exemplary neural networks NN, NN-W1, NN-J1-m and NN-J2. It can be seen that in the case

of NN-W1, some of the input gradients are extreme outliers. In particular, the graph highlights a single

asset, marked in red. The partial derivative corresponds to the stock Frontier Adjusters America Inc.

(permno = 10628, in the CRSP universe). The size of the stock is in the bottom 25th percentile, and the

company classifies as a microcap. Although the market capitalisation of Frontier Adjusters America Inc.

is not an extreme value, the question becomes why the return prediction sensitivity to changes in size

for NN-W1 is so extreme or, more importantly, why would a stakeholder care about it. In addition, it

can be seen from figure 20 that the prediction sensitivity to changes in size is much smaller, for example,

for NN-J1-m and NN-J1.

There may be different reasons for why one would care about a stock-level analysis. For example,

if an investor was to construct long-short portfolios based on sorted partial derivatives (see section 4.13

for further analyses on the topic), the investor may want to know what stocks end up in the portfolio.

Alternatively, one may also be interested in limiting the disproportionate marginal influence of a single

asset on the prediction. An analysis on asset level as in figure 20, therefore, offers the opportunity to

validate the design of the objective function and serves as a sanity check if the objective function achieves

its purpose.

To exemplarily investigate the case of Frontier Adjusters America Inc. further, figure 21 displays the

partial derivatives of NN-W2 with respect to all 49 firm characteristics at 1992-06-30 (the input gradients

are multiplied by 100). It can be seen that the model does not seem to be handling this particular asset

well, as a large proportion of the partial derivatives are of a large magnitude. For the example of the

partial derivative with respect to size, and to illustrate why it is essential to be aware of such model

outliers if all other input values are kept constant for Frontier Adjusters America Inc., and only the input

values for the firm characteristic size are changed minimally, the return predictions become unstable, as

indicated by the large input gradient. More specifically, when the firm characteristics size is only varied
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Figure 20:
Partial derivatives – Size:
The plot displays the partial derivatives of three different neural networks with respect to the firm characteristic
size in 1994. The left panel refers to a neural network with L1 weight, the panel in the middle to a neural
network with L1 Jacobian penalisation and the right panel to a neural network with L2 Jacobian penalisation in
its objective function. Each dot represents a single asset, with the red dot exemplarily highlighting the company
Illinois Central Corp.

by ±1% in rank, which equates to a range of 23.17th - 25.38th percentile and is a tiny change in the

magnitude of the input variable, the return predictions vary by up to almost 10%. For comparisons, the

same variation in size merely yields a variation in return prediction of 0.007% for NN-J1-m. This example

shows that extreme outliers in the partial derivatives can be an indicator for unstable predictions. In

practice, such small changes in the input variables can quickly occur due to rounding errors or erroneous

data pre-processing. If a stakeholder is cautious about prediction stability, the analysis mentioned above

can be a tool to evaluate the effectiveness of the desired functioning of the objective function of choice.

We do not claim that neural networks trained with Jacobian regularisation as part of their objective

function are entirely exempt from the issues related to extreme model sensitivities. Instead, we intend

to bring to the attention that simple tools such as the analysis of the partial derivatives, which offers

model insights on the asset level, may help detect such issues.

So far, we have primarily focused the distributional analysis on the asset level of the input gradients

relative to the respective firm characteristic inputs, such as plotting the partial derivatives of a neural

network with respect to 1-month momentum against the very 1-month momentum input values. There

is, however, no intuitive justification for limiting this type of analysis to this case. Instead, an investor or

other stakeholder may also be interested in the distributional properties of the input gradients relative to

another firm characteristic input, or even in a multi-dimensional setting, relative to multiple other firm

characteristic inputs. An in-depth discussion of all possible angles to this approach is beyond the scope of

this section. However, to illustrate the possibility of this further analysis, figure 22 exemplarily visualises

the distributional properties of the partial derivatives of NN-J1-m with respect to book-to-market (bm)

plotted against the overall top five most influential firm characteristics for NN-J1-m. The figure shows

that distributions may differ depending on the input characteristic.
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Figure 21:
Partial derivatives – Size:
The plot displays the partial derivatives of three different neural networks with respect to the firm characteristic
size in 1994. The left panel refers to a neural network with L1 weight, the panel in the middle to a neural
network with L1 Jacobian penalisation and the right panel to a neural network with L2 Jacobian penalisation in
its objective function. Each dot represents a single asset, with the red dot exemplarily highlighting the company
Illinois Central Corp.

Figure 22:
Input gradient (book-to-market) against most influential firm characteristics (NN-J1-m):
The graphs shows the input gradients with respect to book-to-market plotted against the top five most influential
input characteristics in 1999-08-31 for NN-J1-m.

4.13 Double-Sorted Portfolios

Last but not least, we discuss the implications of model sensitivities in the context of (double-) sorted

portfolios. Our main contribution in this section is the introduction of the concept of sensitivity-sorted

portfolios. Characteristic sorted portfolios, in general, are widely used in the empirical asset pricing

literature. Specifically, they belong to the overarching umbrella of literature exploring anomalies, where

portfolios are formed based on sorted characteristics. The most common procedure in the empirical

literature consists of sorting stocks by a given characteristic, such as size or book-to-market, followed by

grouping the stocks into N portfolios, where N is typically 3, 5 or 10. This paper constructs quintile

portfolios (i.e. N = 5) as quintile portfolios offer a balanced trade-off between diversification and spread.

Subsequently, equal-weighted or value-weighted portfolio returns are computed for each portfolio and at
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each point in time. An investor may decide to go long the top quintile and short the bottom quintile.

The fundamental economic theory, or economic conjecture, behind characteristic-sorted portfolios,

is the hypothesis that expected returns should be increasing (or decreasing) in some characteristic, e.g.

see Patton and Timmermann (2008). The literature in this field is vast, and we do not claim to provide

a holistic overview in this section. However, the most relevant literature in the field of single-sorted

portfolios includes Basu (1977, 1983), Fama and French (1992, 1993, 2006), Banz (1981), Reinganum

(1981), Ang et al. (2006a) or Jegadeesh and Titman (1993). Moreover, in recent years, a growing body

of literature has evolved, discussing the statistical properties of portfolio sorts. The informal recognition

that portfolio sorts can be a nonparametric alternative to imposing linearity on the relationship between

expected returns and firm characteristics has fuelled this recent development, as discussed by Fama and

French (2008) or Cochrane (2011). Examples of the discussion of the statistical properties include, but

are not limited to, Patton and Timmermann (2008) or Cattaneo et al. (2020).

This paper does not claim to discover previously undiscovered relationships between firm character-

istics and expected returns based on portfolio sorts. Instead, we introduce the conceptual framework

that an investor may consider model sensitivities as part of the portfolio construction exercise, especially

risk management. We propose the following portfolio sorting procedure. First, we follow a standard

methodology of sorting assets into five portfolios based on firm characteristics, such as return-on-assets.

In a second step, we further sort the assets in each portfolio into five more portfolios based on the

out-of-sample estimated model sensitivity to changes in the firm characteristic, yielding a total of 25

double-sorted portfolios. The choice of constructing quintile portfolios offers a balanced trade-off be-

tween diversification (with an average of 180 stocks in each double-sorted portfolio) and spread of the

firm characteristics. The nuance on the out-of-sample sensitivity estimation is subtle but essential: the

portfolios are constructed only on information available to an investor at time t. Thus, using out-

of-sample estimated return prediction sensitivities rather than in-sample estimates avoids information

leakage. In a final step, we construct equal-weighted or value-weighted portfolio returns, where the value

corresponds to the market value of equity at time t− 1.

The reasoning behind the proposed methodology is that with single-sorted portfolios, an investor

is betting on the continuation of a back-tested empirical relationship between firm characteristics and

expected returns. Under the assumption that an estimation function g generalises well out-of-sample

(where we intentionally use the somewhat loosely defined term well to appreciate that in real-life, even

state-of-the-art machine learning models can only explain a small fraction of future returns), sorting on

model sensitivity further introduces a bet on volatility. For example, if a model’s return prediction for

a particular asset is highly sensitive to changes in a given firm characteristic, even a slight divergence

in the expected value of the future value of that firm characteristic can lead to significant volatilities in

return prediction (see section 4.12).
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As a consequence, the second sort can be interpreted as a bet on volatility, where a low return

prediction sensitivity – given a model g that is generalising well out-of-sample – corresponds to less

volatile return predictions and a higher sensitivity to a higher return prediction volatility. In other

words, return predictions for assets for which the model prediction sensitivities to changes in specific

firm characteristics is high are less stable if there are unexpected changes in the firm characteristic. This

circumstance can be understood in that the model is more particular about some assets than others.

Consequently, we would expect portfolio volatilities to be lower for portfolios sorted on low sensitivities

compared to portfolios sorted on high sensitivities.

In addition to the above-mentioned portfolio-sorting procedure, we report the single sorted portfolio

returns as a simple benchmark. However, a direct comparison between the two portfolio construction,

especially regarding portfolio volatility, is limited since the single sorted portfolios are much more diver-

sified and consist of an average of 900 assets per basket, compared to 180 for the double-sorted portfolios.

Therefore, the single-sorted portfolios are by definition alone much more diversified. This effect is am-

plified in an investment universe that includes microcaps, which are much more volatile in general (see

table A.1). To increase comparability, we also report portfolio performances for an investment universe

excluding microcaps entirely.

Similarly to previous sessions, a holistic overview of all possible portfolio sorts, including estimated

out-of-sample sensitivities from all models, data preprocessing regimes (such as data normalisation or

the inclusion or exclusion of microcaps), is beyond the scope of this section. To make this section con-

sistent with the previous sections, we merely focus on the two neural networks NN-W2 and NN-J1-m

and the two characteristics, 12-month momentum and return-on-assets. 12-month momentum appears

in the top five overall most influential characteristics for both models and is the overall most influen-

tial characteristic for NN-W2, see section 4.9). Return-on-assets is among the overall most influential

characteristic for NN-J1-m, see section 4.9). In particular, table 6 summarises the annualised monthly

average return, volatilities and Sharpe ratios of the single-sorted and double-sorted quintile portfolios,

where the single-sorted portfolios serve as a benchmark. The table further differentiates between equal

and value-weighted portfolio returns. Additional portfolios summaries, including portfolios that are con-

structed on an investment universe that excludes microcaps can be found in appendix K along with the

corresponding tables regarding the portfolios constructed on the 12-month momentum signal.
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Annualised Returns [%] Annualised Volatility [%] Annualised Sharpe Ratio

Single Sort Sens. – Low Q2 Q3 Q4 Sens. – High Single Sort Sens. – Low Q2 Q3 Q4 Sens. – High Single Sort Sens. – Low Q2 Q3 Q4 Sens. – High

Panel A: Value-Weighted Portfolios – NN-W2

Low 6.72 10.36 6.79 4.28 8.81 6.75 27.53 31.79 28.48 28.18 29.15 30.01 0.24 0.31 0.23 0.15 0.29 0.22
Q2 6.60 7.50 6.65 7.53 6.89 6.12 21.24 23.77 22.61 23.36 23.20 23.87 0.30 0.31 0.29 0.31 0.29 0.25
Q3 8.59 9.73 9.05 8.73 7.01 7.58 17.19 18.38 17.77 19.23 18.35 18.85 0.48 0.51 0.49 0.44 0.37 0.39
Q4 8.95 11.16 9.19 10.63 8.63 6.33 14.47 16.55 15.54 15.86 15.62 18.13 0.59 0.64 0.57 0.64 0.53 0.34
High 11.25 12.11 14.52 10.46 9.22 12.03 15.83 19.56 16.72 16.47 17.69 20.02 0.68 0.59 0.82 0.61 0.50 0.57

Panel B: Equal-Weighted Portfolios – NN-W2

Low 9.32 9.33 11.49 8.06 8.26 7.42 32.27 32.40 31.18 31.23 32.26 33.40 0.28 0.28 0.35 0.25 0.25 0.21
Q2 9.83 11.73 9.74 9.95 10.40 7.04 21.24 22.61 20.95 21.13 22.18 23.14 0.44 0.49 0.45 0.45 0.45 0.29
Q3 11.75 14.18 12.08 11.16 11.14 10.86 16.75 18.25 17.05 16.87 17.50 18.98 0.67 0.73 0.67 0.63 0.61 0.55
Q4 12.92 14.91 14.27 12.84 12.43 10.25 17.88 18.54 17.63 17.94 18.31 20.25 0.68 0.75 0.76 0.68 0.64 0.48
High 13.97 15.47 13.61 14.51 13.20 13.64 18.95 19.85 18.67 19.06 19.71 21.06 0.69 0.73 0.69 0.71 0.63 0.61

Panel C: Value-Weighted Portfolios – NN-J1-m

Low 6.72 5.07 9.04 6.24 6.50 3.58 27.53 27.49 29.47 31.06 30.74 30.91 0.24 0.18 0.29 0.20 0.21 0.11
Q2 6.60 7.48 9.40 6.33 3.56 5.09 21.24 22.04 23.12 22.47 22.82 23.38 0.30 0.33 0.39 0.27 0.15 0.21
Q3 8.59 8.76 9.90 9.23 7.59 5.92 17.19 17.64 18.16 18.56 18.54 18.46 0.48 0.48 0.52 0.48 0.40 0.31
Q4 8.95 8.79 9.31 9.41 10.44 9.41 14.47 15.24 15.97 15.74 15.27 18.66 0.59 0.55 0.56 0.57 0.65 0.48
High 11.25 11.14 11.69 9.41 12.99 9.16 15.83 17.04 16.48 16.80 17.92 19.59 0.68 0.62 0.67 0.54 0.68 0.45

Panel D: Equal-Weighted Portfolios – NN-J1-m

Low 9.32 11.22 12.51 10.43 7.21 6.05 32.27 31.67 33.50 33.31 34.04 32.39 0.28 0.34 0.35 0.30 0.21 0.18
Q2 9.83 12.88 11.34 9.89 8.00 7.33 21.24 21.33 21.37 21.96 21.76 23.20 0.44 0.57 0.51 0.43 0.35 0.31
Q3 11.75 12.15 12.32 12.61 11.38 9.69 16.75 17.31 16.78 17.33 17.24 18.07 0.67 0.67 0.70 0.69 0.63 0.51
Q4 12.92 13.21 12.27 13.17 13.02 12.59 17.88 17.51 18.18 18.11 18.36 19.84 0.68 0.71 0.64 0.69 0.67 0.60
High 13.97 15.27 14.23 13.33 14.63 13.27 18.95 19.17 19.15 19.32 18.98 21.41 0.69 0.75 0.70 0.65 0.72 0.59

Table 6:
Double-sorted portfolios – return-on-assets:
The table summarises the annualised average monthly returns, volatilities and Sharpe ratios of double-sorted quintile portfolios. The portfolios are benchmarked against
single-sorted quintile portfolios. Double-sorted portfolios are sorted on the characteristic first and by the out-of-sample sensitivity with respect to that sensitivity second.
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Table 6 presents an empirical analysis of the portfolio sorting strategy. Portfolio performances, thus,

heavily rely on the out-of-sample accuracy of the model sensitivity estimations provided by NN-W2 and

NN-J1-m. Moreover, certain firm characteristics may be more important to one model than another,

meaning they are intrinsically handled differently across models. For those reasons, we do not claim

that the sorting strategy necessarily yields consistent results across all models and firm characteristics.

However, exemplary excerpts from table 6 (and the additional tables in appendix K) paint at least an

interesting picture. For example, single-sorted portfolios on return-on-assets table 6 confirm the economic

intuition that the top quintile portfolio should earn a higher return than the bottom quintile, evidenced

by an annualised Sharpe ratio of 0.69 for the top quintile and 0.28 for the bottom quintile portfolio.

In addition, the table shows that if a second sorting is introduced, portfolios which are sub-sorts of

the top quintile portfolio that are sorted on low sensitivities in addition can improve the Sharpe ratio

even further. For example, the annualised Sharpe ratio of the double-sorted quintile portfolio (high

characteristic, low sensitivity) is 0.73 compared to 0.69 in the case of the single sort. A similar pattern

also emerges in the case of portfolios sorted on the sensitivities estimated by NN-J1-m. In particular,

the middle panel of table 6 shows that the volatility tends to increase with high sensitivities.

While we do not claim that these patterns necessarily generalise across all characteristics and neural

networks, they are at least noticeable. To the best of our knowledge, we are the first to propose such

an out-of-sample portfolios construction approach, where the second sort is based on estimated out-of-

sample sensitivities. The recognition that higher sensitivities may lead to higher volatilities and lower

returns naturally leads to the concept of constructing long-short portfolios. In the case of single-sorts,

the procedure is straight forward: an investor would go long the top quintile portfolio while shorting

the bottom quintile. In the case of the double-sorted portfolios, we propose to go long the portfolio

sorted on high firm characteristics but low sensitivities, and go short the opposing portfolio sorted on

low characteristic values but high sensitivities.

Figure 23 plots the cumulative returns of such long-short portfolio returns, comparing the portfolio

returns of those portfolios constructed on the sensitivities of NN-J1-m (top panel) and NN-W2 (bottom

panel). In addition, the cumulative returns are benchmarked against the cumulative returns of a broad

market portfolio, which we source from Kenneth French’s website31. The graph displays the different

returns of equal-weighted (EW) and value-weighted (VW, by market capitalisation) returns, further

including portfolios that are constructed using an investment universe excluding microcaps. The graph

underlines that we do not necessarily have discovered previously unknown anomalies, since the portfolio

returns heavily rely on microcaps. Nonetheless, it can be seen that, for example, in the case of NN-J1-m,

an equally-weighted portfolio without microcaps performed much better during the great financial crises

in the 2000s. A full discussion of all portfolio returns is beyond the scope of this section, and we refer

31https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html, last accessed on December 1,
2021.
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Figure 23:
Cumulative portfolio returns – return-on-assets
The graphs shows the cumulative portfolio returns of single and double-sorted portfolio returns, where the out-of-
sample sensitivities of the double-sorted portfolios are estimated by NN-J1-m (top) and NN-W2 (bottom). The
cumulative portfolio returns are benchmarked against the cumulative market return, where the market portfolio
is sourced from Kenneth French’s website.

readers to appendix K for additional information. However, in addition to figure 23, table 7 summarises

the results of the classic Fama-French regressions, where the portfolio returns are regressed on a market

portfolio and the three commonly used Fama-French benchmark portfolios high-minus-low (HML), small-

minus-big (SMB) and momentum (UMD). Moreover, the table merely refers to portfolios constructed

on the signal from return-on-assets and we refer readers to appendix K for further results. The table

differentiates between single and double-sorted, and equal and value-weighted portfolios. Furthermore,

two different investment universes are considered, where one excludes all microcaps. It can be seen that

the double-sorted portfolios tend to outperform the single-sorted measured by annualised Sharpe ratio.

In addition, the adjusted R2 tend to be lower for double-sorted portfolios, indicating that the test assets

considered in this empirical application are less suitable to explain the returns of double-sorted portfolios

compared to single-sorted. The portfolios presented in this section primarily focused on portfolio sorts

concerning a single firm characteristic and the corresponding return sensitivity to changes in the same

characteristic. However, there is no intuitive justification for limiting the procedure to this simplistic

approach. Instead, it is further conceivable to design the sorting procedure of the second sort with

sensitivities to changes in other characteristics. In the interest of clarity, we do not pursue this path

further, but an alternative method such as sorting on sensitivity to changes in another firm characteristic

is conceivable. Moreover, we do not claim to have discovered any new anomalies. Instead, this section

intends to introduce the notion of sensitivity-sorted portfolios.
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All stocks No microcaps
NN-J1-m

equal-weighed
NN-J1-m

value-weighed
NN-J1-m

equal-weighed
NN-J1-m

value-weighed
Double-Sort Single-Sort Double-Sort Single-Sort Double-Sort Single-Sort Double-Sort Single-Sort

intercept (α) 0.006∗∗ 0.002 0.008∗∗∗ 0.005∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.005∗ 0.006∗∗∗

(0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.003) (0.002)
Mktrf (β1) −0.126∗∗ −0.070 −0.396∗∗∗ −0.297∗∗∗ 0.163 −0.020 −0.098 −0.290∗∗

(0.060) (0.061) (0.062) (0.045) (0.162) (0.150) (0.156) (0.134)
HML (β2) 0.430∗∗∗ 0.405∗∗∗ 0.166 0.196∗ −0.254∗∗∗ −0.199∗∗∗ −0.300∗∗∗ −0.282∗∗∗

(0.136) (0.141) (0.109) (0.103) (0.070) (0.053) (0.082) (0.059)
SMB (β3) −0.648∗∗∗ −0.788∗∗∗ −0.881∗∗∗ −0.889∗∗∗ −0.533∗∗∗ −0.533∗∗∗ −0.507∗∗∗ −0.532∗∗∗

(0.096) (0.135) (0.085) (0.078) (0.142) (0.179) (0.112) (0.134)
UMD (β4) 0.437∗∗∗ 0.411∗∗∗ 0.258∗∗∗ 0.229∗∗∗ 0.257∗∗ 0.152 0.260∗∗∗ 0.182∗∗

(0.088) (0.119) (0.080) (0.061) (0.101) (0.095) (0.089) (0.082)

Observations 432 432 432 432
R2 0.324 0.357 0.387 0.512 0.332 0.331 0.273 0.415
Adjusted R2 0.317 0.351 0.382 0.508 0.326 0.325 0.266 0.410

Annualised Return [%] 8.72 4.28 7.35 4.26 6.70 5.57 4.73 4.73
Annualised Volatility [%] 20.38 20.10 22.23 17.91 16.30 13.30 17.86 13.68
Annualised Sharpe Ratio 0.41 0.21 0.32 0.23 0.40 0.41 0.26 0.34

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7:
Portfolio summary – J1-m, return-on-assets:
The table summarises standard Fama-French regressions, following

Rp,t = α+ β1Mktrft + β2HMLt + β3SMBt + β4UMDt + ϵt,

where we regress the respective portfolio returns on the Fama-French 3 Factor model plus a market factor. The market and Fama-French portfolios are sourced directly from
Fama’s website through WRDS. The constructed portfolio returns are in excess of the risk-free rate.
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5 Conclusion

We propose a new way to estimate time-varying risk premia for nonlinear and non-parametric estimator

functions. The crucial innovation of our proposed methodology is the nonlinear generalisation of the

linear Fama-Macbeth regressions. For this purpose, we estimate risk premia through partial derivatives

of a nonlinear estimator function with respect to its input. Our methodology is universally applicable to

a large number of estimator functions under the condition of differentiability. We show how the proposed

methodology nests the linear Fama-Macbeth regressions as a special case and can be used to estimate

risk factor exposures and risk premia.

The second crucial innovation is the introduction of Jacobian regularisation into empirical asset

pricing. The newly introduced objective function allows for nonlinear and non-parametric model se-

lection and can be understood as a generalisation of the linear equivalents LASSO, Ridge or Elastic

Net. Most importantly, however, due to the economic interpretation of the partial derivatives, Jacobian

regularisation is particularly appealing in asset pricing. Our estimation allows us to understand key firm

characteristics that drive cross-sectional returns and provides empirical evidence that the inner model

mechanics are strongly nonlinear.

Our primary conclusions are four-fold. First, we emphasise the potential of deep neural networks

in empirical asset pricing and can show that all neural networks under consideration outperform the

linear benchmarks. Second, we show and quantify the importance of regularising the input gradients as

part of the objective function. Third, time-varying risk premia estimates provide a much richer insight

into cross-sectional returns compared to single-point estimates. Fourth, partial derivatives offer valuable

model insights on the asset level and help understand complex model mechanisms better and enable

software debugging or the detection of unwanted model biases.

Our empirical findings have direct practical benefits for asset pricing practitioners that go beyond

our empirical analysis. First, the conceptual introduction of Jacobian regularisation in asset pricing

opens future possibilities for semi-automated penalisation, where practitioners may impose a manual

prior. Second, we introduce the concept of sensitivity-sorted portfolios, which can improve portfolio

construction from a risk management perspective.

Last but not least, this paper is intended to stimulate a general discussion about model interpretability

and explainability of machine learning empirical asset pricing models. The fundamentally different signal-

to-noise ratio and the intrinsically ever-changing data dynamics, combined with relative data scarcity,

make a direct comparison of model interpretability and explainability to other disciplines such as image

recognition difficult. Given our results, model insights on the individual asset level can be crucially

important to various stakeholders.
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A List of Firm Characteristics

This appendix provides further details about the list of firm characteristics considered in this paper,

their source and frequency. Table A.1 provides a summary.

101



Table A.1:
Description, sources and frequency of all 95 firm characteristics
We construct and report a universe of firm characteristics analogously to Green et al. (2017) or Gu et al. (2020b). For the purpose of direct comparison, we adopt the firm
characteristic definitions of Green et al. (2017) while simultaneously acknowledging that certain characteristics could be defined differently as documented by Hou et al. (2020).
In comparison to Green et al. (2017), our data is characterised by some subtle differences. First, we convert the SAS code published by Green et al. (2017) into Python to
improve code integration and version control. Second, we calculate industry-adjusted variables only after the Compustat and CRSP datasets have been merged (instead of
calculating the industry mean before merging both datasets), leading to slightly different results. The reasoning behind our methodology is that we want the adjustment to
be only influenced by stocks that are included in the investment universe and not by all Compustat stocks.

No. Acronym Firm Characteristic Characteristic Source Data Source Frequency

1 absacc Absolute accruals Bandyopadhyay et al. (2010) Compustat Annual

2 acc Accruals Sloan (1996) Compustat Annual

3 aeavol Abnormal earnings announcement volume Lerman et al. (2007) Compustat+CRSP Quarterly

4 age Age since first Compustat coverage Jiang et al. (2005) Compustat Annual

5 agr Asset growth Cooper et al. (2008) Compustat Annual

6 baspread Bid-ask spread Amihud and Mendelson (1989) CRSP Monthly

7 beta Market beta Fama and MacBeth (1973) CRSP Monthly

8 betasq Market beta squared Fama and MacBeth (1973) CRSP Monthly

9 bm Book-to-market Rosenberg et al. (1985) Compustat Annual

10 bm ia Industry-adjusted book-to-market Asness et al. (2000) Compustat Annual

11 cash Cash holdings Palazzo (2012) Compustat Quarterly

12 cashdebt Cash-flow to debt Ou and Penman (1989) Compustat Annual

13 cashpr Cash productivity Chandrashekar and Rao (2009) Compustat Annual

14 cfp Cash-flow to price Desai et al. (2004) Compustat Annual

15 cfp ia Industry-adjusted cash-flow to price Asness et al. (2000) Compustat Annual

16 chatoia Industry-adjusted change in asset turnover Soliman (2008) Compustat Annual

17 chcsho Change in common shares outstanding Pontiff and Woodgate (2008) Compustat Annual

18 chempia Industry-adjusted change in employees Asness et al. (2000) Compustat Annual

19 chfeps Change in analysts’ mean earnings forecast Hawkins et al. (1984) I/B/E/S Monthly

20 chinv Change in inventory Thomas and Zhang (2002) Compustat Annual

21 chmom Change in 6-month momentum Gettleman and Marks (2006) CRSP Monthly

22 chnanalyst Change in analyst coverage Scherbina (2008) I/B/E/S Monthly

23 chpmia Industry-adjusted change in profit margin Soliman (2008) Compustat Annual

24 chtx Change in tax expenses Thomas and Zhang (2011) Compustat Quarterly

(continued)
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Table A.1:
Description, sources and frequency of all 95 firm characteristics
We construct and report a universe of firm characteristics analogously to Green et al. (2017) or Gu et al. (2020b). For the purpose of direct comparison, we adopt the firm
characteristic definitions of Green et al. (2017) while simultaneously acknowledging that certain characteristics could be defined differently as documented by Hou et al. (2020).
In comparison to Green et al. (2017), our data is characterised by some subtle differences. First, we convert the SAS code published by Green et al. (2017) into Python to
improve code integration and version control. Second, we calculate industry-adjusted variables only after the Compustat and CRSP datasets have been merged (instead of
calculating the industry mean before merging both datasets), leading to slightly different results. The reasoning behind our methodology is that we want the adjustment to
be only influenced by stocks that are included in the investment universe and not by all Compustat stocks.

No. Acronym Firm Characteristic Characteristic Source Data Source Frequency

25 cinvest Corporate investment Titman et al. (2004) Compustat Quarterly

26 convind Convertible debt indicator Valta (2016) Compustat Annual

27 currat Current ratio Ou and Penman (1989) Compustat Annual

28 depr Depreciation Holthausen and Larcker (1992) Compustat Annual

29 disp Volatility in analysts’ forecasts Diether et al. (2002) I/B/E/S Monthly

30 divi Dividend initiation Michaely et al. (1995) Compustat Annual

31 divo Dividend omission Michaely et al. (1995) Compustat Annual

32 dolvol Dollar trading volume Chordia et al. (2001) CRSP Monthly

33 dy Dividend yield Litzenberger and Ramaswamy (1982) Compustat Annual

34 ear Earnings announcement return Brandt et al. (2008) Compustat+CRSP Quarterly

35 egr Growth in common shareholder equity Richardson et al. (2005) Compustat Annual

36 ep Earnings-to-price Basu (1977) Compustat Annual

37 fgr5yr Most recently available analyst forecasted 5-year growth Bauman and Dowen (1988) I/B/E/S Quarterly

38 gma Gross profitability Novy-Marx (2013) Compustat Annual

39 grcapx Growth in capital expenditures Anderson and Garcia-Feijoo (2006) Compustat Annual

40 grltnoa Growth in long-term net operating assets Fairfield et al. (2003) Compustat Annual

41 herf Industry sales concentration Hou and Robinson (2006) Compustat Annual

42 hire Employee growth rate Belo et al. (2014) Compustat Annual

43 idiovol Idiosyncratic return volatility Ali et al. (2003) CRSP Monthly

44 ill Illiquidity Amihud (2002) CRSP Monthly

45 indmom Industry momentum Moskowitz and Grinblatt (1999) CRSP Monthly

46 invest Capital expenditures and inventory Chen and Zhang (2010) Compustat Annual

47 ipo IPO year indicator Loughran and Ritter (1995) CRSP Monthly

48 lev Leverage Bhandari (1988) Compustat Annual

49 lgr Growth in long-term debt Richardson et al. (2005) Compustat Annual
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Table A.1:
Description, sources and frequency of all 95 firm characteristics
We construct and report a universe of firm characteristics analogously to Green et al. (2017) or Gu et al. (2020b). For the purpose of direct comparison, we adopt the firm
characteristic definitions of Green et al. (2017) while simultaneously acknowledging that certain characteristics could be defined differently as documented by Hou et al. (2020).
In comparison to Green et al. (2017), our data is characterised by some subtle differences. First, we convert the SAS code published by Green et al. (2017) into Python to
improve code integration and version control. Second, we calculate industry-adjusted variables only after the Compustat and CRSP datasets have been merged (instead of
calculating the industry mean before merging both datasets), leading to slightly different results. The reasoning behind our methodology is that we want the adjustment to
be only influenced by stocks that are included in the investment universe and not by all Compustat stocks.

No. Acronym Firm Characteristic Characteristic Source Data Source Frequency

50 maxret Maximum daily return Bali et al. (2011) CRSP Monthly

51 mom12m 12-month momentum Jegadeesh (1990) CRSP Monthly

52 mom1m 1-month momentum Jegadeesh and Titman (1993) CRSP Monthly

53 mom36m 36-month momentum Jegadeesh and Titman (1993) CRSP Monthly

54 mom6m 6-month momentum Jegadeesh and Titman (1993) CRSP Monthly

55 ms Financial statement score Mohanram (2005) Compustat Quarterly

56 mve Log-size Banz (1981) CRSP Monthly

57 mve ia Industry adjusted log-size Asness et al. (2000) Compustat Annual

58 nanalyst Number of analyst forecasts Elgers et al. (2001) I/B/E/S Monthly

59 nincr Number of earnings increases Barth et al. (1999) Compustat Quarterly

60 operprof Operating profitability Fama and French (2015) Compustat Annual

61 orgcap Organisational capital Eisfeldt and Papanikolaou (2013) Compustat Annual

62 pchcapx ia Industry-adjusted %-change in current ratio Abarbanell and Bushee (1998) Compustat Annual

63 pchcurrat %-change in current ratio Ou and Penman (1989) Compustat Annual

64 pchdepr %-change in depreciation Holthausen and Larcker (1992) Compustat Annual

65 pchgm pchsale %-change in gross-margin - %-change in sales Abarbanell and Bushee (1998) Compustat Annual

66 pchquick %-change in quick ratio Ou and Penman (1989) Compustat Annual

67 pchsale pchinvt %-change in sales - %-change in inventory Abarbanell and Bushee (1998) Compustat Annual

68 pchsale pchrect %-change in sales - %-change in A/R Abarbanell and Bushee (1998) Compustat Annual

69 pchsale pchxsga %-change in sales - %-change in SG&A Abarbanell and Bushee (1998) Compustat Annual

70 pchsaleinv %-change in sales-to-inventory Ou and Penman (1989) Compustat Annual

71 pctacc Percent accruals Hafzalla et al. (2011) Compustat Annual

72 pricedelay Price delay Hou and Moskowitz (2005) CRSP Monthly

73 ps Financial statement score Piotroski (2000) Compustat Annual

74 quick Quick ratio Ou and Penman (1989) Compustat Annual
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Table A.1:
Description, sources and frequency of all 95 firm characteristics
We construct and report a universe of firm characteristics analogously to Green et al. (2017) or Gu et al. (2020b). For the purpose of direct comparison, we adopt the firm
characteristic definitions of Green et al. (2017) while simultaneously acknowledging that certain characteristics could be defined differently as documented by Hou et al. (2020).
In comparison to Green et al. (2017), our data is characterised by some subtle differences. First, we convert the SAS code published by Green et al. (2017) into Python to
improve code integration and version control. Second, we calculate industry-adjusted variables only after the Compustat and CRSP datasets have been merged (instead of
calculating the industry mean before merging both datasets), leading to slightly different results. The reasoning behind our methodology is that we want the adjustment to
be only influenced by stocks that are included in the investment universe and not by all Compustat stocks.

No. Acronym Firm Characteristic Characteristic Source Data Source Frequency

75 rd R&D increase Eberhart et al. (2004) Compustat Annual

76 rd mve R&D to market capitalisation Guo et al. (2006) Compustat Annual

77 rd sale R&D to sales Guo et al. (2006) Compustat Annual

78 realestate Real estate holdings Tuzel (2010) Compustat Annual

79 retvol Return volatility Ang et al. (2006b) CRSP Monthly

80 roaq Return on assets Balakrishnan et al. (2010) Compustat Quarterly

81 roavol Earnings volatility Francis et al. (2004) Compustat Quarterly

82 roeq Return on equity Hou et al. (2015) Compustat Quarterly

83 roic Return on invested capital Brown and Rowe (2007) Compustat Annual

84 rsup Revenue surprise Kama (2009) Compustat Quarterly

85 salecash Sales-to-cash Ou and Penman (1989) Compustat Annual

86 saleinv Sales-to-inventory Ou and Penman (1989) Compustat Annual

87 salerec Sales-to-receivables Ou and Penman (1989) Compustat Annual

88 secured Secured debt Valta (2016) Compustat Annual

89 securedind Secured debt indicator Valta (2016) Compustat Annual

90 sfe Analysts mean annual earnings forecast Elgers et al. (2001) I/B/E/S Quarterly

91 sgr Sales growth Lakonishok et al. (1994) Compustat Annual

92 sgrvol Revenue surprise volatility Green et al. (2017) Compustat Quarterly

93 sin Sin stocks Hong and Kacperczyk (2009) Compustat Annual

94 sp Sales-to-price Barbee Jr et al. (1996) Compustat Annual

95 std dolvol Volatility of liquidity (dollar trading volume) Chordia et al. (2001) CRSP Monthly

96 std turn Volatility of liquidity (share turnover) Chordia et al. (2001) CRSP Monthly

97 stdacc Accrual volatility Bandyopadhyay et al. (2010) Compustat Quarterly

98 stdcf Cash-flow volatility Huang (2009) Compustat Quarterly

99 sue Unexpected quarterly earnings Rendleman Jr et al. (1982) Compustat Quarterly
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Table A.1:
Description, sources and frequency of all 95 firm characteristics
We construct and report a universe of firm characteristics analogously to Green et al. (2017) or Gu et al. (2020b). For the purpose of direct comparison, we adopt the firm
characteristic definitions of Green et al. (2017) while simultaneously acknowledging that certain characteristics could be defined differently as documented by Hou et al. (2020).
In comparison to Green et al. (2017), our data is characterised by some subtle differences. First, we convert the SAS code published by Green et al. (2017) into Python to
improve code integration and version control. Second, we calculate industry-adjusted variables only after the Compustat and CRSP datasets have been merged (instead of
calculating the industry mean before merging both datasets), leading to slightly different results. The reasoning behind our methodology is that we want the adjustment to
be only influenced by stocks that are included in the investment universe and not by all Compustat stocks.

No. Acronym Firm Characteristic Characteristic Source Data Source Frequency

100 tang Debt capacity / firm tangibility Almeida and Campello (2007) Compustat Annual

101 tb Tax income to book income Lev and Nissim (2004) Compustat Annual

102 turn Share turnover Datar et al. (1998) CRSP Monthly

103 zerotrade Zero trading days Liu (2006) CRSP Monthly

(continued)
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B List of Core Characteristics

In appendix A, we list all 103 firm characteristics. However, as commonly done in the empirical asset

pricing literature, we also focus on a core characteristics case, which reduces the dimensionality of the

all characteristics case from 103 to 49, where we only consider 49 core characteristics that are frequently

identifies as most relevant in the literature (e.g. see, for example, Lewellen (2015), Green et al. (2017)

or Gu et al. (2020b)).

No. Acronym Firm Characteristic Characteristic Source Data Source Frequency

1 acc Accruals Sloan (1996) Compustat Annual
2 agr Asset growth Cooper et al. (2008) Compustat Annual
3 beta Market beta Fama and MacBeth (1973) CRSP Monthly
4 bm Book-to-market Rosenberg et al. (1985) Compustat Annual
5 cash Cash holdings Palazzo (2012) Compustat Quarterly
6 cashpr Cash productivity Chandrashekar and Rao (2009) Compustat Annual
7 cfp Cash-flow to price Desai et al. (2004) Compustat Annual
8 chatoia Industry-adjusted change in asset turnover Soliman (2008) Compustat Annual
9 chcsho Change in common shares outstanding Pontiff and Woodgate (2008) Compustat Annual
10 chfeps Change in analysts’ mean earnings forecast Hawkins et al. (1984) I/B/E/S Monthly
11 chinv Change in inventory Thomas and Zhang (2002) Compustat Annual
12 chmom Change in 6-month momentum Gettleman and Marks (2006) CRSP Monthly
13 chpmia Industry-adjusted change in profit margin Soliman (2008) Compustat Annual
14 chtx Change in tax expenses Thomas and Zhang (2011) Compustat Quarterly
15 currat Current ratio Ou and Penman (1989) Compustat Annual
16 depr Depreciation Holthausen and Larcker (1992) Compustat Annual
17 dy Dividend yield Litzenberger and Ramaswamy (1982) Compustat Annual
18 ear Earnings announcement return Brandt et al. (2008) Compustat+CRSP Quarterly
19 ep Earnings-to-price Basu (1977) Compustat Annual
20 gma Gross profitability Novy-Marx (2013) Compustat Annual
21 grcapx Growth in capital expenditures Anderson and Garcia-Feijoo (2006) Compustat Annual
22 grltnoa Growth in long-term net operating assets Fairfield et al. (2003) Compustat Annual
23 ill Illiquidity Amihud (2002) CRSP Monthly
24 indmom Industry momentum Moskowitz and Grinblatt (1999) CRSP Monthly
25 invest Capital expenditures and inventory Chen and Zhang (2010) Compustat Annual
26 lev Leverage Bhandari (1988) Compustat Annual
27 lgr Growth in long-term debt Richardson et al. (2005) Compustat Annual
28 maxret Maximum daily return Bali et al. (2011) CRSP Monthly
29 mom12m 12-month momentum Jegadeesh (1990) CRSP Monthly
30 mom1m 1-month momentum Jegadeesh and Titman (1993) CRSP Monthly
31 mom36m 36-month momentum Jegadeesh and Titman (1993) CRSP Monthly
32 mve Log-size Banz (1981) CRSP Monthly
33 nincr Number of earnings increases Barth et al. (1999) Compustat Quarterly
34 orgcap Organisational capital Eisfeldt and Papanikolaou (2013) Compustat Annual
35 pchgm pchsale %-change in gross-margin - %-change in sales Abarbanell and Bushee (1998) Compustat Annual
36 pchsale pchinvt %-change in sales - %-change in inventory Abarbanell and Bushee (1998) Compustat Annual
37 pchsale pchrect %-change in sales - %-change in A/R Abarbanell and Bushee (1998) Compustat Annual
38 pchsale pchxsga %-change in sales - %-change in SG&A Abarbanell and Bushee (1998) Compustat Annual
39 retvol Return volatility Ang et al. (2006b) CRSP Monthly
40 roaq Return on assets Balakrishnan et al. (2010) Compustat Quarterly
41 roavol Earnings volatility Francis et al. (2004) Compustat Quarterly
42 roeq Return on equity Hou et al. (2015) Compustat Quarterly
43 salecash Sales-to-cash Ou and Penman (1989) Compustat Annual
44 saleinv Sales-to-inventory Ou and Penman (1989) Compustat Annual
45 sgr Sales growth Lakonishok et al. (1994) Compustat Annual
46 sp Sales-to-price Barbee Jr et al. (1996) Compustat Annual
47 std dolvol Volatility of liquidity (dollar trading volume) Chordia et al. (2001) CRSP Monthly
48 std turn Volatility of liquidity (share turnover) Chordia et al. (2001) CRSP Monthly
49 turn Share turnover Datar et al. (1998) CRSP Monthly

Table B.1:
Description, sources and frequency of the 49 core characteristics
The table summarises the selection of the 49 core characteristics.
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C Data Validation

Appendix A provides an overview over the 103 firm characteristics we use in our empirical analysis.

We base our calculations on Green et al. (2017) and translate his SAS code into Python. Our dataset

achieves an overall mean and median correlation with Green’s data of 89%, respectively 99%, which

makes our results directly comparable to existing research – see table C.2 for further details. Minor

differences in the data, which lessen the mean and median correlation, are primarily the result of slightly

different variable definitions. Out of 103 characteristics, 13 show an absolute correlation of less than

0.70. These characteristics and the reason for why they differ from Green’s data are summarised in table

C.1. Note, however, that we do not claim to push existing forecasting frontiers with this paper and firm

characteristic definitions are, therefore, less important to us. The code documenting the data download

and cleaning can be found on https://github.com/fkempf92/FactorData.

Table C.2 summarises the raw data of each characteristic in the dataset used by Green et al. (2017),

where we source the data from Jeremiah Green’s website32. In particular, we only consider stocks that

appear in both datasets at the respective point in time. Note that for the purpose of a clear presentation,

we round the summary statistics to one decimal place, such that some detail is lost. For example, the

raw data for the characteristic illiquidity is very small in magnitude, which is why they only appear as

zero in the rounded summary table C.2. For direct comparability, the sample ranges from January 1980

to December 2014.

Abbreviation |ρ| Explanation for divergence

cfp ia 0.00 Industry adjustment after investment universe is formed.
sgrvol 0.01 Benchmark is not winsorised.
bm ia 0.02 Industry adjustment after investment universe is formed.
pchcapx ia 0.08 Industry adjustment after investment universe is formed.
tb 0.21 Industry adjustment after investment universe is formed.
IPO 0.24 First 12 months since listed, not the beginning of the sample.
pricedelay 0.30 Expanding window vs. fixed window.
chpmia 0.38 Industry adjustment after investment universe is formed.
salerec 0.39 Restriction to be strictly positive.
operprof 0.48 Different definition of xsga0.
herf 0.61 Industry adjustment after investment universe is formed.
cashdebt 0.61 Restriction to be strictly positive.
ms 0.63 Medians calculated after investment universe is formed.

Table C.1:
Diverging firm characteristics
There are 13 firm characteristics with an absolute correlation of smaller than 0.70. The main reason for why
those characteristics differ from the benchmark is that we perform all industry adjustments after the investment
universe if formed to reduce arbitrariness.

32https://drive.google.com/file/d/0BwwEXkCgXEdRQWZreUpKOHBXOUU/view?resourcekey=0-1xjZ8fAc0sTybVC6RADDCA,
last accessed in November 2021.
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Table C.2:
Data comparison
In order to make our dataset as comparable as possible, we benchmark it against the original dataset used by Green et al. (2017). For each firm characteristics, the table
shows the minimum, maximum, mean, standard deviation and number of non-missing observations per characteristic, where the first row refers to the dataset used by Green
et al. (2017) and the second row refers to the dataset we use. In addition, we report the correlation of each factor over the entire sample for observations that are available in
both datasets.

Green et al. (2017) Kapetanios and Kempf (2021) Correlation

Min Max Mean Std N Min Max Mean Std N Corr

absacc 0.0 1.1 0.1 0.1 1662807 0.0 1.1 0.1 0.1 1629133 1.0

acc −1.1 0.5 0.0 0.1 1662807 −1.1 0.5 0.0 0.1 1629133 1.0

aeavol −1.0 22.5 0.9 2.1 1709241 −1.0 22.2 0.9 2.1 1656590 1.0

age 1.0 40.0 10.7 8.5 1933709 1.0 53.0 12.3 10.4 1905887 0.9

agr −0.7 6.1 0.2 0.5 1802012 −0.7 6.6 0.2 0.5 1763922 1.0

baspread 0.0 0.9 0.1 0.1 1933663 0.0 0.9 0.1 0.1 1914238 1.0

beta −0.8 4.0 1.1 0.7 1911760 −0.8 3.6 1.0 0.6 1902405 1.0

betasq 0.0 15.8 1.6 1.9 1911760 0.0 13.3 1.4 1.7 1902405 1.0

bm −2.6 7.6 0.7 0.7 1933709 −2.4 7.5 0.7 0.7 1905879 1.0

bm ia −1307.0 17188.4 29.4 806.7 1933709 −169.2 11.1 −0.9 11.7 1905879 0.0

cash −0.1 1.0 0.2 0.2 1711537 0.0 1.0 0.2 0.2 1838052 1.0

cashdebt −99.7 2.2 0.0 1.3 1864545 0.0 7.5 0.4 0.8 1701272 −0.6

cashpr −537.3 600.3 −1.3 58.1 1913623 −519.5 610.8 −1.3 58.3 1886229 1.0

cfp −4.7 37.5 0.1 0.8 1775262 −3.6 2.6 0.0 0.3 1714419 1.0

cfp ia −292.6 7043.8 15.8 348.2 1775262 −5.8 24.8 0.1 1.0 1714419 0.0

chatoia −1.4 1.2 0.0 0.2 1657372 −1.0 1.2 0.0 0.2 1613689 1.0

chcsho −0.8 2.7 0.1 0.3 1801298 −0.8 2.6 0.1 0.3 1763484 1.0

chempia −11.1 3.8 −0.1 0.5 1797829 −15.2 3.2 −0.1 0.5 1902056 0.9

chfeps −16.5 12.4 0.0 0.4 1000891 −1259.5 2898.6 0.0 3.2 1212688 1.0

chinv −0.3 0.4 0.0 0.1 1753974 −0.3 0.4 0.0 0.1 1717278 1.0

chmom −9.1 8.7 0.0 0.6 1791987 −9.1 8.4 0.0 0.6 1889792 1.0

chnanalyst −42.0 39.0 0.0 1.5 1454778 −41.0 28.0 0.0 1.4 1203045 0.8

chpmia −548.2 116.4 0.2 12.2 1774684 −100.7 64.5 0.1 5.8 1738220 0.4

chtx −0.1 0.1 0.0 0.0 1687139 −0.1 0.1 0.0 0.0 1743920 1.0
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Table C.2:
Data comparison
In order to make our dataset as comparable as possible, we benchmark it against the original dataset used by Green et al. (2017). For each firm characteristics, the table
shows the minimum, maximum, mean, standard deviation and number of non-missing observations per characteristic, where the first row refers to the dataset used by Green
et al. (2017) and the second row refers to the dataset we use. In addition, we report the correlation of each factor over the entire sample for observations that are available in
both datasets.

Green et al. (2017) Kapetanios and Kempf (2021) Correlation

Min Max Mean Std N Min Max Mean Std N Corr

cinvest −16.4 13.3 0.0 0.7 1683575 −17.7 14.3 0.0 0.9 1702671 0.8

convind 0.0 1.0 0.1 0.3 1933709 0.0 1.0 0.1 0.3 1905887 0.7

currat 0.1 55.8 3.3 4.8 1866688 0.0 56.4 3.2 4.7 1840598 1.0

depr −1.0 5.8 0.3 0.4 1849772 0.0 5.8 0.3 0.4 1825876 1.0

disp 0.0 9.5 0.2 0.4 825466 0.0 48.2 0.2 0.4 925720 1.0

divi 0.0 1.0 0.0 0.2 1802057 0.0 1.0 0.1 0.2 1905887 1.0

divo 0.0 1.0 0.0 0.2 1802057 0.0 1.0 0.0 0.2 1905887 1.0

dolvol −3.1 19.0 11.2 3.0 1859863 0.0 19.0 11.2 3.0 1849444 1.0

dy −3.3 0.3 0.0 0.0 1928699 0.0 0.4 0.0 0.0 1900890 1.0

ear −0.5 0.5 0.0 0.1 1720839 −0.5 0.5 0.0 0.1 1667564 1.0

egr −3.8 9.0 0.1 0.7 1801856 −3.3 9.4 0.1 0.7 1763813 1.0

ep −8.2 0.4 0.0 0.4 1933709 −8.0 0.5 0.0 0.4 1905879 1.0

fgr5yr −16.8 85.0 16.7 9.7 760603 −29.1 100.0 16.7 10.2 1101004 1.0

gma −1.0 1.8 0.4 0.4 1797413 −0.8 1.8 0.4 0.4 1759498 1.0

grcapx −12.9 62.0 1.0 3.7 1614468 −12.9 51.3 0.9 3.5 1579720 1.0

grltnoa −0.6 1.1 0.1 0.2 1348101 −0.6 1.1 0.1 0.2 1320055 1.0

herf 0.0 1.0 0.1 0.1 1933699 0.0 6.7 0.7 0.8 1905877 0.6

hire −0.8 4.2 0.1 0.4 1797829 −0.8 3.6 0.1 0.3 1902056 1.0

idiovol 0.0 0.3 0.1 0.0 1911760 0.0 0.3 0.1 0.0 1902405 1.0

ill 0.0 0.0 0.0 0.0 1871109 0.0 0.0 0.0 0.0 1852025 1.0

indmom −0.7 3.5 0.2 0.3 1933552 −0.6 2.8 0.2 0.3 1914251 0.9

invest −0.6 1.5 0.1 0.2 1740666 −0.6 1.5 0.1 0.2 1706022 1.0

ipo 0.0 1.0 0.1 0.3 1933709 0.0 1.0 0.0 0.1 1914283 0.2

lev 0.0 75.6 2.3 4.9 1928155 0.0 72.9 2.3 4.9 1900545 1.0

lgr −0.8 10.6 0.3 0.8 1795769 −0.8 10.5 0.3 0.8 1757961 1.0
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Table C.2:
Data comparison
In order to make our dataset as comparable as possible, we benchmark it against the original dataset used by Green et al. (2017). For each firm characteristics, the table
shows the minimum, maximum, mean, standard deviation and number of non-missing observations per characteristic, where the first row refers to the dataset used by Green
et al. (2017) and the second row refers to the dataset we use. In addition, we report the correlation of each factor over the entire sample for observations that are available in
both datasets.

Green et al. (2017) Kapetanios and Kempf (2021) Correlation

Min Max Mean Std N Min Max Mean Std N Corr

maxret 0.0 0.9 0.1 0.1 1933708 0.0 0.9 0.1 0.1 1914247 1.0

mom12m −1.0 12.2 0.1 0.6 1791987 −1.0 11.6 0.1 0.6 1890346 1.0

mom1m −0.7 2.2 0.0 0.2 1933709 −0.7 2.2 0.0 0.2 1913671 1.0

mom36m −1.0 16.1 0.3 1.0 1503482 −1.0 16.5 0.3 1.0 1615526 1.0

mom6m −0.9 8.1 0.1 0.4 1875841 −0.9 7.9 0.1 0.4 1909176 1.0

ms 0.0 8.0 3.8 1.7 1723021 0.0 8.0 3.0 1.6 1870869 0.6

mve 2.4 18.5 11.8 2.2 1933709 3.7 18.5 11.8 2.2 1914283 1.0

mve ia −13464.0 93388.7 −225.3 5010.7 1933709 −21176.3 90695.7 −535.5 5005.4 1905879 1.0

nanalyst 0.0 56.0 4.9 6.7 1479704 1.0 56.0 6.8 7.1 1223989 1.0

nincr 0.0 8.0 1.0 1.4 1723021 0.0 8.0 1.0 1.3 1871676 1.0

operprof −6.3 9.2 0.8 1.1 1797257 −4.6 4.8 0.2 0.6 1759389 0.5

orgcap 0.0 0.1 0.0 0.0 1421950 0.0 0.1 0.0 0.0 106344 1.0

pchcapx ia −237.4 1673.3 7.9 81.9 1751019 −102.8 27.1 −0.4 4.5 1721446 0.1

pchcurrat −0.9 6.4 0.1 0.6 1732910 −0.9 6.7 0.1 0.6 1697069 1.0

pchdepr −0.9 7.8 0.1 0.6 1714968 −0.9 7.8 0.1 0.6 1681431 1.0

pchgm pchsale −12.3 4.8 −0.1 1.0 1778494 −12.2 4.8 −0.1 1.0 1741837 1.0

pchquick −0.9 8.9 0.1 0.7 1722088 −0.9 8.2 0.1 0.7 1686671 1.0

pchsale pchinvt −11.6 3.8 −0.1 0.9 1427967 −11.5 3.5 −0.1 0.9 1402916 1.0

pchsale pchrect −7.9 3.4 −0.1 0.6 1727526 −7.0 3.3 −0.1 0.6 1692626 1.0

pchsale pchxsga −1.5 5.1 0.0 0.4 1498925 −1.5 4.2 0.0 0.4 1469847 1.0

pchsaleinv −121.0 33.2 0.2 1.2 1409292 0.0 32.7 0.4 1.0 1384444 0.9

pctacc −64.8 68.9 −0.9 6.0 1662795 −65.2 69.1 −0.8 5.9 1714379 1.0

pricedelay −15.6 13.4 0.2 1.1 1911731 −10.4 13.1 0.2 1.0 1897374 0.3

ps 0.0 9.0 4.2 1.7 1802057 0.0 9.0 4.0 1.7 1905887 0.8

quick 0.1 49.3 2.6 4.3 1856675 0.0 49.2 2.6 4.2 1830916 1.0
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Table C.2:
Data comparison
In order to make our dataset as comparable as possible, we benchmark it against the original dataset used by Green et al. (2017). For each firm characteristics, the table
shows the minimum, maximum, mean, standard deviation and number of non-missing observations per characteristic, where the first row refers to the dataset used by Green
et al. (2017) and the second row refers to the dataset we use. In addition, we report the correlation of each factor over the entire sample for observations that are available in
both datasets.

Green et al. (2017) Kapetanios and Kempf (2021) Correlation

Min Max Mean Std N Min Max Mean Std N Corr

rd 0.0 1.0 0.1 0.4 1802057 0.0 1.0 0.1 0.3 1905887 0.9

rd mve 0.0 2.4 0.1 0.1 933103 0.0 2.2 0.1 0.1 920259 1.0

rd sale −218.7 117.3 0.6 4.0 919541 0.0 114.7 0.6 3.8 906909 1.0

realestate 0.0 0.9 0.3 0.2 800471 0.0 0.9 0.3 0.2 788910 1.0

retvol 0.0 0.3 0.0 0.0 1933638 0.0 0.3 0.0 0.0 1914214 1.0

roaq −0.5 0.2 0.0 0.1 1719749 −0.5 0.2 0.0 0.1 1837073 1.0

roavol 0.0 0.7 0.0 0.1 1452795 0.0 0.5 0.0 0.0 1826689 0.9

roeq −1.4 1.2 0.0 0.1 1719494 −1.4 1.2 0.0 0.2 1836659 1.0

roic −13.4 1.0 −0.1 0.9 1848261 −14.1 1.0 −0.1 0.9 1821692 1.0

rsup −4.1 1.5 0.0 0.2 1708311 −3.8 1.5 0.0 0.2 1752159 1.0

salecash −1230.9 2320.6 57.5 175.6 1917448 0.0 2234.4 57.3 173.2 1889982 1.0

saleinv −35.4 979.0 28.0 69.7 1526327 0.0 947.1 27.9 69.0 1507878 1.0

salerec −21796.0 240.9 11.5 60.7 1865361 0.0 239.1 11.6 24.9 1839024 0.4

secured 0.0 4.9 0.6 0.5 1132250 0.0 4.8 0.6 0.5 1113070 1.0

securedind 0.0 1.0 0.5 0.5 1933709 0.0 1.0 0.5 0.5 1905887 1.0

sfe −105.0 3.0 −0.2 3.0 988947 −213.9 443.2 −0.4 5.0 1220454 0.9

sgr −0.9 8.7 0.2 0.6 1778687 −0.9 8.1 0.2 0.6 1742029 1.0

sgrvol 0.0 52348.9 1.3 209.2 1451046 0.0 2.4 0.1 0.2 1730368 0.0

sin 0.0 1.0 0.0 0.1 1933709 0.0 1.0 0.0 0.1 1905887 1.0

sp −4.1 40.5 2.1 3.4 1928114 0.0 37.8 2.1 3.3 1900450 1.0

std dolvol 0.0 2.9 0.9 0.4 1867918 0.0 2.9 0.9 0.4 1848913 1.0

std turn 0.0 104.3 4.1 6.4 1872873 0.0 126.9 4.1 6.6 1853743 1.0

stdacc 0.0 554.8 3.8 27.2 1213961 0.0 573.4 3.4 22.4 1511684 0.9

stdcf 0.0 1144.0 8.5 60.6 1213961 0.0 991.4 7.7 50.0 1511670 0.9

sue −8.8 2.0 0.0 0.1 1710703 −10.3 2.0 0.0 0.2 1790611 0.9
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Table C.2:
Data comparison
In order to make our dataset as comparable as possible, we benchmark it against the original dataset used by Green et al. (2017). For each firm characteristics, the table
shows the minimum, maximum, mean, standard deviation and number of non-missing observations per characteristic, where the first row refers to the dataset used by Green
et al. (2017) and the second row refers to the dataset we use. In addition, we report the correlation of each factor over the entire sample for observations that are available in
both datasets.

Green et al. (2017) Kapetanios and Kempf (2021) Correlation

Min Max Mean Std N Min Max Mean Std N Corr

tang 0.0 1.0 0.5 0.2 1853217 0.0 1.0 0.5 0.2 1828573 1.0

tb −27.5 11.3 −0.1 1.7 1703181 −40.2 20.4 −0.1 1.4 1635468 0.2

turn 0.0 42.7 1.1 1.4 1861007 0.0 14.3 1.0 1.3 1848800 1.0

zerotrade 0.0 20.0 1.5 3.5 1871141 0.0 20.0 1.5 3.5 1852057 1.0
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D Neural Network Architectures

(a) Constant hidden layer structure

(b) Tapered hidden layer structure

Figure D.1:
Architectural structures
The graph displays a schematic representation of the two different neural network architectures under consid-
eration. The top panel shows the constant hidden layer structure, while the bottom panel displays the tapered
hidden layer structure.

We differentiate between two types of neural network architectures, which differ in the architectural

form of the hidden layer structure. We refer to the two different architectural designs as constant and

tapered. For the constant architectural structure, the number of nodes remains constant in each hidden

layer, where the number of nodes is drawn from the distribution shown in table 2. The two different

architectural structures are exemplarily displayed in figure D.1. There exists no deterministic way in

the domain-specific context of empirical asset pricing through which an ideal network structure can

be derived. To the best of our knowledge, the architectural design of the neural networks applied in
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empirical asset pricing is currently underrepresented. With this paper, we intend to bring the discussion

about architectural decisions to the foreground.

We find, that the number of learnable model parameters change considerably over time, as visualised

in figures D.2 and D.3. However, we also find that the average number of learnable model parameters

is similar across models. Further, we find that most neural networks contain 4 to 5 hidden layers over

time, with exceptions. Moreover, for the the majority of neural networks, the tapered architectural form

is found to work best empirically, with the exact reason for this being unclear. The figures merely show

an extract of all models for the purpose of clarity. Further results can be requested from the authors.

Table D.1 provides further details.

Figure D.2:
Time-varying neural network complexity – rank-normalised, calendar year, all characteristics
The blue line displays the number of learnable parameters over time in thousands, while the green line refers to
the number of hidden layers in each neural network. The dotted lines visualise the repspective average.

Figure D.3:
Time-varying neural network complexity – rank-normalised, calendar year, core characteristics
The blue line displays the number of learnable parameters over time in thousands, while the green line refers to
the number of hidden layers in each neural network. The dotted lines visualise the repspective average.
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Table D.1:
Architectural Summary
The table summarises the average number of learnable model parameters, percentage of times of constant hidden-layer architectural form, and the mode of the number of
hidden layers over time. The table further differentiates between all data preprocessing strategies considered in this paper, annual re-fitting regimes and firm characteristics
considered.

Network
Data

pre-processing

Calendar year

all characteristics

Calendar year

core characteristics

Fiscal year

all characteristics

Fiscal year

core characteristics

Avg model

params.

% of

const arch

Mode

HL

Avg model

params.

% of

const arch

Mode

HL

Avg model

params.

% of

const arch

Mode

HL

Avg model

params.

% of

const arch

Mode

HL

NN

rank norm 15608.5 22.2 3 3910.8 25.0 2 15034.2 30.6 3 3701.1 27.8 4

rank norm (nm) 10824.7 19.4 1 3068.6 69.4 1 12597.9 22.2 1 2652.3 75.0 1

std 16973.4 38.9 5 4456.2 36.1 4 16400.7 25.0 3 4064.0 16.7 4

std (nm) 12630.0 25.0 1 3547.6 77.8 1 10280.4 8.3 3 3072.7 77.8 1

W1

rank norm 19707.6 38.9 4 3913.9 50.0 3 16635.4 38.9 5 3266.0 30.6 3

rank norm (nm) 21820.8 66.7 5 3383.9 33.3 1 14497.2 52.8 4 2665.9 36.1 1

std 20024.4 50.0 4 3153.0 25.0 3 14074.8 41.7 5 3457.7 38.9 3

std (nm) 19296.4 66.7 1 3326.2 41.7 1 22409.1 72.2 5 3199.2 47.2 1

W2

rank norm 18189.5 58.3 5 3522.4 38.9 3 16478.3 55.6 5 3780.2 38.9 3

rank norm (nm) 20100.6 61.1 5 3407.5 47.2 1 23744.9 52.8 4 3554.4 38.9 1

std 24882.4 58.3 5 3508.9 27.8 3 16111.3 38.9 5 3862.2 33.3 4

std (nm) 20602.7 52.8 5 3486.6 44.4 1 19353.7 63.9 1 3294.4 55.6 1

W1W2

rank norm 15531.2 11.1 5 3684.3 36.1 4 16415.9 22.2 5 2990.4 19.4 4

rank norm (nm) 12693.5 41.7 1 3100.7 66.7 1 15079.0 50.0 1 2751.2 75.0 1

std 19224.1 30.6 5 3186.0 30.6 4 17461.5 22.2 5 3572.8 27.8 4

std (nm) 11311.1 36.1 1 3447.6 61.1 1 12333.7 41.7 1 2725.4 75.0 1

J1

rank norm 18290.6 44.4 4 4199.6 47.2 4 18526.2 50.0 5 4080.4 58.3 4

rank norm (nm) 14055.5 52.8 1 2919.5 11.1 1 12539.5 77.8 1 2936.6 13.9 1

std 18264.6 47.2 4 4157.6 44.4 4 17196.1 50.0 4 4387.2 50.0 4

std (nm) 12883.4 50.0 1 3000.4 27.8 1 12634.2 61.1 1 3089.2 25.0 1

(continued)

116



Table D.1:
Architectural Summary
The table summarises the average number of learnable model parameters, percentage of times of constant hidden-layer architectural form, and the mode of the number of
hidden layers over time. The table further differentiates between all data preprocessing strategies considered in this paper, annual re-fitting regimes and firm characteristics
considered.

Network
Data

pre-processing

Calendar year

all characteristics

Calendar year

core characteristics

Fiscal year

all characteristics

Fiscal year

core characteristics

Avg model

params.

% of

const arch

Mode

HL

Avg model

params.

% of

const arch

Mode

HL

Avg model

params.

% of

const arch

Mode

HL

Avg model

params.

% of

const arch

Mode

HL

J2

rank norm 21325.9 44.4 4 3984.3 22.2 4 20192.5 44.4 5 3966.0 27.8 4

rank norm (nm) 14387.1 13.9 4 3437.5 27.8 4 15647.8 33.3 4 3278.3 30.6 1

std 20499.5 47.2 5 4610.4 38.9 4 19870.8 47.2 4 3480.4 16.7 4

std (nm) 15114.3 36.1 2 3153.9 22.2 1 13150.1 30.6 4 3558.9 30.6 4

J1J2

rank norm 17029.9 38.9 2 3583.1 22.2 4 16975.9 41.7 4 3652.5 41.7 4

rank norm (nm) 11431.9 16.7 1 4830.3 61.1 4 12827.6 19.4 1 3880.7 77.8 1

std 18601.4 41.7 5 4103.2 38.9 4 19998.7 41.7 4 3766.5 36.1 4

std (nm) 11260.1 19.4 1 3778.8 52.8 1 12808.1 27.8 1 4602.0 72.2 4

J1-m

rank norm 17819.0 33.3 4 4141.8 30.6 4 20101.3 36.1 4 4645.4 36.1 4

rank norm (nm) 15084.9 25.0 4 3375.7 36.1 1 14124.7 22.2 4 3748.6 33.3 4

std 18206.3 25.0 5 4086.4 27.8 4 18606.6 36.1 4 4396.5 30.6 4

std (nm) 13016.3 36.1 3 3501.9 13.9 1 15626.4 22.2 4 3321.2 22.2 1

J2-m

rank norm 21116.2 36.1 5 4655.4 33.3 4 18786.0 36.1 5 4079.3 25.0 4

rank norm (nm) 14609.2 16.7 4 3191.4 27.8 1 16301.5 33.3 4 3648.3 27.8 4

std 17642.4 30.6 4 4139.5 47.2 4 19910.8 33.3 4 4125.8 33.3 4

std (nm) 12456.0 19.4 4 3919.8 30.6 1 16230.1 38.9 3 3764.8 30.6 1

J1J2-m

rank norm 17551.6 33.3 5 3733.5 16.7 4 17316.2 36.1 5 3623.2 13.9 4

rank norm (nm) 14860.5 27.8 4 4092.5 44.4 4 16004.2 30.6 4 4696.6 58.3 4

std 18589.8 27.8 5 3686.4 19.4 4 19786.5 41.7 5 3741.1 16.7 4

std (nm) 15475.9 30.6 4 5027.3 66.7 3 16929.6 36.1 4 4385.9 61.1 2

(continued)
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E Regression Replication

To further the validity of the data collection and preprocessing, we replicate table 4 in Green et al. (2017),

with the results reported in table E.1. The purpose of the replication is two-fold. First, we find that our

replication is largely in line with the results reported by Green et al. (2017), boosting the confidence in

our investment universe. Secondly, even though the results summarised in table E.1 are the product of

a slightly diverging methodology compared to the methodology presented in this paper (i.e. univariate

regressions and monthly-refitting), they serve as a sanity check for the economic interpretability of our

empirical results presented in section 4.11. Note, however, that table E.1 closely resembles the investment

universe used in Green et al. (2017), meaning that the sample ends in December 2014. In our empirical

application, however, we use all available data and our sample ends in December 2020. In appendix I,

we report the linear risk price estimation analogously to those reported in Green et al. (2017), but with

the data-preprocessing and investment universe selection of this paper.
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Table E.1:
Regression Replication
All stocks Green replication.

(A) Single characteristics,

no benchmark model

(B) Single characteristic,

Carhart benchmark

(C) Single characteristic,

5-factor benchmark

(D) Single characteristic,

q-factor benchmark

All

WLS

No micro

OLS

All

OLS

All

WLS

No micro

OLS

All

OLS

All

WLS

No micro

OLS

All

OLS

All

WLS

No micro

OLS

All

OLS

β t β t β t β t β t β t β t β t β t β t β t β t

agr −0.22 −3.17 −0.26 −4.52 −0.46 −8.26 −0.20 −3.48 −0.23 −5.01 −0.37 −8.52

bm 0.18 1.13 0.15 1.88 0.34 5.02 0.13 0.93 0.11 1.51 0.17 2.40

mom12m 0.33 2.54 0.26 2.32 0.19 1.70 0.30 2.43 0.26 2.45 0.22 2.24 0.31 2.45 0.25 2.31 0.21 2.13

mve −0.09 −0.88 −0.05 −0.95 −0.33 −2.99

operprof 0.07 1.21 0.08 1.58 0.05 0.62 0.09 2.17 0.11 2.65 0.13 2.18 0.06 1.44 0.07 1.96 0.12 2.49

roeq 0.23 2.79 0.16 2.70 0.15 1.71 0.26 3.62 0.15 3.11 0.20 2.99 0.26 4.14 0.15 3.36 0.22 3.59

absacc −0.04 −0.40 −0.09 −1.40 −0.01 −0.10 −0.08 −0.98 −0.09 −1.97 −0.04 −0.62 −0.01 −0.08 −0.04 −0.95 0.00 −0.08 0.01 0.15 −0.04 −0.77 −0.01 −0.24

acc −0.22 −2.48 −0.12 −2.50 −0.21 −3.13 −0.13 −1.97 −0.08 −2.21 −0.16 −3.00 −0.19 −2.49 −0.09 −2.46 −0.13 −2.79 −0.20 −2.49 −0.10 −2.38 −0.13 −2.70

aeavol 0.00 0.04 0.00 −0.15 0.10 5.24 −0.03 −0.56 −0.01 −0.66 0.05 2.65 0.00 0.07 0.00 0.15 0.07 3.89 0.00 0.05 0.00 −0.02 0.06 3.57

age 0.00 0.00 0.08 1.13 0.10 1.33 0.05 0.86 0.11 2.14 0.27 5.99 −0.04 −0.61 0.02 0.38 0.19 4.08 −0.02 −0.31 0.04 0.64 0.22 3.80

baspread −0.43 −1.28 −0.22 −1.56 0.23 1.53 −0.64 −2.29 −0.29 −2.33 0.13 0.97 −0.40 −1.33 −0.18 −1.37 0.14 1.07 −0.42 −1.34 −0.19 −1.35 0.16 1.17

beta −0.08 −0.49 −0.11 −0.72 −0.08 −0.58 −0.17 −1.11 −0.16 −1.17 −0.06 −0.43 −0.03 −0.21 −0.06 −0.41 0.00 0.01 −0.05 −0.28 −0.07 −0.46 −0.01 −0.08

betasq −0.10 −0.53 −0.12 −0.83 −0.09 −0.65 −0.19 −1.15 −0.17 −1.29 −0.08 −0.69 −0.05 −0.28 −0.07 −0.53 −0.03 −0.21 −0.06 −0.32 −0.08 −0.57 −0.04 −0.29

bm ia −0.04 −0.65 0.00 −0.10 0.18 3.11 0.00 0.01 0.02 0.26 0.07 0.72 0.01 0.12 0.04 0.65 0.10 0.92 −0.03 −0.49 0.00 −0.13 0.08 1.86

cash 0.11 1.09 0.01 0.13 0.09 0.80 0.11 1.39 0.02 0.20 0.11 1.19 0.19 2.02 0.08 0.83 0.14 1.57 0.16 1.56 0.06 0.53 0.11 1.13

cashdebt 0.00 0.01 −0.07 −1.09 −0.03 −0.31 0.03 0.29 −0.04 −0.75 0.00 −0.02 0.08 0.65 −0.02 −0.38 0.02 0.26 0.05 0.33 −0.04 −0.60 0.00 −0.05

cashpr −0.08 −1.77 −0.10 −2.40 −0.16 −3.55 −0.04 −1.09 −0.04 −1.69 −0.05 −1.56 −0.06 −1.66 −0.05 −2.04 −0.04 −1.40 −0.07 −1.86 −0.08 −2.26 −0.08 −1.90

cfp 0.14 1.42 0.15 2.24 0.11 1.40 0.10 1.56 0.13 2.76 0.12 2.01 0.07 1.06 0.09 2.11 0.11 2.03 0.06 0.73 0.09 1.60 0.10 1.65

cfp ia 0.08 1.71 0.12 4.23 0.15 2.95 0.05 1.32 0.10 5.03 0.13 3.81 0.03 0.82 0.08 4.25 0.13 4.29 0.05 1.10 0.09 3.84 0.12 3.51

chatoia 0.11 2.51 0.09 4.23 0.09 5.42 0.08 2.13 0.07 3.76 0.08 4.89 0.04 1.07 0.04 2.05 0.05 3.27 0.04 1.26 0.04 2.07 0.05 2.98

chcsho −0.13 −3.03 −0.18 −3.57 −0.26 −6.35 −0.10 −3.06 −0.13 −3.53 −0.17 −5.80 −0.08 −2.66 −0.06 −2.42 −0.07 −2.66 −0.09 −2.86 −0.08 −2.84 −0.08 −3.01

chempia −0.05 −1.16 −0.08 −2.09 −0.18 −4.17 −0.04 −1.18 −0.06 −1.81 −0.12 −3.10 0.05 1.18 0.03 1.03 0.01 0.36 0.04 1.01 0.04 1.12 0.01 0.34

chfeps 0.25 2.88 0.11 2.91 0.18 5.60 0.18 2.47 0.09 2.51 0.17 5.69 0.24 2.90 0.11 2.97 0.19 5.64 0.24 2.76 0.11 2.89 0.18 5.79

chinv −0.16 −3.18 −0.14 −4.26 −0.26 −6.60 −0.11 −2.83 −0.11 −4.24 −0.20 −5.79 −0.08 −1.81 −0.07 −2.50 −0.11 −3.75 −0.09 −2.09 −0.07 −2.59 −0.12 −3.84

(continued)
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Table E.1:
Regression Replication
All stocks Green replication.

(A) Single characteristics,

no benchmark model

(B) Single characteristic,

Carhart benchmark

(C) Single characteristic,

5-factor benchmark

(D) Single characteristic,

q-factor benchmark

All

WLS

No micro

OLS

All

OLS

All

WLS

No micro

OLS

All

OLS

All

WLS

No micro

OLS

All

OLS

All

WLS

No micro

OLS

All

OLS

β t β t β t β t β t β t β t β t β t β t β t β t

chmom −0.31 −2.86 −0.11 −1.68 −0.21 −3.42 −0.28 −3.12 −0.09 −1.52 −0.18 −3.06 −0.31 −3.52 −0.12 −2.17 −0.21 −4.08 −0.31 −3.30 −0.10 −1.80 −0.19 −3.55

chnanalyst 0.02 0.74 0.00 −0.06 0.00 0.01 0.02 0.45 −0.01 −0.26 0.02 0.41 0.02 0.51 0.02 0.53 0.05 1.04 0.02 0.61 0.01 0.27 0.03 0.79

chpmia 0.01 0.27 −0.02 −0.48 −0.02 −0.46 0.01 0.14 −0.02 −0.68 −0.02 −0.63 0.01 0.22 −0.01 −0.22 0.00 −0.11 0.01 0.16 −0.01 −0.31 0.00 0.07

chtx 0.09 1.81 0.06 1.68 0.14 5.23 0.05 1.29 0.01 0.42 0.12 4.78 0.13 3.71 0.09 3.21 0.18 6.95 0.09 2.01 0.05 1.46 0.15 6.11

cinvest 0.02 0.60 −0.01 −0.44 0.00 −0.07 0.01 0.31 −0.01 −0.61 0.00 −0.12 0.01 0.15 −0.02 −0.64 −0.01 −0.47 −0.01 −0.16 −0.02 −0.92 −0.02 −1.07

convind −0.04 −1.72 −0.05 −1.93 −0.06 −2.96 −0.04 −1.69 −0.04 −1.65 −0.03 −1.50 −0.03 −1.32 −0.03 −1.36 −0.03 −1.18 −0.03 −1.29 −0.02 −1.04 −0.02 −1.01

currat −0.10 −1.51 −0.11 −2.19 −0.04 −1.14 −0.09 −1.74 −0.09 −2.19 −0.06 −1.61 −0.04 −0.89 −0.05 −1.38 −0.04 −1.18 −0.08 −1.49 −0.08 −1.89 −0.05 −1.58

depr 0.01 0.12 0.00 0.07 0.12 1.68 0.00 0.04 0.01 0.26 0.10 1.79 0.04 0.44 0.03 0.76 0.09 1.76 0.04 0.52 0.03 0.59 0.08 1.49

disp −0.14 −0.94 −0.13 −2.36 −0.22 −3.43 −0.16 −1.31 −0.13 −2.63 −0.25 −4.68 −0.13 −0.91 −0.12 −2.37 −0.26 −4.68 −0.11 −0.76 −0.10 −2.09 −0.24 −4.47

divi −0.01 −0.16 −0.07 −1.94 −0.08 −3.79 −0.04 −0.94 −0.07 −2.26 −0.10 −4.76 −0.01 −0.32 −0.06 −1.78 −0.08 −4.32 −0.01 −0.34 −0.06 −1.88 −0.08 −4.74

divo 0.03 0.77 −0.01 −0.63 0.02 0.95 0.00 −0.11 −0.02 −0.97 0.00 −0.28 0.04 1.45 0.01 0.41 0.01 0.86 0.04 1.46 0.01 0.31 0.01 1.01

dolvol −0.14 −1.14 −0.08 −1.31 −0.29 −3.36 −0.21 −0.76 −0.14 −1.04 0.17 0.73 0.04 0.14 0.03 0.16 0.37 1.42 0.02 0.05 0.01 0.06 0.33 1.25

dy 0.03 0.25 0.06 0.76 0.04 0.66 0.01 0.17 0.01 0.22 0.05 1.14 −0.05 −0.60 −0.04 −0.66 0.00 0.05 −0.01 −0.07 0.01 0.16 0.04 0.62

ear 0.14 2.35 0.12 5.58 0.18 6.69 0.08 1.78 0.08 5.43 0.14 7.43 0.14 2.58 0.12 5.72 0.17 7.14 0.14 2.36 0.11 5.17 0.15 6.43

egr −0.19 −2.91 −0.19 −3.96 −0.26 −5.40 −0.18 −3.29 −0.17 −4.24 −0.20 −5.42 −0.12 −2.27 −0.09 −2.91 −0.06 −2.33 −0.07 −1.86 −0.05 −2.18 −0.04 −1.53

ep 0.21 0.93 0.06 0.80 −0.12 −1.06 0.24 1.46 0.07 1.25 −0.04 −0.48 0.14 0.85 0.04 0.64 −0.02 −0.24 0.13 0.67 0.03 0.48 −0.04 −0.47

fgr5yr −0.05 −0.32 −0.11 −0.87 −0.05 −0.42 −0.10 −0.70 −0.12 −1.11 −0.06 −0.64 0.05 0.34 0.00 0.01 0.04 0.41 0.01 0.07 −0.04 −0.30 −0.01 −0.07

gma 0.09 1.15 0.05 1.14 0.06 1.37 0.15 2.49 0.10 2.64 0.09 2.17 0.20 2.90 0.13 3.21 0.17 4.07 0.13 1.64 0.08 1.83 0.14 3.13

grcapx −0.17 −2.75 −0.15 −4.31 −0.20 −7.34 −0.17 −3.16 −0.14 −4.59 −0.18 −7.48 −0.08 −2.21 −0.08 −3.37 −0.10 −5.13 −0.08 −2.07 −0.08 −3.15 −0.10 −5.15

grltnoa −0.17 −3.86 −0.19 −4.31 −0.34 −6.74 −0.15 −3.92 −0.16 −4.28 −0.27 −6.28 −0.06 −1.25 −0.06 −1.90 −0.09 −2.53 −0.04 −0.71 −0.05 −1.44 −0.08 −2.23

herf 0.03 1.07 0.03 0.62 −0.02 −0.38 0.03 1.15 0.03 0.77 −0.03 −0.74 0.03 1.00 0.03 0.68 −0.03 −0.64 0.04 1.18 0.03 0.62 −0.02 −0.47

hire −0.12 −2.00 −0.15 −3.28 −0.28 −7.35 −0.11 −2.40 −0.13 −3.44 −0.22 −6.95 0.02 0.38 0.01 0.26 −0.05 −2.50 0.02 0.40 0.01 0.42 −0.06 −2.69

idiovol −0.15 −0.64 −0.19 −1.35 0.02 0.10 −0.40 −1.74 −0.30 −2.29 −0.20 −1.30 −0.13 −0.52 −0.15 −1.11 −0.11 −0.72 −0.14 −0.51 −0.16 −1.08 −0.12 −0.75

ill −0.08 −0.57 −0.07 −2.98 0.41 5.38 −0.17 −1.73 −0.07 −3.21 0.33 5.41 −0.26 −2.60 −0.09 −3.94 0.29 4.87 −0.26 −2.78 −0.09 −3.69 0.32 5.32

(continued)
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Table E.1:
Regression Replication
All stocks Green replication.

(A) Single characteristics,

no benchmark model

(B) Single characteristic,

Carhart benchmark

(C) Single characteristic,

5-factor benchmark

(D) Single characteristic,

q-factor benchmark

All

WLS

No micro

OLS

All

OLS

All

WLS

No micro

OLS

All

OLS

All

WLS

No micro

OLS

All

OLS

All

WLS

No micro

OLS

All

OLS

β t β t β t β t β t β t β t β t β t β t β t β t

indmom 0.09 1.24 0.15 1.69 0.32 3.40 0.03 0.53 0.09 1.42 0.28 3.84 0.08 1.26 0.15 1.91 0.31 3.61 0.07 1.03 0.14 1.67 0.31 3.41

invest −0.14 −2.67 −0.20 −4.19 −0.36 −7.41 −0.13 −3.24 −0.18 −4.63 −0.30 −7.46 −0.06 −1.04 −0.09 −2.25 −0.15 −3.50 −0.05 −0.77 −0.09 −2.07 −0.15 −3.34

ipo −0.10 −2.96 −0.08 −2.80 −0.12 −4.62 −0.08 −2.67 −0.08 −2.86 −0.11 −4.82 −0.09 −2.97 −0.07 −2.81 −0.11 −4.77 −0.10 −3.14 −0.08 −2.90 −0.12 −4.98

lev 0.06 0.51 0.09 1.09 0.11 1.26 0.01 0.06 0.02 0.34 −0.01 −0.08 0.01 0.16 0.02 0.35 −0.01 −0.11 0.04 0.37 0.07 0.86 0.05 0.56

lgr −0.18 −2.94 −0.17 −4.08 −0.30 −9.04 −0.16 −3.28 −0.15 −4.78 −0.26 −9.88 0.07 1.37 0.05 1.67 −0.01 −0.23 0.05 1.04 0.05 1.30 −0.02 −0.59

maxret −0.23 −1.13 −0.24 −2.20 −0.18 −1.46 −0.40 −2.28 −0.29 −3.14 −0.35 −3.47 −0.26 −1.43 −0.22 −2.27 −0.33 −3.39 −0.27 −1.41 −0.22 −2.17 −0.33 −3.29

mom1m −0.11 −1.07 −0.13 −1.89 −0.63 −6.76 −0.26 −2.91 −0.21 −3.20 −0.69 −7.87 −0.22 −2.27 −0.19 −2.66 −0.68 −7.91 −0.20 −1.96 −0.17 −2.34 −0.66 −7.64

mom36m −0.07 −0.74 −0.17 −2.40 −0.28 −2.98 −0.09 −1.19 −0.13 −2.21 −0.16 −2.14 −0.05 −0.62 −0.09 −1.65 −0.10 −1.55 −0.06 −0.82 −0.11 −1.98 −0.13 −2.01

mom6m 0.09 0.77 0.18 1.90 0.09 0.96 −0.30 −2.52 −0.03 −0.38 −0.08 −1.13 0.08 0.70 0.18 1.95 0.10 1.20 0.08 0.68 0.18 1.86 0.10 1.21

ms 0.06 1.10 0.07 1.36 0.09 1.73 0.10 2.73 0.12 2.63 0.19 3.97 0.11 2.50 0.11 2.37 0.20 3.93 0.07 1.50 0.09 1.75 0.17 3.22

mve ia −0.02 −1.04 −0.04 −1.01 −0.04 −0.89 0.01 0.52 0.05 1.54 0.20 5.49 −0.02 −1.09 −0.01 −0.30 0.14 3.78 −0.03 −1.39 −0.02 −0.43 0.16 4.23

nanalyst 0.00 0.02 0.05 1.05 −0.05 −0.76 0.03 0.60 0.14 2.50 0.23 3.63 0.02 0.46 0.11 1.99 0.19 2.94 0.02 0.37 0.13 2.24 0.22 3.52

nincr 0.09 2.87 0.13 4.16 0.18 7.14 0.08 3.20 0.10 3.91 0.20 8.30 0.10 3.82 0.15 5.21 0.23 9.32 0.08 2.98 0.12 4.21 0.19 8.49

orgcap 0.08 0.91 0.08 1.45 0.13 1.91 0.09 0.95 0.09 1.62 0.08 1.03 0.08 0.80 0.07 1.28 0.07 0.91 0.06 0.58 0.05 0.89 0.04 0.53

pchcapx ia −0.01 −0.14 0.00 −0.07 −0.05 −0.95 −0.02 −0.39 0.00 −0.04 −0.04 −0.87 0.01 0.35 0.02 0.54 0.01 0.20 0.04 0.82 0.04 0.75 0.01 0.16

pchcurrat −0.09 −2.55 −0.07 −3.29 −0.09 −3.11 −0.09 −2.80 −0.07 −3.70 −0.09 −3.11 −0.07 −2.09 −0.02 −1.29 −0.03 −1.11 −0.07 −2.14 −0.02 −1.55 −0.03 −1.18

pchdepr 0.03 0.45 0.02 0.58 0.02 0.51 −0.01 −0.10 0.01 0.40 0.00 −0.12 0.05 0.98 0.02 0.85 −0.03 −0.89 0.05 0.99 0.02 0.76 −0.03 −1.03

pchgm pchsale 0.08 2.45 0.08 3.05 0.09 3.07 0.08 2.94 0.08 3.59 0.10 4.16 0.05 1.66 0.05 2.49 0.06 2.92 0.05 1.51 0.05 2.34 0.07 3.06

pchquick −0.05 −1.36 −0.05 −2.13 −0.07 −2.35 −0.06 −1.68 −0.05 −2.64 −0.07 −2.47 −0.02 −0.67 0.00 0.27 −0.01 −0.23 −0.03 −0.90 0.00 −0.11 −0.01 −0.39

pchsale pchinvt 0.06 1.43 0.09 3.73 0.14 5.34 0.05 1.31 0.08 4.25 0.13 5.17 0.03 0.91 0.06 2.89 0.10 4.04 0.02 0.64 0.05 2.11 0.09 3.45

pchsale pchrect 0.01 0.36 0.04 1.95 0.08 4.28 0.00 0.14 0.03 1.76 0.08 4.68 −0.04 −0.98 −0.02 −1.10 0.01 0.43 −0.04 −0.86 −0.02 −0.88 0.01 0.32

pchsale pchxsga −0.09 −1.65 −0.08 −2.70 −0.08 −3.06 −0.10 −1.80 −0.07 −2.91 −0.06 −2.41 −0.03 −0.77 −0.03 −1.53 0.00 −0.06 −0.04 −0.94 −0.04 −1.53 −0.01 −0.33

pchsaleinv −0.02 −0.32 −0.03 −1.01 −0.04 −0.99 −0.05 −1.31 −0.04 −1.85 −0.07 −1.84 0.01 0.16 −0.01 −0.52 −0.04 −1.07 0.01 0.28 −0.01 −0.40 −0.05 −1.36

pctacc −0.02 −0.60 −0.06 −2.24 −0.11 −3.90 −0.01 −0.24 −0.04 −1.92 −0.09 −4.25 −0.01 −0.14 −0.03 −1.38 −0.08 −3.67 −0.01 −0.36 −0.03 −1.41 −0.08 −3.41

(continued)
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Table E.1:
Regression Replication
All stocks Green replication.

(A) Single characteristics,

no benchmark model

(B) Single characteristic,

Carhart benchmark

(C) Single characteristic,

5-factor benchmark

(D) Single characteristic,

q-factor benchmark

All

WLS

No micro

OLS

All

OLS

All

WLS

No micro

OLS

All

OLS

All

WLS

No micro

OLS

All

OLS

All

WLS

No micro

OLS

All

OLS

β t β t β t β t β t β t β t β t β t β t β t β t

pricedelay 0.00 −0.05 0.01 0.35 0.05 2.46 0.02 0.27 0.02 1.06 0.01 0.59 0.00 0.07 0.02 0.77 0.01 0.55 0.00 −0.06 0.01 0.52 0.01 0.40

ps 0.05 1.23 0.11 2.55 0.09 1.69 0.06 1.51 0.12 3.25 0.16 4.66 0.03 0.75 0.08 2.49 0.14 4.99 0.01 0.35 0.07 2.17 0.14 4.52

quick −0.11 −1.78 −0.10 −1.89 −0.04 −0.96 −0.10 −2.24 −0.09 −2.01 −0.04 −1.10 −0.05 −1.16 −0.04 −1.02 −0.02 −0.55 −0.09 −1.70 −0.06 −1.42 −0.03 −0.89

rd 0.05 1.74 0.07 1.97 0.18 2.64 0.04 1.45 0.06 2.24 0.16 2.82 0.01 0.55 0.05 1.59 0.12 2.31 0.01 0.41 0.04 1.28 0.11 1.97

rd mve 0.10 0.73 0.21 2.14 0.47 3.83 0.02 0.26 0.17 1.87 0.38 3.52 −0.01 −0.07 0.17 1.75 0.34 3.40 0.03 0.31 0.20 2.11 0.37 3.80

rd sale −0.23 −1.80 −0.08 −1.21 −0.03 −0.43 −0.19 −1.98 −0.06 −1.13 0.00 −0.07 −0.14 −1.36 −0.02 −0.32 0.02 0.33 −0.15 −1.39 −0.02 −0.29 0.01 0.23

realestate 0.10 1.62 0.09 1.33 0.02 0.38 0.12 2.05 0.09 1.64 0.04 0.78 0.10 1.73 0.07 1.27 0.02 0.48 0.10 1.71 0.07 1.23 0.03 0.51

retvol −0.27 −1.12 −0.27 −2.10 −0.05 −0.33 −0.48 −2.33 −0.34 −3.12 −0.21 −1.82 −0.28 −1.29 −0.24 −2.07 −0.18 −1.59 −0.29 −1.30 −0.25 −2.02 −0.18 −1.55

roaq 0.34 2.88 0.17 2.32 0.15 1.28 0.40 4.46 0.18 3.10 0.21 2.32 0.40 4.78 0.18 3.21 0.24 2.77 0.28 2.44 0.11 1.48 0.17 1.77

roavol −0.17 −1.35 −0.12 −1.36 −0.09 −0.74 −0.21 −2.21 −0.12 −1.92 −0.14 −1.52 −0.10 −0.94 −0.05 −0.75 −0.09 −0.98 −0.10 −0.85 −0.06 −0.76 −0.09 −1.01

roic 0.32 2.77 0.14 2.20 0.02 0.15 0.39 4.43 0.16 3.02 0.04 0.49 0.37 4.24 0.12 2.21 0.03 0.40 0.31 3.38 0.10 1.75 0.03 0.43

rsup 0.01 0.16 0.02 0.63 −0.06 −1.00 −0.01 −0.13 0.01 0.20 −0.03 −0.66 0.05 0.65 0.06 1.65 0.05 1.05 0.05 0.65 0.05 1.40 0.02 0.48

salecash 0.05 0.86 0.03 0.87 0.03 0.82 0.02 0.52 0.03 0.98 0.00 −0.07 0.00 0.10 0.01 0.26 −0.02 −0.62 0.01 0.22 0.01 0.35 −0.01 −0.32

saleinv −0.01 −0.35 0.02 0.64 0.03 1.05 −0.02 −0.67 0.01 0.50 0.03 1.61 −0.02 −0.85 0.01 0.22 0.03 1.30 −0.01 −0.30 0.02 0.54 0.03 1.44

salerec 0.08 1.66 0.06 1.45 0.04 1.07 0.07 1.84 0.06 1.59 0.04 0.97 0.07 1.62 0.05 1.27 0.02 0.62 0.07 1.58 0.05 1.17 0.03 0.72

secured −0.16 −1.05 −0.07 −1.14 0.02 0.28 −0.21 −1.32 −0.12 −2.10 −0.11 −2.43 −0.18 −1.02 −0.05 −0.92 −0.09 −1.70 −0.19 −1.05 −0.08 −1.16 −0.10 −1.92

securedind 0.01 0.23 −0.02 −0.58 −0.01 −0.21 0.01 0.19 −0.02 −0.61 −0.06 −1.46 0.01 0.40 0.00 0.17 −0.03 −0.75 0.01 0.52 0.00 −0.11 −0.03 −0.79

sfe −0.13 −0.97 0.00 −0.03 −0.01 −0.17 −0.12 −1.09 −0.01 −0.17 −0.01 −0.09 −0.13 −1.11 −0.03 −0.60 0.00 0.06 −0.14 −1.10 −0.04 −0.69 −0.01 −0.15

sgr −0.26 −2.75 −0.16 −2.89 −0.25 −6.67 −0.23 −3.24 −0.14 −3.42 −0.20 −6.54 −0.08 −1.30 −0.02 −0.50 −0.05 −1.78 −0.10 −1.50 −0.02 −0.46 −0.06 −2.02

sgrvol 0.05 0.42 0.04 1.03 0.18 2.72 −0.11 −1.46 −0.02 −0.54 0.00 0.03 −0.09 −1.11 0.01 0.15 0.02 0.28 −0.03 −0.29 0.03 0.77 0.05 0.96

sin 0.04 1.69 0.04 1.83 0.03 1.62 0.04 1.95 0.03 1.81 0.04 2.17 0.03 1.67 0.04 1.90 0.04 2.11 0.03 1.69 0.03 1.72 0.04 1.93

sp 0.28 1.82 0.17 2.48 0.29 4.25 0.11 1.24 0.10 1.91 0.11 1.82 0.08 0.84 0.08 1.57 0.09 1.47 0.17 1.33 0.13 2.01 0.15 2.29

std dolvol 0.05 0.44 0.06 1.55 0.16 2.81 −0.09 −1.02 0.05 1.27 −0.11 −1.41 −0.09 −0.96 0.03 0.73 −0.14 −1.74 −0.08 −0.83 0.03 0.79 −0.14 −1.62

std turn −0.01 −0.08 −0.05 −0.62 −0.02 −0.31 −0.12 −1.45 −0.09 −1.51 −0.05 −0.93 0.01 0.15 −0.01 −0.12 0.02 0.33 0.02 0.14 −0.01 −0.14 0.01 0.23

(continued)
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Table E.1:
Regression Replication
All stocks Green replication.

(A) Single characteristics,

no benchmark model

(B) Single characteristic,

Carhart benchmark

(C) Single characteristic,

5-factor benchmark

(D) Single characteristic,

q-factor benchmark

All

WLS

No micro

OLS

All

OLS

All

WLS

No micro

OLS

All

OLS

All

WLS

No micro

OLS

All

OLS

All

WLS

No micro

OLS

All

OLS

β t β t β t β t β t β t β t β t β t β t β t β t

stdacc −0.15 −1.95 −0.08 −2.02 −0.08 −1.42 −0.18 −3.29 −0.09 −2.98 −0.09 −2.17 −0.13 −2.30 −0.05 −1.58 −0.06 −1.58 −0.12 −2.00 −0.05 −1.41 −0.06 −1.58

stdcf −0.16 −2.10 −0.09 −2.12 −0.08 −1.44 −0.18 −3.38 −0.10 −3.10 −0.08 −1.96 −0.13 −2.40 −0.05 −1.65 −0.05 −1.37 −0.12 −2.13 −0.05 −1.44 −0.05 −1.33

sue 0.21 2.41 0.10 3.35 0.20 5.82 0.14 1.70 0.07 2.44 0.19 6.68 0.20 2.53 0.09 3.32 0.21 7.19 0.16 1.97 0.07 2.47 0.14 4.96

tang 0.02 0.35 −0.01 −0.08 0.07 0.95 0.01 0.34 0.00 −0.05 0.05 0.80 0.03 0.54 0.02 0.25 0.05 0.85 0.02 0.28 0.00 0.03 0.04 0.53

tb 0.05 1.32 0.06 1.68 0.04 0.77 0.09 2.57 0.07 2.72 0.11 3.25 0.07 1.87 0.05 1.73 0.10 3.29 0.06 1.46 0.04 1.37 0.09 2.93

turn −0.03 −0.29 −0.16 −1.39 −0.28 −3.30 −0.13 −1.35 −0.21 −2.32 −0.25 −2.95 0.00 0.02 −0.09 −0.88 −0.13 −1.40 0.00 −0.02 −0.10 −0.89 −0.14 −1.48

zerotrade −0.01 −0.15 −0.03 −1.36 0.09 1.74 −0.12 −1.57 −0.03 −1.52 −0.07 −0.97 −0.17 −2.17 −0.04 −1.90 −0.10 −1.39 −0.17 −2.10 −0.04 −1.83 −0.07 −0.95

(continued)
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F Correlation Analysis

Figures F.1 to F.4 exhibit the correlation of all stocks and firm characteristics included in our analysis

from January 1980 to December 2020. We use the rank-normalised, winsorised and pooled dataset

to calculate the correlation coefficients. We further differentiate between the core characteristics only,

all characteristics, and empirical correlation matrices for an investment universe, in which microcaps

are excluded. We find that the empirical correlation structure is fairly heterogenous. The average firm

characteristic correlation for the core characteristics across all stocks is 2.2%, 2.4% for core characteristics

without microcaps, 2.6% for all characteristics across all stocks, and 3.1% for all characteristics without

microcaps.

Figure F.1:
Empirical correlation matrix – rank-normalised data, core characteristics
The graph shows the empirical correlation matrix of the core characteristics, from January 1980 to December
2020.
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Figure F.2:
Empirical correlation matrix– rank-normalised data, all characteristics
The graph shows the empirical correlation matrix of all characteristics, from January 1980 to December 2020.
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Figure F.3:
Empirical correlation matrix – rank-normalised data, core characteristics (no microcaps)
The graph shows the empirical correlation matrix of the core characteristics, excluding microcaps, from January
1980 to December 2020.

126



Figure F.4:
Empirical correlation matrix – rank-normalised data, all characteristics (no microcaps)
The graph shows the empirical correlation matrix of all characteristics, excluding microcaps, from January 1980
to December 2020.
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G Performance Summary

This section in the appendix provides further details about the empirical out-of-sample performances

measured in cross-sectional mean R2 and predictive R2 (see equations (38) and (39)). In particular, we

report a more detailed summary and include results from all different types of data pre-processing (rank-

normalisation vs. standardisation), re-fit frequencies (calendar vs. fiscal year), and investment universe

restrictions (all stocks vs. excluding microcaps). We further report results by market capitalisation,

yielding a large number of results. A full discussion is beyond the scope of this appendix. However,

we find that the neural network performances are stable across data-preprocessing regimes, with neural

networks tending to offer robust performances for large stocks, which are the most liquid and relevant

for institutional investors.
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Calendar Year – Rank Normalisation

Model Subgroup
All Characteristics Core Characteristics

XS-R2 [%] Pred.-R2 [%] XS-R2 [%] Pred.-R2 [%]

OLS Overall −0.35 5.57 −0.07 6.91

Large −3.75 21.50 −2.96 22.76

Small −1.29 12.96 −0.90 14.61

Micro −0.05 2.97 0.21 4.25

WLS Overall −1.81 −1.96 −0.37 7.20

Large −3.40 25.84 −1.00 31.57

Small −2.30 13.96 −0.55 19.68

Micro −1.62 −7.09 −0.28 2.99

Lasso Overall 0.00 13.79 0.00 13.81

Large 0.00 27.03 0.00 26.77

Small −0.01 20.01 0.00 20.30

Micro 0.00 11.61 0.00 11.60

Ridge Overall −0.35 5.58 −0.07 6.91

Large −3.74 21.49 −2.96 22.76

Small −1.28 12.96 −0.90 14.62

Micro −0.05 2.98 0.21 4.25

Elastic Net Overall 0.00 13.81 0.00 13.67

Large 0.00 27.09 0.00 26.58

Small −0.01 20.06 0.00 20.11

Micro 0.00 11.62 0.00 11.47

NN Overall 0.11 0.92 0.10 14.75

Large 0.20 14.27 0.02 38.61

Small 0.11 16.59 0.09 26.48

Micro 0.11 −3.11 0.11 10.72

NN-W1 Overall 0.11 9.17 0.10 13.42

Large 0.10 45.93 0.11 40.72

Small 0.12 25.90 0.12 25.79

Micro 0.12 3.22 0.11 9.02

NN-W2 Overall 0.12 9.74 0.12 17.20

Large 0.18 39.13 0.33 45.80

Small 0.13 22.14 0.18 30.81

Micro 0.12 5.18 0.11 12.46

NN-W1W2 Overall 0.07 11.16 0.12 13.96

Large 0.08 42.32 0.18 40.01

Small 0.10 24.15 0.14 26.58

Micro 0.08 6.35 0.13 9.60

NN-J1 Overall 0.05 14.88 0.04 16.15

Large 0.21 41.99 0.10 39.51

Small 0.10 29.89 0.05 26.90

Micro 0.04 9.97 0.04 12.35

NN-J2 Overall 0.09 14.32 0.08 15.72

Large 0.17 43.50 0.24 41.34

Small 0.12 28.42 0.12 27.47

Micro 0.09 9.44 0.07 11.56

NN-J1J2 Overall 0.04 8.15 0.03 13.45

Large 0.17 43.53 0.15 39.54

Small 0.07 22.10 0.07 26.41

Micro 0.04 2.85 0.02 9.02

NN-J1-m Overall 0.10 16.12 0.09 15.83

Large 0.28 40.32 0.16 45.01

Small 0.15 29.44 0.10 29.43

Micro 0.10 11.76 0.09 11.05

NN-J2-m Overall 0.07 14.99 0.05 14.03

Large 0.00 37.06 0.08 35.21

Small 0.09 26.56 0.07 24.35

Micro 0.08 11.12 0.06 10.47

NN-J1J2-m Overall 0.08 14.78 0.06 15.77

Large 0.21 42.55 0.02 34.19

Small 0.16 27.79 0.06 27.26

Micro 0.07 10.22 0.06 12.19

Table G.1:
Out-of-sample performance summary – calendar year, rank-normalisation:
The table summarises the cross-sectional mean R2 and predictive R2 in percentage for all fifteen models under
consideration. The left panel displays model performances using all 103 characteristics. The right panel displays
model performances using a subset of 49 core characteristics. All models are periodically re-fitted by calendar
year, firm characteristics are cross-sectionally rank-normalised, and λ̂t is estimated on a 5-year backward-looking
rolling window basis.

129



Calendar Year – Rank Normalisation (No Microcaps)

Model Subgroup
All Characteristics Core Characteristics

XS-R2 Pred.-R2 XS-R2 Pred.-R2

OLS Overall −0.93 8.58 −0.54 8.93

Large −1.41 29.15 −0.80 30.81

Small −0.69 3.45 −0.40 3.48

WLS Overall −2.33 8.08 −0.88 10.38

Large −2.79 22.00 −1.31 25.25

Small −2.13 4.61 −0.64 6.68

Lasso Overall −0.01 8.25 0.00 8.22

Large −0.01 18.54 0.00 18.84

Small −0.01 5.69 0.00 5.57

Ridge Overall −0.96 8.59 −0.54 8.94

Large −1.45 29.17 −0.80 30.81

Small −0.71 3.47 −0.40 3.49

Elastic Net Overall −0.01 8.13 0.00 8.22

Large −0.01 18.23 0.00 18.70

Small −0.01 5.61 0.00 5.60

NN Overall −0.03 8.35 0.00 15.03

Large −0.05 30.90 −0.08 35.25

Small −0.02 2.73 0.06 9.98

NN-W1 Overall −0.02 5.86 −0.06 9.74

Large −0.05 30.77 −0.14 25.85

Small 0.01 −0.35 0.00 5.73

NN-W2 Overall 0.03 12.77 0.01 9.10

Large 0.01 34.71 −0.06 31.59

Small 0.05 7.31 0.05 3.49

NN-W1W2 Overall −0.17 −3.86 0.02 12.00

Large −0.40 10.77 −0.03 27.86

Small −0.04 −7.51 0.05 8.04

NN-J1 Overall −0.03 14.43 −0.03 13.13

Large 0.03 31.14 −0.01 30.78

Small −0.05 10.26 −0.03 8.73

NN-J2 Overall 0.00 11.44 0.01 12.47

Large −0.07 31.89 −0.02 27.51

Small 0.05 6.34 0.03 8.73

NN-J1J2 Overall −0.01 14.09 −0.01 9.18

Large 0.03 35.69 −0.02 23.91

Small −0.03 8.71 −0.01 5.51

NN-J1-m Overall −0.01 11.94 0.02 10.06

Large −0.06 31.57 0.02 24.43

Small 0.03 7.05 0.03 6.48

NN-J2-m Overall 0.01 12.61 0.02 13.47

Large 0.02 30.87 0.00 32.44

Small 0.02 8.06 0.04 8.75

NN-J1J2-m Overall 0.01 13.33 0.04 16.44

Large −0.01 29.05 0.05 31.58

Small 0.02 9.41 0.04 12.67

Table G.2:
Out-of-sample performance summary – calendar year, rank-normalisation, no microcaps:
The table summarises the cross-sectional mean R2 and predictive R2 in percentage for all fifteen models under
consideration. The left panel displays model performances using all 103 characteristics. The right panel displays
model performances using a subset of 49 core characteristics. All models are periodically re-fitted by calendar
year, firm characteristics are cross-sectionally rank-normalised, and λ̂t is estimated on a 5-year backward-looking
rolling window basis.
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Fiscal Year – Rank Normalisation

Model Subgroup
All Characteristics Core Characteristics

XS-R2 Pred.-R2 XS-R2 Pred.-R2

OLS Overall −0.27 2.20 0.02 3.81

Large −3.15 12.90 −2.35 12.81

Small −1.09 7.10 −0.69 8.40

Micro −0.03 0.46 0.24 2.26

WLS Overall −1.76 −8.02 −0.53 1.88

Large −3.34 15.21 −1.78 18.26

Small −2.02 6.87 −0.70 12.20

Micro −1.51 −12.62 −0.43 −1.33

Lasso Overall 0.03 12.49 0.03 12.43

Large 0.01 24.60 0.00 23.94

Small −0.01 19.06 −0.01 18.89

Micro 0.03 10.32 0.04 10.33

Ridge Overall −0.27 2.21 0.02 3.82

Large −3.14 12.90 −2.35 12.81

Small −1.09 7.11 −0.69 8.41

Micro −0.03 0.47 0.24 2.26

Elastic Net Overall 0.03 12.50 0.03 12.44

Large 0.01 24.71 0.00 24.00

Small 0.00 19.07 −0.01 18.91

Micro 0.03 10.33 0.04 10.34

NN Overall 0.13 2.39 0.08 7.70

Large −0.12 21.57 −0.24 24.63

Small 0.05 11.91 0.02 14.77

Micro 0.15 −0.87 0.10 5.08

NN-W1 Overall 0.08 3.84 0.09 −1.18

Large −0.18 29.78 −0.29 24.52

Small 0.01 15.34 0.00 9.50

Micro 0.10 −0.29 0.12 −5.14

NN-W2 Overall 0.04 6.93 0.08 −10.86

Large −0.12 30.08 −0.17 −33.96

Small 0.01 15.80 −0.01 −17.61

Micro 0.05 3.52 0.11 −7.86

NN-W1W2 Overall 0.07 5.47 0.04 6.15

Large −0.30 29.52 −0.14 28.46

Small −0.04 17.58 0.00 16.28

Micro 0.10 1.35 0.06 2.54

NN-J1 Overall 0.04 6.08 0.05 6.84

Large −0.37 11.71 −0.05 18.85

Small −0.03 11.18 0.02 14.62

Micro 0.08 4.67 0.06 4.44

NN-J2 Overall 0.07 7.02 0.07 5.04

Large −0.16 21.73 −0.19 25.61

Small 0.01 15.15 0.01 14.23

Micro 0.09 4.37 0.09 1.75

NN-J1J2 Overall 0.04 8.88 0.05 7.56

Large −0.04 30.38 0.09 22.86

Small 0.00 17.82 0.04 17.99

Micro 0.06 5.57 0.04 4.40

NN-J1-m Overall 0.08 4.53 0.06 7.43

Large −0.01 22.40 −0.10 24.72

Small 0.04 12.19 0.01 15.42

Micro 0.09 1.73 0.07 4.62

NN-J2-m Overall 0.07 4.39 0.06 4.80

Large −0.13 27.30 −0.08 24.14

Small 0.03 13.90 0.03 11.87

Micro 0.09 0.87 0.07 2.01

NN-J1J2-m Overall 0.09 8.31 0.07 7.30

Large −0.14 30.31 −0.05 29.20

Small 0.02 17.62 0.02 17.23

Micro 0.11 4.89 0.08 3.77

Table G.3:
Out-of-sample performance summary – fiscal year, rank-normalisation:
The table summarises the cross-sectional mean R2 and predictive R2 in percentage for all fifteen models under
consideration. The left panel displays model performances using all 103 characteristics. The right panel displays
model performances using a subset of 49 core characteristics. All models are periodically re-fitted by fiscal year,
firm characteristics are cross-sectionally rank-normalised, and λ̂t is estimated on a 5-year backward-looking rolling
window basis.
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Fiscal Year – Rank Normalisation (No Microcaps)

Model Subgroup
All Characteristics Core Characteristics

XS-R2 Pred.-R2 XS-R2 Pred.-R2

OLS Overall −0.85 9.03 −0.36 7.37

Large −1.32 22.56 −0.70 19.39

Small −0.60 5.65 −0.16 4.38

WLS Overall −2.06 0.98 −0.90 3.67

Large −2.72 8.57 −1.15 10.24

Small −1.73 −0.91 −0.75 2.03

Lasso Overall 0.00 9.77 0.00 10.24

Large 0.01 15.65 0.01 16.64

Small 0.00 8.30 0.00 8.65

Ridge Overall −0.85 9.03 −0.36 7.38

Large −1.35 22.57 −0.70 19.39

Small −0.60 5.65 −0.16 4.38

Elastic Net Overall 0.00 9.78 0.00 10.39

Large 0.01 15.66 0.01 16.88

Small 0.00 8.31 0.00 8.77

NN Overall −0.06 10.62 0.02 6.30

Large −0.23 25.81 −0.07 18.85

Small 0.03 6.84 0.08 3.17

NN-W1 Overall 0.03 3.75 0.01 8.51

Large −0.10 20.12 −0.13 26.06

Small 0.10 −0.34 0.09 4.13

NN-W2 Overall −0.01 8.06 0.02 5.07

Large −0.08 29.32 −0.05 16.00

Small 0.04 2.76 0.07 2.34

NN-W1W2 Overall −0.02 3.74 0.03 7.93

Large −0.19 22.67 −0.04 19.18

Small 0.08 −0.98 0.07 5.12

NN-J1 Overall 0.01 9.18 0.01 9.58

Large −0.02 21.05 0.01 22.83

Small 0.03 6.23 0.02 6.28

NN-J2 Overall 0.00 9.54 0.01 5.46

Large −0.10 28.63 −0.06 17.15

Small 0.06 4.79 0.05 2.54

NN-J1J2 Overall −0.06 10.17 0.04 9.41

Large −0.08 29.03 0.03 22.15

Small −0.05 5.46 0.04 6.24

NN-J1-m Overall 0.03 5.98 0.05 7.50

Large −0.04 17.34 0.02 22.71

Small 0.08 3.14 0.07 3.71

NN-J2-m Overall 0.05 7.91 0.00 9.83

Large 0.02 23.17 −0.02 23.40

Small 0.07 4.10 0.01 6.45

NN-J1J2-m Overall 0.06 9.62 0.03 11.82

Large −0.01 26.70 −0.01 22.04

Small 0.10 5.36 0.05 9.28

Table G.4:
Out-of-sample performance summary – fiscal year, rank-normalisation, no microcaps:
The table summarises the cross-sectional mean R2 and predictive R2 in percentage for all fifteen models under
consideration. The left panel displays model performances using all 103 characteristics. The right panel displays
model performances using a subset of 49 core characteristics. All models are periodically re-fitted by fiscal year,
firm characteristics are cross-sectionally rank-normalised, and λ̂t is estimated on a 5-year backward-looking rolling
window basis.
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Calendar Year – Standardisation

Model Subgroup
All Characteristics Core Characteristics

XS-R2 [%] Pred.-R2 [%] XS-R2 [%] Pred.-R2 [%]

OLS Overall −0.27 5.60 0.05 8.53

Large −3.70 26.35 −1.70 26.17

Small −1.12 14.03 −0.53 17.82

Micro 0.00 2.45 0.23 5.43

WLS Overall −2.05 −21.71 −0.92 −3.06

Large −2.95 33.15 −1.27 35.85

Small −1.84 15.74 −0.58 22.22

Micro −2.02 −33.03 −0.93 −10.83

Lasso Overall 0.00 13.81 0.00 14.14

Large −0.02 28.12 0.00 31.03

Small −0.01 20.53 0.00 22.03

Micro 0.01 11.46 0.00 11.36

Ridge Overall −0.27 5.61 0.06 8.53

Large −3.70 26.35 −1.70 26.18

Small −1.11 14.03 −0.53 17.82

Micro 0.00 2.45 0.23 5.43

Elastic Net Overall 0.00 13.83 0.00 14.19

Large −0.02 28.07 0.00 30.97

Small −0.01 20.60 0.00 22.10

Micro 0.01 11.48 0.00 11.43

NN Overall 0.11 14.79 0.08 13.62

Large 0.08 41.15 0.16 42.91

Small 0.10 27.77 0.09 26.78

Micro 0.12 10.34 0.09 8.92

NN-W1 Overall 0.04 8.29 0.13 10.53

Large −0.02 29.63 0.15 37.01

Small 0.02 19.74 0.12 23.93

Micro 0.05 4.50 0.14 5.98

NN-W2 Overall 0.06 10.02 0.11 12.44

Large −0.05 26.73 0.03 35.92

Small 0.05 19.72 0.14 23.48

Micro 0.09 6.90 0.13 8.57

NN-W1W2 Overall 0.09 12.36 0.02 15.61

Large 0.16 41.00 0.10 43.73

Small 0.11 27.41 0.03 27.88

Micro 0.09 7.34 0.02 11.17

NN-J1 Overall 0.00 15.55 0.02 12.31

Large 0.15 38.21 0.02 38.02

Small 0.05 27.60 0.02 24.43

Micro −0.01 11.54 0.02 8.08

NN-J2 Overall 0.03 15.86 0.08 13.68

Large 0.04 35.97 0.14 34.31

Small 0.05 26.23 0.12 23.57

Micro 0.04 12.36 0.08 10.24

NN-J1J2 Overall −0.01 13.93 0.04 15.04

Large −0.04 36.44 0.01 35.57

Small 0.02 25.01 0.03 24.94

Micro −0.01 10.13 0.04 11.61

NN-J1-m Overall 0.10 15.61 0.05 14.38

Large 0.26 43.79 0.18 40.83

Small 0.14 28.55 0.09 26.50

Micro 0.10 11.03 0.05 10.09

NN-J2-m Overall 0.08 12.96 0.11 13.08

Large 0.15 38.62 0.16 35.44

Small 0.08 23.23 0.15 24.35

Micro 0.09 9.08 0.11 9.25

NN-J1J2-m Overall 0.04 15.23 0.07 15.00

Large −0.01 36.73 0.14 41.26

Small 0.03 26.82 0.11 27.62

Micro 0.05 11.40 0.07 10.62

Table G.5:
Out-of-sample performance summary – calendar year, standardisation:
The table summarises the cross-sectional mean R2 and predictive R2 in percentage for all fifteen models under
consideration. The left panel displays model performances using all 103 characteristics. The right panel displays
model performances using a subset of 49 core characteristics. All models are periodically re-fitted by calendar
year, firm characteristics are cross-sectionally standardised, and λ̂t is estimated on a 5-year backward-looking
rolling window basis.
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Calendar Year – Standardisation (No Microcaps)

Model Subgroup
All Characteristics Core Characteristics

XS-R2 [%] Pred.-R2 [%] XS-R2 [%] Pred.-R2 [%]

OLS Overall −0.75 9.16 −0.38 10.32

Large −1.16 31.86 −0.53 29.95

Small −0.52 3.51 −0.31 5.43

WLS Overall −2.79 4.26 −0.99 8.53

Large −2.91 27.50 −1.17 25.98

Small −2.74 −1.54 −0.88 4.18

Lasso Overall 0.00 9.12 0.00 9.18

Large 0.00 19.96 0.00 19.77

Small 0.00 6.42 0.00 6.54

Ridge Overall −0.75 9.17 −0.38 10.32

Large −1.16 31.86 −0.53 29.95

Small −0.52 3.51 −0.31 5.43

Elastic Net Overall 0.00 9.11 0.00 9.04

Large 0.00 19.80 0.00 19.50

Small 0.00 6.45 0.00 6.43

NN Overall 0.00 11.07 −0.03 1.09

Large −0.04 33.71 −0.02 23.23

Small 0.03 5.42 −0.03 −4.43

NN-W1 Overall −0.18 1.57 0.02 13.82

Large −0.23 19.91 −0.01 30.28

Small −0.15 −3.01 0.04 9.71

NN-W2 Overall −0.10 −11.73 0.03 6.77

Large −0.13 3.84 −0.02 24.56

Small −0.07 −15.61 0.05 2.33

NN-W1W2 Overall −0.08 7.31 0.00 −12.18

Large −0.12 30.90 −0.04 15.33

Small −0.06 1.42 0.02 −19.04

NN-J1 Overall 0.03 9.92 0.00 11.28

Large 0.02 31.47 0.01 24.51

Small 0.05 4.55 0.00 7.98

NN-J2 Overall −0.03 13.32 0.04 7.78

Large −0.05 28.11 0.09 26.02

Small −0.01 9.63 0.02 3.23

NN-J1J2 Overall −0.09 9.21 0.01 13.37

Large −0.08 28.24 0.03 29.82

Small −0.09 4.47 0.01 9.27

NN-J1-m Overall −0.01 11.51 0.02 10.42

Large −0.05 26.79 −0.01 30.41

Small 0.01 7.70 0.05 5.44

NN-J2-m Overall −0.02 8.99 −0.04 12.00

Large 0.04 30.16 −0.09 23.81

Small −0.04 3.71 0.00 9.06

NN-J1J2-m Overall −0.06 7.81 0.02 12.69

Large −0.11 26.63 0.01 30.01

Small −0.03 3.11 0.03 8.38

Table G.6:
Out-of-sample performance summary – calendar year, standardisation, no microcaps:
The table summarises the cross-sectional mean R2 and predictive R2 in percentage for all fifteen models under
consideration. The left panel displays model performances using all 103 characteristics. The right panel displays
model performances using a subset of 49 core characteristics. All models are periodically re-fitted by calendar
year, firm characteristics are cross-sectionally standardised, and λ̂t is estimated on a 5-year backward-looking
rolling window basis.
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Fiscal Year – Standardisation

Model Subgroup
All Characteristics Core Characteristics

XS-R2 [%] Pred.-R2 [%] XS-R2 [%] Pred.-R2 [%]

OLS Overall −0.12 2.71 0.02 5.25

Large −2.92 19.19 −2.10 16.15

Small −0.90 9.56 −0.55 11.56

Micro 0.10 0.18 0.21 3.22

WLS Overall −2.49 −30.72 −1.19 −8.84

Large −5.09 24.62 −1.01 23.31

Small −2.11 8.88 −0.76 15.63

Micro −2.32 −42.49 −1.22 −15.97

Lasso Overall 0.04 11.91 0.04 12.15

Large −0.02 24.89 −0.02 23.93

Small −0.02 19.71 −0.02 19.67

Micro 0.05 9.45 0.05 9.82

Ridge Overall −0.12 2.72 0.02 5.25

Large −2.92 19.19 −2.10 16.16

Small −0.89 9.57 −0.55 11.56

Micro 0.10 0.18 0.21 3.22

Elastic Net Overall 0.04 11.80 0.04 12.21

Large −0.02 24.70 −0.02 24.04

Small −0.02 19.64 −0.02 19.71

Micro 0.05 9.33 0.05 9.89

NN Overall 0.11 6.95 0.09 5.79

Large −0.01 23.27 −0.10 24.27

Small 0.06 16.78 0.03 16.29

Micro 0.13 3.84 0.10 2.40

NN-W1 Overall 0.12 4.10 0.15 2.05

Large −0.18 24.33 −0.22 26.34

Small 0.04 14.13 −0.01 15.20

Micro 0.15 0.67 0.19 −2.29

NN-W2 Overall 0.04 3.40 0.11 6.57

Large −0.17 21.54 −0.13 22.50

Small 0.00 13.80 0.02 15.45

Micro 0.06 0.04 0.14 3.67

NN-W1W2 Overall 0.07 1.26 0.10 6.45

Large −0.14 16.15 −0.12 22.59

Small 0.03 8.21 0.03 14.51

Micro 0.08 −1.19 0.12 3.70

NN-J1 Overall 0.03 7.35 0.06 5.43

Large −0.09 25.22 0.03 14.64

Small −0.01 16.31 0.04 12.40

Micro 0.04 4.30 0.06 3.40

NN-J2 Overall 0.13 1.31 0.05 6.01

Large −0.17 16.54 −0.01 15.08

Small 0.05 7.24 0.03 12.79

Micro 0.15 −0.95 0.06 4.03

NN-J1J2 Overall 0.03 3.92 0.03 6.62

Large −0.14 17.06 −0.01 21.55

Small −0.01 10.23 0.00 13.41

Micro 0.05 1.73 0.03 4.21

NN-J1-m Overall 0.06 7.45 0.12 4.74

Large −0.15 27.69 −0.19 18.23

Small 0.00 15.13 −0.01 13.69

Micro 0.08 4.48 0.15 2.02

NN-J2-m Overall 0.08 2.12 0.10 8.84

Large −0.08 18.70 −0.06 27.85

Small 0.02 10.50 0.05 17.83

Micro 0.10 −0.72 0.12 5.69

NN-J1J2-m Overall 0.08 2.44 0.07 6.55

Large −0.28 15.38 −0.13 22.01

Small 0.01 8.55 0.01 15.08

Micro 0.11 0.31 0.09 3.76

Table G.7:
Out-of-sample performance summary – fiscal year, standardisation:
The table summarises the cross-sectional mean R2 and predictive R2 in percentage for all fifteen models under
consideration. The left panel displays model performances using all 103 characteristics. The right panel displays
model performances using a subset of 49 core characteristics. All models are periodically re-fitted by fiscal year,
firm characteristics are cross-sectionally standardised, and λ̂t is estimated on a 5-year backward-looking rolling
window basis.
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Fiscal Year – Standardisation (No Microcaps)

Model Subgroup
All Characteristics Core Characteristics

XS-R2 [%] Pred.-R2 [%] XS-R2 [%] Pred.-R2 [%]

OLS Overall −0.72 9.11 −0.31 8.41

Large −1.08 28.51 −0.57 19.85

Small −0.54 4.27 −0.16 5.56

WLS Overall −1.96 −3.31 −1.06 −0.81

Large −2.26 21.58 −1.16 9.46

Small −1.80 −9.52 −0.99 −3.37

Lasso Overall 0.00 10.92 0.00 8.96

Large 0.00 20.32 0.01 14.90

Small 0.00 8.57 0.00 7.48

Ridge Overall −0.72 9.11 −0.31 8.41

Large −1.08 28.51 −0.57 19.85

Small −0.53 4.28 −0.16 5.56

Elastic Net Overall 0.00 10.66 0.00 9.07

Large 0.00 19.11 0.01 15.08

Small 0.00 8.55 0.00 7.57

NN Overall 0.01 5.94 0.01 6.41

Large −0.12 22.22 −0.12 19.99

Small 0.09 1.89 0.08 3.03

NN-W1 Overall −0.12 −0.38 −0.03 3.62

Large −0.25 16.41 −0.12 15.44

Small −0.04 −4.56 0.02 0.68

NN-W2 Overall −0.04 −8.56 −0.02 7.55

Large −0.14 9.56 −0.06 21.06

Small 0.02 −13.08 0.01 4.18

NN-W1W2 Overall −0.12 2.37 0.00 2.04

Large −0.27 21.76 −0.10 13.84

Small −0.03 −2.46 0.06 −0.90

NN-J1 Overall 0.02 7.53 0.01 6.17

Large 0.01 21.16 0.01 18.12

Small 0.02 4.14 0.01 3.19

NN-J2 Overall −0.01 6.62 0.03 2.82

Large −0.10 16.95 −0.03 12.44

Small 0.05 4.04 0.06 0.42

NN-J1J2 Overall −0.01 5.53 0.01 7.61

Large −0.03 13.97 0.02 17.23

Small −0.01 3.43 0.01 5.21

NN-J1-m Overall 0.01 6.29 0.05 2.25

Large −0.05 21.32 0.00 10.60

Small 0.05 2.54 0.08 0.17

NN-J2-m Overall 0.04 1.86 0.04 8.87

Large 0.02 17.03 −0.02 18.11

Small 0.05 −1.92 0.08 6.57

NN-J1J2-m Overall −0.08 7.87 0.03 8.18

Large −0.18 22.83 −0.01 22.64

Small −0.01 4.14 0.05 4.58

Table G.8:
Out-of-sample performance summary – fiscal year, standardisation, no microcaps:
The table summarises the cross-sectional mean R2 and predictive R2 in percentage for all fifteen models under
consideration. The left panel displays model performances using all 103 characteristics. The right panel displays
model performances using a subset of 49 core characteristics. All models are periodically re-fitted by fiscal year,
firm characteristics are cross-sectionally standardised, and λ̂t is estimated on a 5-year backward-looking rolling
window basis.
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H Variable Importance

Tables H.1-H.4 summarise the most influential firm characteristics analogously to section 4.9. It can be

seen that the variable importance for all neural networks remains largely the same, regardless of the data

pre-processing (rank-normalisation vs. standardisation). Moreover, the estimated variable importance

appears to be robust in the face of the two different reoccurring re-fitting strategies, namely by calendar

year and fiscal year. We observe some differences in estimated variable importance when microcaps are

excluded. This is not surprising since microcaps make up nearly 60% of all data. While there are minor

differences, we still observe the dominance of trading frictions such as momentum and the ability of

Jacobian-regularised neural networks to find independent signal in different firm characteristics. Overall,

we conclude that our findings are robust.

Most important characteristics: entire sample Most important characteristics: 2016-2020

1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

Rank-normalised, by calendar year, all characteristics

NN mom1m mve mom12m chfeps retvol mve lev bm currat mom36m
NN-W1 mom1m std turn turn mve mom12m beta mom12m turn roavol chpmia
NN-W2 mom1m std turn mom12m maxret turn beta ill turn grcapx retvol
NN-W1W2 mom1m mom12m beta std turn retvol beta turn ep mve roavol
NN-J1 mom12m mom1m cfp mom36m sp mve cfp ill std dolvol mom36m
NN-J2 mom1m mom12m maxret chmom indmom cfp chfeps agr chpmia indmom
NN-J1J2 mom12m maxret roaq beta retvol mve ill retvol ep maxret
NN-J1-m mom1m mom12m std turn chmom cfp cashpr acc mom1m chpmia lgr
NN-J2-m mom1m roavol mom12m roaq maxret salecash ep mom12m mve cfp
NN-J1J2-m mom12m mom1m maxret retvol beta cashpr lev pchsale pchinvt maxret beta

Rank-normalised, by calendar year, core characteristics

NN beta mom1m mve std turn mom12m ep mom12m invest sp pchsale pchinvt
NN-W1 mom1m std turn mom12m turn retvol mom36m beta roavol retvol mom1m
NN-W2 mom12m mom1m beta ill retvol roavol turn pchsale pchrect indmom ear
NN-W1W2 mom12m mom1m std turn retvol mve mom12m ep sgr gma currat
NN-J1 std turn mom1m maxret retvol mve lev roavol currat cfp turn
NN-J2 mom12m roavol mom1m roaq mve mom12m salecash ep indmom roavol
NN-J1J2 mom12m beta roavol mom1m mve mve roavol agr maxret sgr
NN-J1-m mom12m mom1m mom36m roaq ill indmom mve dy beta pchsale pchinvt
NN-J2-m mom12m std turn beta mom1m mve chpmia beta mom36m ill chinv
NN-J1J2-m mom1m beta mom12m std turn mve cashpr indmom salecash lgr ill

Rank-normalised, by calendar year, no microcaps, all characteristics

NN mom1m mom12m lev chmom bm mom1m cfp currat retvol mom12m
NN-W1 mom1m mom12m mve bm turn mom1m cashpr mve ep indmom
NN-W2 mom1m beta turn chmom bm beta sgr lev std dolvol invest
NN-W1W2 mom1m chmom turn mom12m mve grltnoa std dolvol chinv sp salecash
NN-J1 mom12m bm beta mom1m lev pchsale pchrect turn gma sgr currat
NN-J2 mom1m mom12m beta turn bm beta cfp mom1m saleinv chatoia
NN-J1J2 turn maxret mom1m mom12m lev beta retvol turn roavol currat
NN-J1-m mom1m mom12m chmom chpmia indmom mom36m salecash lev sgr std turn
NN-J2-m beta mom12m mom1m turn chfeps cfp pchgm pchsale saleinv roeq cashpr
NN-J1J2-m mom1m chmom beta turn lev gma cash mve mom1m lgr

Rank-normalised, by calendar year, no microcaps, core characteristics

NN mom12m beta mom1m chmom mve mom1m pchgm pchsale maxret ep mom12m
NN-W1 mom12m beta mom1m turn chmom mom1m orgcap beta depr cfp
NN-W2 mom12m beta mom1m chmom maxret mom1m lev beta cashpr maxret
NN-W1W2 beta mom12m mom1m chmom retvol beta indmom lev mom12m chcsho
NN-J1 maxret bm retvol turn beta mve maxret cash sp roavol
NN-J2 beta mom1m chmom mom36m orgcap cfp mve beta orgcap maxret
NN-J1J2 beta agr ep mom12m retvol lev cashpr ill nincr bm
NN-J1-m mom12m beta chmom std turn mom1m mom1m beta mve chmom gma
NN-J2-m mom12m beta mom1m retvol chmom mom1m retvol currat ear pchgm pchsale
NN-J1J2-m mom12m mom1m beta chmom turn ep acc mom1m roaq sp

Table H.1:
Most important characteristics – rank-normalised input, calendar year:
The table summarises the most important characteristics measured in absolute median partial derivatives. The
left panel reports the most important characteristics over the entire sample, while the right panel only focuses
on the most recent five years. The table refers to all neural networks that use rank-normalised input data and
that are trained by calendar year. We consider the case of including and excluding microcaps.
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Most important characteristics: entire sample Most important characteristics: 2016-2020

1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

Rank-normalised, by fiscal year, all characteristics

NN mom1m mve std turn mom12m indmom mom1m chcsho mve retvol ill
NN-W1 mom1m mve std turn mom12m indmom std turn mve mom12m mom1m turn
NN-W2 mom1m mve mom12m std turn indmom acc indmom invest chtx chcsho
NN-W1W2 mom1m mve mom12m std turn indmom pchsale pchxsga mve indmom grltnoa turn
NN-J1 mve mom1m std turn mom12m mom36m maxret roeq beta retvol turn
NN-J2 mom1m mve std turn indmom retvol roavol cashpr saleinv roaq turn
NN-J1J2 mve mom1m std turn bm roeq mve invest retvol mom36m roavol
NN-J1-m mom1m mve chmom std turn beta beta chfeps gma orgcap mom1m
NN-J2-m mom1m mve std turn indmom mom12m mom1m mve mom36m maxret grltnoa
NN-J1J2-m mom1m chmom cash mve mom12m chpmia bm sgr chtx orgcap

Rank-normalised, by fiscal year, core characteristics

NN mom1m mve mom12m beta sp sp mom36m acc chfeps lev
NN-W1 mom1m std turn mve turn mom12m mom1m salecash sp grltnoa dy
NN-W2 mom1m std turn turn ill sp chinv currat pchgm pchsale std dolvol sp
NN-W1W2 mom1m std turn mve mom12m turn turn cashpr ep maxret roeq
NN-J1 mom1m mve std turn mom12m roavol roeq sp invest chtx maxret
NN-J2 mom1m std turn mve mom12m lev ep roeq acc ill cfp
NN-J1J2 mom1m mom12m std turn mve chmom sp mom1m mom36m ill lgr
NN-J1-m mom1m std turn mve mom12m retvol pchsale pchrect mom1m maxret mom36m retvol
NN-J2-m mom1m mve mom12m std turn indmom salecash mom36m turn cfp chinv
NN-J1J2-m mom1m chmom mom12m sp beta roavol std turn mom36m mom1m ill

Rank-normalised, by fiscal year, no microcaps, all characteristics

NN chmom mom12m mom1m indmom sp chmom mom36m std dolvol maxret mom12m
NN-W1 mom1m chmom mom12m indmom ill mom1m beta mom36m retvol chinv
NN-W2 mom1m chmom mom12m lev indmom mom12m beta invest sp turn
NN-W1W2 chmom mom1m mom12m lev indmom mom12m mom1m mom36m indmom turn
NN-J1 mom12m indmom lev salecash dy lev retvol salecash beta roaq
NN-J2 mom12m mom1m chmom lev indmom lgr ep cash bm chinv
NN-J1J2 beta cash lev mom12m indmom lev mve agr turn mom36m
NN-J1-m mom1m mom12m turn indmom chmom mom1m saleinv roaq chfeps maxret
NN-J2-m mom1m mom12m indmom retvol chmom mom12m beta acc sp lev
NN-J1J2-m mom1m chmom beta mom12m sp lev roavol pchsale pchinvt salecash acc

Rank-normalised, by fiscal year, no microcaps, core characteristics

NN mom12m chmom mom1m indmom lev mom1m mom36m cash maxret roaq
NN-W1 mom12m mom1m chmom indmom sp mom1m mom36m ill salecash lev
NN-W2 chmom mom1m mom12m indmom sp mom1m chpmia pchsale pchxsga invest currat
NN-W1W2 mom12m mom1m indmom chmom turn mom1m mom12m turn chmom cfp
NN-J1 beta lev sp mom12m ep cashpr acc retvol beta lev
NN-J2 chmom mom1m sp beta mom36m cfp mom12m nincr retvol cashpr
NN-J1J2 mom12m mom1m beta indmom bm cfp mom36m grcapx ep pchsale pchxsga
NN-J1-m mom12m chmom mom1m indmom retvol gma beta chmom std turn mom36m
NN-J2-m mom12m beta indmom lev mom1m turn mom12m std dolvol beta indmom
NN-J1J2-m mom12m mom1m beta lev sp retvol cfp cash std turn roavol

Table H.2:
Most important characteristics – rank-normalised input, fiscal year:
The table summarises the most important characteristics measured in absolute median partial derivatives. The
left panel reports the most important characteristics over the entire sample, while the right panel only focuses
on the most recent five years. The table refers to all neural networks that use rank-normalised input data and
that are trained by fiscal year. We consider the case of including and excluding microcaps.
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Most important characteristics: entire sample Most important characteristics: 2016-2020

1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

Standardised, by calendar year, all characteristics

NN mom1m mve beta mom12m roavol gma indmom std dolvol roavol cfp
NN-W1 mom1m mom12m mve beta mom36m beta gma mom12m cfp indmom
NN-W2 mom1m mom12m retvol beta chmom cfp turn gma saleinv mom12m
NN-W1W2 mom1m mve maxret mom12m std turn mve currat bm gma mom12m
NN-J1 mve cash beta mom12m retvol indmom ear chinv sp ill
NN-J2 beta mom1m indmom mom12m lev retvol chpmia ep orgcap beta
NN-J1J2 mve maxret std dolvol retvol mom1m mve retvol acc cash std dolvol
NN-J1-m mom1m mom12m beta indmom chmom chpmia roavol ill roaq acc
NN-J2-m mom1m mve lev mom12m roavol salecash cashpr lgr cfp mve
NN-J1J2-m mom12m mom1m beta lev mve salecash depr mom36m pchsale pchrect grcapx

Standardised, by calendar year, core characteristics

NN beta mve mom1m mom12m ep roavol bm lev grltnoa pchsale pchinvt
NN-W1 mom1m mve mom12m beta std turn ep lev grcapx mve orgcap
NN-W2 mom12m beta mom1m mve retvol beta mom1m chatoia saleinv chpmia
NN-W1W2 beta mom12m mom1m retvol sp agr indmom chpmia cash nincr
NN-J1 retvol mom1m turn roaq maxret maxret ep pchgm pchsale acc retvol
NN-J2 mom1m mom12m beta mve retvol mom1m cfp ill chpmia chinv
NN-J1J2 beta mom1m mve lev sp mve maxret bm beta mom12m
NN-J1-m beta roaq mom12m mve retvol bm currat invest roeq grcapx
NN-J2-m mom12m mve lev roaq beta pchsale pchinvt roeq ear pchsale pchrect agr
NN-J1J2-m mom12m maxret retvol beta mom1m chmom beta roaq chfeps turn

Standardised, by calendar year, no microcaps, all characteristics

NN mom1m chmom mom12m cash turn cash cfp beta pchsale pchxsga pchgm pchsale
NN-W1 mom1m chmom lev mom12m beta mve lev indmom mom1m chfeps
NN-W2 mom1m mom12m beta maxret mve ill beta orgcap retvol maxret
NN-W1W2 mom1m mom12m lev chmom bm mom1m beta acc indmom roavol
NN-J1 mom1m beta retvol turn mom12m cash beta chpmia ill depr
NN-J2 mom1m mom12m chmom beta bm lev agr saleinv dy sp
NN-J1J2 turn beta mom12m lev mom1m std dolvol mve cash salecash lev
NN-J1-m mom1m mom12m indmom retvol beta mve gma lev beta ill
NN-J2-m mom1m beta chmom mve ep beta pchsale pchinvt bm indmom mom1m
NN-J1J2-m mom1m beta mve mom12m lev gma chatoia lev beta depr

Standardised, by calendar year, no microcaps, core characteristics

NN beta lev chmom mom12m mom1m beta maxret currat ep bm
NN-W1 beta mom12m chmom lev mom1m beta lev mom1m gma cash
NN-W2 beta mom12m mom1m lev mve mom1m currat maxret cash retvol
NN-W1W2 mom12m cash beta mom1m mve ep gma beta mom1m mom12m
NN-J1 beta turn mom12m dy roavol lev cash grcapx gma cfp
NN-J2 beta mom12m mom1m mve retvol beta acc std turn mom12m grcapx
NN-J1J2 mom12m lev bm retvol turn depr ear roaq lev bm
NN-J1-m beta retvol mom12m mom1m turn beta mom1m pchgm pchsale gma indmom
NN-J2-m beta mom12m mom1m chmom retvol beta retvol orgcap mom1m gma
NN-J1J2-m beta mom12m retvol mom1m turn beta retvol orgcap mom1m pchsale pchinvt

Table H.3:
Most important characteristics – Standardised, calendar year:
The table summarises the most important characteristics measured in absolute median partial derivatives. The
left panel reports the most important characteristics over the entire sample, while the right panel only focuses
on the most recent five years. The table refers to all neural networks that use standardised input data and that
are trained by calendar year. We consider the case of including and excluding microcaps.
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Most important characteristics: entire sample Most important characteristics: 2016-2020

1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

Standardised, by fiscal year, all characteristics

NN mom1m std turn mve turn mom12m ep cashpr beta std turn mom1m
NN-W1 mom1m mve turn std turn mom12m sgr chatoia ill mve lev
NN-W2 mom1m turn indmom lev mom12m lev chmom ill maxret acc
NN-W1W2 mom1m mve std turn mom12m indmom chmom dy chtx mom36m ear
NN-J1 mom1m beta retvol turn indmom turn ill sp roavol lgr
NN-J2 mom1m mve mom12m maxret indmom mom12m ill lev roeq mve
NN-J1J2 mom1m beta mom12m bm mve indmom maxret beta std dolvol roeq
NN-J1-m mom1m std turn mve indmom chmom mve roavol cash grltnoa retvol
NN-J2-m mom1m mve mom12m turn indmom depr mom12m cfp lev roeq
NN-J1J2-m mom1m mve indmom mom12m lev turn mom1m cfp mom12m roavol

Standardised, by fiscal year, core characteristics

NN mom1m cash indmom beta mve cashpr beta maxret mom1m chinv
NN-W1 mom1m chmom mve turn indmom chmom mve ear mom36m nincr
NN-W2 mom1m mom12m turn indmom beta roeq saleinv roavol ep std turn
NN-W1W2 mom1m std turn mom12m chmom mve maxret std turn mom12m bm currat
NN-J1 mom1m beta lev mve bm roaq beta roavol turn retvol
NN-J2 mom1m mom12m indmom turn std turn maxret cfp mom36m cashpr turn
NN-J1J2 beta mom1m lev maxret mve ep turn mve acc sgr
NN-J1-m mom1m mve mom12m turn chmom salecash beta roavol retvol ill
NN-J2-m mom1m retvol beta turn mom12m sp cash mom1m bm std turn
NN-J1J2-m mom1m indmom mom12m cash mve roeq std turn retvol acc maxret

Standardised, by fiscal year, no microcaps, all characteristics

NN mom1m chmom mom12m mve lev mom36m cfp maxret roaq mom1m
NN-W1 mom12m chmom mom1m mve indmom lev depr mom12m salecash ear
NN-W2 mom1m chmom mom12m cash indmom depr mom1m currat retvol mom36m
NN-W1W2 mom1m mom12m chmom lev indmom mom1m mom12m gma cfp maxret
NN-J1 beta cash mom1m turn mom12m cfp cash dy bm invest
NN-J2 mom1m beta chmom lev mom12m mom36m cash turn mom1m cfp
NN-J1J2 cash maxret agr sp bm cfp cash ep ill mom36m
NN-J1-m mom12m chmom beta indmom mom1m mve pchsale pchinvt bm agr mom1m
NN-J2-m chmom mom12m indmom mom1m cash acc ill cfp nincr mve
NN-J1J2-m mom12m mom1m chmom lev indmom cfp roaq grcapx pchsale pchxsga mom36m

Standardised, by fiscal year, no microcaps, core characteristics

NN mom1m mom12m chmom indmom lev beta cashpr cash mom12m turn
NN-W1 mom1m mom12m chmom beta mom36m mom1m retvol beta mve cfp
NN-W2 mom1m chmom turn lev cash mom1m bm cash mom36m beta
NN-W1W2 mom12m chmom mom1m lev beta cash beta maxret pchsale pchxsga mve
NN-J1 cash mom1m beta mom36m lev mom36m mom12m grcapx bm cash
NN-J2 chmom beta mom1m mom12m cash maxret cash beta lev mom12m
NN-J1J2 mom12m mom1m chmom turn beta mom1m saleinv pchsale pchxsga std turn cfp
NN-J1-m mom12m beta mom1m chmom turn mom1m cash roavol pchsale pchinvt mve
NN-J2-m beta mom12m mom1m retvol lev retvol cfp mom1m cash beta
NN-J1J2-m beta mom12m indmom mom1m cash mom36m cfp roavol beta cash

Table H.4:
Most important characteristics – rank-normalised input, fiscal year:
The table summarises the most important characteristics measured in absolute median partial derivatives. The
left panel reports the most important characteristics over the entire sample, while the right panel only focuses
on the most recent five years. The table refers to all neural networks that use rank-normalised input data and
that are trained by fiscal year. We consider the case of including and excluding microcaps.

In addition, we exemplarily report the time-varying dimensionality reduction analogously to section

4.10 for neural networks trained on all and the core characteristics, using the cross-sectional rank-

normalised data, where the models are re-fitted by calendar year. For clarity, we do not report all

results for all models, re-fitting regimes or data-preprocessing. Further results can get requested from

the authors. Figures H.1 and H.2 show that the dimensionality reduction varies considerably over time,

with the element-wise L1 Jacobian regularisation yielding the strongest dimensionality reduction.

140



Figure H.1:
Time-varying dimensionality reduction – all characteristics
The graph shows the time-varying dimensionality reduction for all ten neural networks under consideration. The
neural networks are trained on all 103 firm characteristics, re-fitted by calendar year, with cross-sectionally rank-
normalised data.

Figure H.2:
Time-varying dimensionality reduction - core characteristics
The graph shows the time-varying dimensionality reduction for all ten neural networks under consideration. The
neural networks are trained on the 49 core firm characteristics, re-fitted by calendar year, with cross-sectionally
rank-normalised data.

Last but not least, figures H.3 and H.4 exemplarily show the time-varying variable importance dis-

played as the rank, where a lower rank indicates higher importance. Due to the annual re-fitting, the

variable importance changes constantly over time. For clarity, we do not report all time-varying variable

importances for all models, data-preprocessing and re-fitting regimes. Further results can be requested

from the authors.
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Figure H.3:
Time-varying variable importance – NN-W2
The graph shows the variable importance measured in time-varying rank, estimated by calendar year for the neural networks with L2 norm weight regularisation in their
objective function, and which were trained by calendar year on the core characteristics only. A low rank indicates empirical importance, while a high rank indicates less
empirical importance. Due to the annual re-fitting, their architectural freedom and nonlinearity.
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Figure H.4:
Time-varying variable importance – NN-J1-m
The graph shows the variable importance measured in time-varying rank, estimated by calendar year for the neural networks with columns-wise L1 norm Jacobian regularisation
in their objective function, and which were trained by calendar year on the core characteristics only. A low rank indicates empirical importance, while a high rank indicates
less empirical importance. Due to the annual re-fitting, their architectural freedom and nonlinearity.
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I Risk Prices

This appendix provides further empirical results about the estimated risk prices. Table I.1 reports the

linear estimations, analogously to Green et al. (2017). However, the table differs from the original paper,

in that the linear models are re-fitted annually to make the results directly comparable to those estimated

by the neural networks. Further, we differentiate between the all and core characteristics case. For clarity,

table merely reports the linearly estimated risk prices by OLS and WLS for the rank-normalised data

(including and excluding microcaps), re-fitted by calendar year, further differentiating between the all

and core characteristics case. Further empirical results can be requested from the authors.

In addition to the linear risk price estimates, which serve as a sanity-check or benchmark, figure

I.1 visually summarises the nonlinear risk price estimations with empirical tolerance bands for NN-J1

and NN. It can be seen that, as expected, the estimations by NN-J1 are much more restricting than

those by NN, as most risk premia are close to zero. We conclude that NN-J1 is potentially too harsh

for economically meaningful risk premia estimations. For clarity we refrain from reporting all empirical

results. Further empirical details can be requested from the authors.
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Table I.1:
Linear risk price estimation
We estimate risk prices linearly, analogously to Green et al. (2017), but translate the linear Fama-Macbeth regressions into the setting of this paper to make the results
directly comparable to those derived from neural networks. The table report the risk prices as a time-series average from annual re-fitting (scaled by 100), where the models
are re-fitted by calendar year. The t-statistics are taken from the time-series of annual coefficient estimates and employ Newey-West adjustments of 12 lags. The sample is
cross-sectionally rank-normalised and we consider the inclusion and exclusion of microcaps.

(A) Rank-normalised,

all characteristics

(A) Rank-normalised,

core characteristics

(A) Rank-normalised,

no micro., all characteristics

(A) Rank-normalised,

no micro., core characteristics

OLS WLS OLS WLS OLS WLS OLS WLS

β t β t β t β t β t β t β t β t

acc 0.03 1.4 −0.04 −0.5 −0.02 −0.7 −0.13 −2.9 0.00 −0.1 0.03 0.6 −0.05 −2.2 −0.05 −1.7

agr −0.24 −4.5 −0.12 −2.2 −0.33 −3.9 −0.14 −1.6 −0.07 −1.7 −0.16 −3.6 −0.14 −2.1 −0.17 −3.3

beta 0.16 0.7 0.13 0.2 0.08 1.3 0.01 0.1 1.46 1.3 0.89 0.6 0.03 0.6 0.05 0.8

bm 0.11 1.2 0.22 1.5 0.07 1.0 0.03 0.3 0.15 1.5 0.15 1.4 0.05 0.8 −0.01 −0.2

cash 0.23 3.0 0.19 3.5 0.28 3.4 0.22 4.7 0.16 5.1 0.17 3.4 0.22 4.7 0.19 4.6

cashpr 0.00 −0.1 −0.07 −2.3 −0.02 −0.5 −0.09 −2.2 −0.02 −1.0 −0.10 −3.0 −0.02 −1.0 −0.12 −2.7

cfp −0.11 −1.8 −0.17 −2.7 0.05 1.3 −0.10 −2.3 −0.11 −1.6 −0.05 −0.6 −0.03 −0.5 −0.04 −1.0

chatoia 0.02 1.1 0.05 1.0 0.02 1.1 0.05 1.3 0.02 1.2 0.04 0.8 0.01 0.8 0.04 1.1

chcsho 0.01 0.5 0.02 1.0 −0.02 −1.2 −0.02 −0.6 0.01 0.6 0.01 0.4 −0.02 −1.3 −0.04 −1.2

chfeps 0.23 3.6 −0.04 −0.8 0.23 3.7 −0.04 −0.8 0.12 2.4 −0.04 −0.8 0.09 1.7 −0.04 −0.8

chinv −0.02 −0.8 −0.01 −0.4 −0.03 −1.1 0.00 0.1 0.00 −0.1 −0.02 −0.5 −0.01 −0.4 0.01 0.5

chmom 0.17 3.6 −0.58 −3.2 −0.17 −4.9 −0.32 −3.6 −0.11 −0.9 −0.29 −2.0 −0.20 −3.8 −0.27 −3.3

chpmia 0.03 0.8 −0.02 −0.7 0.03 0.6 −0.03 −1.0 0.01 0.5 −0.02 −0.9 0.01 0.5 −0.03 −1.2

chtx 0.04 1.7 0.03 0.8 0.06 2.5 0.04 1.2 −0.04 −1.2 0.00 0.1 −0.04 −1.0 0.01 0.4

currat 0.10 1.4 0.03 0.4 0.03 0.5 −0.06 −3.7 −0.02 −0.6 0.09 1.4 −0.01 −0.6 −0.05 −2.4

depr 0.06 1.6 0.09 2.3 0.07 2.1 0.03 0.7 0.04 1.4 0.07 2.5 0.04 1.5 0.01 0.4

dy −0.08 −2.7 −0.08 −2.3 −0.10 −3.7 −0.20 −4.0 −0.09 −3.4 −0.09 −2.8 −0.13 −3.2 −0.19 −3.9

ear 0.11 12.5 0.12 3.6 0.12 16.6 0.11 3.7 0.09 5.3 0.11 3.8 0.07 5.6 0.10 3.5

ep 0.06 1.6 0.26 4.6 0.00 0.1 0.20 3.3 0.11 3.7 0.19 3.7 0.01 0.3 0.13 2.4

gma 0.02 1.0 0.04 1.9 0.11 5.3 0.16 2.8 0.03 1.0 0.07 2.4 0.11 4.2 0.17 2.7

grcapx 0.00 −0.1 −0.04 −2.0 −0.03 −1.6 −0.05 −1.7 −0.03 −2.3 −0.04 −2.2 −0.06 −3.9 −0.04 −1.9

grltnoa −0.02 −1.2 −0.05 −1.7 −0.01 −0.5 −0.05 −1.8 −0.04 −1.7 −0.01 −0.3 −0.03 −1.5 −0.01 −0.7

(continued)
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Table I.1:
Linear risk price estimation
We estimate risk prices linearly, analogously to Green et al. (2017), but translate the linear Fama-Macbeth regressions into the setting of this paper to make the results
directly comparable to those derived from neural networks. The table report the risk prices as a time-series average from annual re-fitting (scaled by 100), where the models
are re-fitted by calendar year. The t-statistics are taken from the time-series of annual coefficient estimates and employ Newey-West adjustments of 12 lags. The sample is
cross-sectionally rank-normalised and we consider the inclusion and exclusion of microcaps.

(A) Rank-normalised,

all characteristics

(A) Rank-normalised,

core characteristics

(A) Rank-normalised,

no micro., all characteristics

(A) Rank-normalised,

no micro., core characteristics

OLS WLS OLS WLS OLS WLS OLS WLS

β t β t β t β t β t β t β t β t

ill −0.58 −3.5 0.19 0.7 −0.96 −5.8 0.07 0.3 −0.42 −2.8 0.42 2.0 −0.38 −4.3 0.18 1.7

indmom 0.10 1.6 −0.08 −3.9 0.14 2.1 −0.07 −3.8 −0.07 −2.2 −0.12 −3.0 −0.04 −1.3 −0.12 −3.3

invest −0.03 −1.0 0.08 1.2 0.01 0.5 0.08 1.8 −0.03 −1.0 0.04 0.8 −0.01 −0.2 0.05 1.3

lev 0.19 2.2 0.24 1.7 0.10 1.7 0.03 0.4 0.25 2.3 0.21 1.7 0.15 2.1 0.06 0.8

lgr 0.03 1.0 0.08 1.8 0.07 2.7 0.10 2.6 0.04 2.0 0.12 2.9 0.06 2.4 0.13 3.9

maxret 0.19 3.1 0.04 0.3 0.15 2.6 0.06 0.5 0.08 1.6 −0.01 −0.1 0.05 1.0 0.01 0.2

mom12m 0.13 2.0 −0.48 −2.7 −0.19 −2.8 0.00 0.0 0.00 0.0 −0.19 −1.5 −0.03 −0.4 0.02 0.3

mom1m −0.75 −5.3 −0.45 −3.5 −0.66 −4.4 −0.38 −3.4 −0.36 −10.7 −0.45 −3.7 −0.25 −7.2 −0.32 −2.8

mom36m −0.10 −1.3 −0.14 −1.2 −0.13 −1.4 −0.12 −1.1 −0.03 −0.4 −0.11 −1.0 −0.05 −0.6 −0.09 −0.8

mve −2.22 −7.1 0.52 3.8 −1.38 −6.4 −0.05 −0.5 −0.32 −3.6 0.38 2.9 −0.40 −3.5 0.05 0.9

nincr 0.02 0.8 0.06 1.8 0.04 1.6 0.06 1.9 0.05 3.1 0.06 1.8 0.06 4.6 0.06 2.1

orgcap −0.04 −2.3 0.00 −0.2 −0.09 −1.6 −0.01 −0.6 −0.03 −1.7 −0.02 −0.7 0.00 0.0 −0.03 −1.6

pchgm pchsale 0.03 1.5 0.02 0.5 0.06 3.4 0.03 0.5 0.02 0.9 0.01 0.3 0.03 1.2 0.01 0.2

pchsale pchinvt −0.01 −0.3 0.02 0.6 −0.01 −0.2 0.04 1.1 0.00 0.3 0.03 1.1 0.00 0.1 0.05 1.6

pchsale pchrect 0.00 −0.2 0.01 0.2 0.01 1.5 0.03 1.6 −0.01 −0.7 0.03 1.1 0.00 0.3 0.04 2.0

pchsale pchxsga 0.00 0.3 −0.04 −1.5 0.00 0.1 −0.06 −2.0 −0.02 −2.9 −0.04 −1.3 −0.03 −3.9 −0.05 −1.8

retvol −0.49 −5.6 −0.33 −1.4 −0.30 −5.5 −0.46 −3.1 −0.30 −2.1 −0.24 −1.7 −0.18 −3.0 −0.36 −3.7

roaq 0.11 3.0 −0.02 −0.3 0.17 3.4 0.01 0.2 0.17 3.4 0.02 0.3 0.13 1.8 0.02 0.3

roavol −0.14 −2.4 −0.11 −2.0 −0.18 −4.5 −0.15 −3.6 −0.03 −0.7 −0.07 −1.2 −0.06 −2.0 −0.11 −2.6

roeq 0.10 1.7 0.07 1.3 0.14 2.2 0.07 2.1 0.04 1.6 0.08 2.5 0.04 2.3 0.06 2.1

salecash 0.12 2.0 0.02 0.2 0.11 1.9 0.06 1.1 0.08 2.2 0.02 0.4 0.08 2.2 0.07 1.3

saleinv 0.11 4.7 0.03 0.7 0.09 5.0 0.01 0.3 0.02 1.3 0.03 0.7 0.02 1.5 0.00 0.1

sgr −0.06 −2.3 −0.06 −1.1 −0.05 −1.8 −0.07 −1.3 0.02 0.5 −0.01 −0.4 0.03 0.6 −0.04 −1.1

(continued)
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Table I.1:
Linear risk price estimation
We estimate risk prices linearly, analogously to Green et al. (2017), but translate the linear Fama-Macbeth regressions into the setting of this paper to make the results
directly comparable to those derived from neural networks. The table report the risk prices as a time-series average from annual re-fitting (scaled by 100), where the models
are re-fitted by calendar year. The t-statistics are taken from the time-series of annual coefficient estimates and employ Newey-West adjustments of 12 lags. The sample is
cross-sectionally rank-normalised and we consider the inclusion and exclusion of microcaps.

(A) Rank-normalised,

all characteristics

(A) Rank-normalised,

core characteristics

(A) Rank-normalised,

no micro., all characteristics

(A) Rank-normalised,

no micro., core characteristics

OLS WLS OLS WLS OLS WLS OLS WLS

β t β t β t β t β t β t β t β t

sp −0.10 −1.9 −0.10 −1.0 −0.07 −0.8 −0.07 −1.0 −0.04 −0.7 −0.13 −1.1 −0.02 −0.5 −0.10 −1.5

std dolvol −0.40 −2.5 −0.10 −0.6 −0.48 −2.7 −0.19 −1.6 −0.05 −0.9 −0.15 −1.7 −0.10 −1.2 −0.24 −2.6

std turn 0.94 3.9 −0.15 −0.7 1.02 3.7 0.25 2.0 0.11 0.9 −0.01 −0.1 0.32 1.6 0.39 3.8

turn −1.79 −5.2 −0.03 −0.2 −1.20 −6.4 0.04 0.4 −0.40 −1.7 −0.30 −1.5 −0.45 −2.4 −0.10 −1.1

absacc −0.07 −2.5 −0.02 −0.3 −0.04 −1.7 −0.01 −0.2

aeavol 0.02 1.7 −0.06 −1.5 −0.03 −2.4 −0.05 −2.3

age 0.02 0.8 −0.13 −4.2 −0.03 −1.3 −0.13 −4.2

baspread 0.10 1.3 −0.25 −1.4 0.16 1.6 −0.30 −2.7

betasq −0.08 −0.4 −0.21 −0.4 −1.43 −1.3 −0.91 −0.6

bm ia −0.03 −0.8 −0.13 −1.3 −0.07 −1.6 −0.09 −1.3

cashdebt 0.00 0.0 0.03 0.7 −0.02 −0.7 −0.01 −0.3

cfp ia 0.13 3.6 0.05 0.9 0.08 2.6 0.03 0.7

chempia 0.04 1.0 0.07 1.7 0.05 1.3 0.05 1.5

chnanalyst 0.02 1.3 0.00 −0.1 0.01 0.7 −0.01 −0.4

cinvest −0.01 −0.9 0.00 0.1 −0.04 −2.8 −0.01 −0.2

convind −0.07 −2.7 −0.04 −1.0 −0.04 −1.2 −0.05 −1.4

disp −0.12 −2.2 −0.03 −0.6 −0.04 −1.5 −0.03 −0.5

divi −0.06 −2.4 0.00 0.1 −0.01 −0.4 0.03 0.3

divo −0.03 −0.5 −0.07 −1.3 0.01 0.3 −0.06 −1.4

dolvol 0.98 3.9 −0.58 −3.6 −0.36 −2.3 −0.24 −1.1

egr −0.03 −1.3 −0.04 −1.2 −0.06 −1.5 −0.04 −1.1

fgr5yr 0.00 0.1 0.03 0.6 0.00 0.0 −0.01 −0.1

herf −0.05 −2.1 0.01 0.4 −0.01 −0.3 0.01 0.5

(continued)
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Table I.1:
Linear risk price estimation
We estimate risk prices linearly, analogously to Green et al. (2017), but translate the linear Fama-Macbeth regressions into the setting of this paper to make the results
directly comparable to those derived from neural networks. The table report the risk prices as a time-series average from annual re-fitting (scaled by 100), where the models
are re-fitted by calendar year. The t-statistics are taken from the time-series of annual coefficient estimates and employ Newey-West adjustments of 12 lags. The sample is
cross-sectionally rank-normalised and we consider the inclusion and exclusion of microcaps.

(A) Rank-normalised,

all characteristics

(A) Rank-normalised,

core characteristics

(A) Rank-normalised,

no micro., all characteristics

(A) Rank-normalised,

no micro., core characteristics

OLS WLS OLS WLS OLS WLS OLS WLS

β t β t β t β t β t β t β t β t

hire −0.01 −0.4 −0.07 −1.6 −0.03 −0.8 −0.06 −1.5

idiovol −0.03 −0.4 0.10 1.3 −0.01 −0.3 0.16 3.0

ipo −0.07 −1.1 −0.14 −2.0 −0.07 −1.3 −0.15 −2.0

mom6m −0.52 −7.0 0.35 1.5 −0.13 −1.0 0.03 0.1

ms 0.06 1.6 0.09 2.0 0.03 0.9 0.07 1.8

mve ia 0.09 1.4 0.04 1.6 −0.01 −0.3 0.06 2.9

nanalyst 0.04 0.6 −0.01 −0.2 0.17 4.7 0.02 0.6

operprof 0.12 6.0 0.02 0.6 0.05 2.9 0.02 0.6

pchcapx ia −0.04 −2.1 −0.07 −2.4 −0.04 −2.2 −0.08 −4.3

pchcurrat 0.01 0.2 0.00 0.0 −0.02 −0.6 −0.04 −0.6

pchdepr −0.01 −0.6 0.00 −0.1 0.01 0.6 −0.02 −0.8

pchquick −0.05 −0.9 0.02 0.3 0.00 −0.1 0.04 0.9

pchsaleinv −0.02 −1.1 0.01 0.5 −0.02 −1.8 −0.01 −0.6

pctacc −0.11 −3.8 −0.09 −1.3 −0.08 −1.1 −0.05 −0.6

pricedelay 0.03 1.9 0.01 0.4 0.00 0.3 −0.01 −0.4

ps 0.00 0.0 0.01 0.8 0.03 1.0 0.01 1.0

quick −0.04 −0.8 −0.08 −0.9 0.05 1.1 −0.12 −1.6

rd 0.02 1.2 0.01 0.6 0.01 0.3 0.00 0.2

rd mve 0.27 5.6 0.13 2.2 0.18 4.4 0.04 1.1

rd sale −0.16 −3.1 −0.11 −1.6 −0.10 −2.4 −0.01 −0.4

realestate 0.04 1.9 0.07 2.6 0.03 1.0 0.05 1.8

roic 0.00 0.0 0.14 2.1 0.08 1.1 0.10 2.8

rsup 0.09 4.4 0.05 1.4 0.06 2.7 0.04 1.2

(continued)
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Table I.1:
Linear risk price estimation
We estimate risk prices linearly, analogously to Green et al. (2017), but translate the linear Fama-Macbeth regressions into the setting of this paper to make the results
directly comparable to those derived from neural networks. The table report the risk prices as a time-series average from annual re-fitting (scaled by 100), where the models
are re-fitted by calendar year. The t-statistics are taken from the time-series of annual coefficient estimates and employ Newey-West adjustments of 12 lags. The sample is
cross-sectionally rank-normalised and we consider the inclusion and exclusion of microcaps.

(A) Rank-normalised,

all characteristics

(A) Rank-normalised,

core characteristics

(A) Rank-normalised,

no micro., all characteristics

(A) Rank-normalised,

no micro., core characteristics

OLS WLS OLS WLS OLS WLS OLS WLS

β t β t β t β t β t β t β t β t

salerec 0.07 2.6 0.04 1.6 0.05 1.4 0.02 1.1

secured −0.05 −3.3 0.00 −0.2 −0.01 −0.3 −0.02 −2.4

securedind −0.02 −1.2 0.03 1.4 −0.03 −1.8 0.05 3.0

sfe −0.16 −1.6 −0.48 −6.9 −0.43 −4.4 −0.44 −8.6

sgrvol −0.12 −2.3 −0.05 −1.7 −0.02 −1.0 −0.02 −0.7

sin 0.19 7.7 0.10 1.8 0.11 2.7 0.10 1.7

stdacc −0.13 −3.1 −0.08 −1.6 −0.17 −3.9 −0.09 −2.3

stdcf 0.05 1.0 0.01 0.2 0.11 3.2 0.03 0.5

sue 0.15 5.1 0.08 1.0 0.02 0.8 0.01 0.3

tang 0.05 1.8 0.04 1.1 0.03 1.4 0.01 0.4

tb 0.05 2.2 0.02 0.6 0.02 1.9 0.01 0.2

zerotrade −0.56 −2.5 −0.92 −3.0 −0.29 −1.4 −0.84 −2.6

(continued)
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Figure I.1:
Time-varying risk premia, by size class – NN-J1, NN, core characteristics
The graph plots the time-varying risk premia estimations for NN-J1 (blue) and NN (orange), where the dotted green line represents the analogous linear estimation as a
benchmark or sanity check.
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J Model Insights

In this appendix, we provide further empirical results in addition to the results presented in section 4.12.

Figures J.1 and J.2 reveal that the nonlinear sensitivity interactions discussed in section 4.12 not only vary

by market capitalisation, but can also be estimated by industry. The figures show that manufacturing

constitutes the industry with the largest number of assets. While the sensitivity interactions seem to

be relatively homogenous across industry, some differences become apparent, for example, in the case of

1-month momentum and cash holdings. The exemplary display of figures ?? underline the possibility to

analyse nonlinear interactions on industry level.

Moreover, figures J.4 to J.10 display the analogous insight to section 4.12, but for all remaining

models, namely NN, NN-W1, NN-W1W2, NN-J1, NN-J1J2, NN-J2-m, NN-J1J2-m. It can be seen that

the nonlinear interactions in part depend on the objective function.

Figure J.1:
Nonlinear sensitivity interactions NN-W2, by industry – exemplary year 2006:
The graph visualises in the off-diagonals how the neural network’s return sensitivities to changes in firm char-
acteristics vary nonlinearly across assets, given return sensitivities to changes in other firm characteristics. The
nonlinear sensitivity interactions are visualised by industry. The diagonal displays the distribution of sensitivities
by industry. The selection of firm characteristics corresponds to the overall most influential firm characteristics
for model NN-W2, analogously to table 4. The nonlinear estimations are estimated using data from the year
1985 rather than one month to avoid the curse of dimensionality.
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Figure J.2:
Nonlinear sensitivity interactions NN-J1-m, by industry – exemplary year 2006:
The graph visualises in the off-diagonals how the neural network’s return sensitivities to changes in firm char-
acteristics vary nonlinearly across assets, given return sensitivities to changes in other firm characteristics. The
nonlinear sensitivity interactions are visualised by industry. The diagonal displays the distribution of sensitivities
by industry. The selection of firm characteristics corresponds to the overall most influential firm characteristics
for model NN-J1-m, analogously to table 4. The nonlinear estimations are estimated using data from the year
1985 rather than one month to avoid the curse of dimensionality.

Figure J.3:
Nonlinear sensitivity interactions NN – exemplary month 2006-09-30:
The graph visualises in the off-diagonals how the sensitivities with respect to the firm characteristics listed on the
y-axis are expected to change, given a change in sensitivity with respect to the firm characteristics listed on the
x-axis. The nonlinear sensitivity interactions are visualised by size class. The diagonal displays the distribution
of sensitivities by size class. The selection of firm characteristics corresponds to the overall most influential firm
characteristics for model NN, analogously to table 4.
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Figure J.4:
Nonlinear sensitivity interactions NN-W1 – exemplary month 2006-09-30:
The graph visualises in the off-diagonals how the sensitivities with respect to the firm characteristics listed on the
y-axis are expected to change, given a change in sensitivity with respect to the firm characteristics listed on the
x-axis. The nonlinear sensitivity interactions are visualised by size class. The diagonal displays the distribution
of sensitivities by size class. The selection of firm characteristics corresponds to the overall most influential firm
characteristics for model NN-W1, analogously to table 4.

Figure J.5:
Nonlinear sensitivity interactions NN-W1W2 – exemplary month 2006-09-30:
The graph visualises in the off-diagonals how the sensitivities with respect to the firm characteristics listed on the
y-axis are expected to change, given a change in sensitivity with respect to the firm characteristics listed on the
x-axis. The nonlinear sensitivity interactions are visualised by size class. The diagonal displays the distribution
of sensitivities by size class. The selection of firm characteristics corresponds to the overall most influential firm
characteristics for model NN-W1W2, analogously to table 4.
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Figure J.6:
Nonlinear sensitivity interactions NN-J1 – exemplary month 2006-09-30:
The graph visualises in the off-diagonals how the sensitivities with respect to the firm characteristics listed on the
y-axis are expected to change, given a change in sensitivity with respect to the firm characteristics listed on the
x-axis. The nonlinear sensitivity interactions are visualised by size class. The diagonal displays the distribution
of sensitivities by size class. The selection of firm characteristics corresponds to the overall most influential firm
characteristics for model NN-J1, analogously to table 4.

Figure J.7:
Nonlinear sensitivity interactions NN-J2 – exemplary month 2006-09-30:
The graph visualises in the off-diagonals how the sensitivities with respect to the firm characteristics listed on the
y-axis are expected to change, given a change in sensitivity with respect to the firm characteristics listed on the
x-axis. The nonlinear sensitivity interactions are visualised by size class. The diagonal displays the distribution
of sensitivities by size class. The selection of firm characteristics corresponds to the overall most influential firm
characteristics for model NN-J2, analogously to table 4.
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Figure J.8:
Nonlinear sensitivity interactions NN-J1J2 – exemplary month 2006-09-30:
The graph visualises in the off-diagonals how the sensitivities with respect to the firm characteristics listed on the
y-axis are expected to change, given a change in sensitivity with respect to the firm characteristics listed on the
x-axis. The nonlinear sensitivity interactions are visualised by size class. The diagonal displays the distribution
of sensitivities by size class. The selection of firm characteristics corresponds to the overall most influential firm
characteristics for model NN-J1J2, analogously to table 4.

Figure J.9:
Nonlinear sensitivity interactions NN-J2-m – exemplary month 2006-09-30:
The graph visualises in the off-diagonals how the sensitivities with respect to the firm characteristics listed on the
y-axis are expected to change, given a change in sensitivity with respect to the firm characteristics listed on the
x-axis. The nonlinear sensitivity interactions are visualised by size class. The diagonal displays the distribution
of sensitivities by size class. The selection of firm characteristics corresponds to the overall most influential firm
characteristics for model NN-J2-m, analogously to table 4.
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Figure J.10:
Nonlinear sensitivity interactions NN-J1J2-m – exemplary month 2006-09-30:
The graph visualises in the off-diagonals how the sensitivities with respect to the firm characteristics listed on the
y-axis are expected to change, given a change in sensitivity with respect to the firm characteristics listed on the
x-axis. The nonlinear sensitivity interactions are visualised by size class. The diagonal displays the distribution
of sensitivities by size class. The selection of firm characteristics corresponds to the overall most influential firm
characteristics for model NN-J1J2-m, analogously to table 4.
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K Double-Sorted Portfolios

This appendix provides further empirical details on the double-sorted portfolios. For clarity, we primarily

focus on portfolios constructed on return-on-assets and 12-month momentum, both constructed based

on out-of-sample sensitivities estimated by NN-W2 and NN-J1-m. Further empirical results can be

requested from the authors.

Tables K.1 to K.3 summarise the quintile portfolios, while tables K.4 to K.6 capture the results from

common regressions on the Fama-French 3-factor model and a momentum factor. It can be seen that

the introduction of a second sort by sensitivity can help improving the Sharpe ratio of the constructed

portfolio. This effect seems to be more pronounced for portfolios constructed on sensitivity estimated

with neural networks using Jacobian regularisation. For example, table K.4 shows that the annualised

Sharpe ratio for equal-weighted portfolios sorted on 12-month momentum sensitivities and characteristics

improves from 0.19 to 0.34 from the single to the double sort. This pattern seems to persist across an

investment universe excluding microcaps (where the Sharpe ratio improves from 0.40 to 0.49), and value-

weighred portfolios. Similar patterns emerge for other characteristics.

Figure K.1 visualises the cumulative returns from portfolios constructed on signals from 12-month

momentum.
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Annualised Returns [%] Annualised Volatility [%] Annualised Sharpe Ratio

Single Sort Sens. – Low Q2 Q3 Q4 Sens. – High Single Sort Sens. – Low Q2 Q3 Q4 Sens. – High Single Sort Sens. – Low Q2 Q3 Q4 Sens. – High

Panel A: Value-Weighted Portfolios – NN-W2

Low 1.96 2.92 4.89 -1.42 2.17 2.22 30.00 33.94 31.72 31.25 32.03 32.58 0.06 0.09 0.15 -0.05 0.07 0.07
Q2 7.78 11.31 9.23 8.30 5.80 4.80 20.08 20.91 20.52 20.94 21.49 23.66 0.37 0.51 0.43 0.38 0.26 0.20
Q3 7.89 9.03 7.01 8.80 6.51 7.06 15.75 17.12 16.51 16.24 17.28 19.27 0.48 0.51 0.41 0.52 0.37 0.36
Q4 9.79 11.05 10.80 9.56 9.28 7.47 14.67 16.75 15.42 15.66 15.92 18.45 0.64 0.63 0.67 0.59 0.56 0.39
High 12.37 13.94 13.48 11.26 11.31 13.88 18.55 21.25 18.27 20.27 19.92 23.21 0.63 0.62 0.70 0.53 0.54 0.56

Panel B: Equal-Weighted Portfolios – NN-W2

Low 10.94 12.24 8.76 10.60 9.89 8.92 32.53 33.12 31.58 32.30 32.38 33.46 0.32 0.35 0.27 0.31 0.29 0.26
Q2 9.12 11.79 9.39 7.59 8.62 7.94 20.44 21.26 20.22 20.56 20.74 21.98 0.43 0.53 0.45 0.36 0.40 0.35
Q3 9.43 12.44 9.56 9.57 7.92 8.39 16.95 17.70 16.59 17.05 17.42 19.70 0.53 0.67 0.55 0.54 0.44 0.41
Q4 12.52 14.75 12.96 12.40 11.13 11.58 16.48 17.43 16.44 16.76 17.06 18.79 0.72 0.79 0.74 0.70 0.62 0.59
High 15.83 17.11 16.50 15.11 15.10 14.44 21.48 22.26 20.91 21.89 21.93 23.74 0.69 0.71 0.74 0.65 0.64 0.57

Panel C: Value-Weighted Portfolios – NN-J1-m

Low 1.96 3.17 0.96 3.98 4.02 -1.48 30.00 31.82 32.24 32.39 32.09 33.79 0.06 0.10 0.03 0.12 0.12 -0.04
Q2 7.78 6.46 9.81 8.49 6.69 5.51 20.08 21.92 21.64 21.61 20.89 22.89 0.37 0.29 0.43 0.38 0.31 0.23
Q3 7.89 7.38 7.82 8.45 9.37 5.26 15.75 18.10 17.25 16.06 16.41 17.40 0.48 0.39 0.44 0.51 0.55 0.30
Q4 9.79 10.50 8.42 9.33 9.55 9.42 14.67 16.52 15.78 15.31 15.81 16.54 0.64 0.61 0.51 0.58 0.58 0.55
High 12.37 13.21 12.02 12.24 11.04 13.13 18.55 21.15 20.13 19.32 19.88 20.20 0.63 0.59 0.57 0.60 0.53 0.61

Panel D: Equal-Weighted Portfolios – NN-J1-m

Low 10.94 18.95 9.94 12.57 8.13 7.86 32.53 34.33 32.68 34.25 32.63 32.86 0.32 0.51 0.29 0.35 0.24 0.23
Q2 9.12 10.81 9.90 9.26 7.18 8.34 20.44 21.29 20.88 20.79 20.39 21.58 0.43 0.48 0.45 0.43 0.34 0.37
Q3 9.43 10.50 9.66 10.68 8.76 6.88 16.95 17.39 17.37 17.40 17.16 17.81 0.53 0.58 0.53 0.59 0.49 0.37
Q4 12.52 14.02 11.89 13.09 11.41 12.43 16.48 17.86 16.56 16.21 16.50 17.60 0.72 0.74 0.68 0.76 0.66 0.67
High 15.83 16.30 16.13 14.77 16.52 14.74 21.48 23.58 21.73 21.05 21.55 21.84 0.69 0.64 0.69 0.66 0.71 0.63

Table K.1:
Double-sorted portfolios – 12-month momentum:
The table summarises the annualised average monthly returns, volatilities and Sharpe ratios of double-sorted quintile portfolios. The portfolios are benchmarked against
single-sorted quintile portfolios. Double-sorted portfolios are sorted on the characteristic first and by the out-of-sample sensitivity with respect to that sensitivity second.
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Annualised Returns [%] Annualised Volatility [%] Annualised Sharpe Ratio

Single Sort Sens. – Low Q2 Q3 Q4 Sens. – High Single Sort Sens. – Low Q2 Q3 Q4 Sens. – High Single Sort Sens. – Low Q2 Q3 Q4 Sens. – High

Panel A: Value-Weighted Portfolios (No Microcaps) – NN-W2

Low 6.35 10.29 4.90 5.59 4.17 4.26 23.62 25.40 22.87 24.87 24.68 27.88 0.26 0.39 0.21 0.22 0.17 0.15
Q2 9.43 10.20 11.64 10.77 8.68 5.57 16.60 17.62 17.62 17.89 17.67 20.06 0.54 0.55 0.63 0.57 0.47 0.27
Q3 8.01 9.98 8.60 8.00 6.53 6.09 14.68 15.83 15.24 16.03 16.41 18.16 0.53 0.60 0.54 0.48 0.39 0.33
Q4 9.92 12.70 11.68 9.63 10.04 8.09 14.90 16.30 15.50 16.06 16.57 18.04 0.64 0.74 0.72 0.57 0.58 0.43
High 13.42 14.05 14.26 12.99 15.03 13.22 19.87 19.43 19.70 21.20 22.64 23.48 0.64 0.68 0.68 0.58 0.62 0.53

Panel B: Equal-Weighted Portfolios (No Microcaps) – NN-W2

Low 6.09 8.86 8.12 5.29 4.29 3.86 26.18 25.54 24.83 25.41 26.86 28.50 0.23 0.33 0.32 0.20 0.16 0.13
Q2 10.16 10.08 11.38 10.23 9.69 7.63 18.30 18.20 18.24 18.18 18.76 20.46 0.53 0.53 0.59 0.54 0.49 0.36
Q3 9.73 10.75 10.41 9.47 9.39 7.39 16.47 16.47 16.08 16.77 17.42 19.40 0.57 0.62 0.62 0.54 0.52 0.37
Q4 11.14 12.63 11.64 11.71 10.77 10.87 16.80 16.64 16.10 16.94 18.36 19.43 0.63 0.72 0.69 0.66 0.56 0.53
High 14.90 16.39 15.02 15.71 14.59 16.42 23.10 21.93 22.21 22.94 24.32 25.79 0.60 0.70 0.63 0.64 0.56 0.59

Panel C: Value-Weighted Portfolios (No Microcaps) – NN-J1-m

Low 6.35 7.36 6.72 8.30 3.72 8.95 23.62 23.33 26.21 24.19 25.87 25.75 0.26 0.31 0.25 0.33 0.14 0.33
Q2 9.43 7.64 9.01 9.92 8.73 11.70 16.60 17.05 18.10 18.24 18.31 18.76 0.54 0.43 0.48 0.52 0.46 0.59
Q3 8.01 7.82 8.14 7.54 7.61 8.95 14.68 15.69 15.88 15.82 16.16 17.70 0.53 0.48 0.49 0.46 0.46 0.49
Q4 9.92 8.71 10.51 9.23 11.38 10.57 14.90 16.00 16.46 16.48 15.96 17.60 0.64 0.52 0.61 0.54 0.68 0.57
High 13.42 11.77 14.30 13.23 15.61 14.37 19.87 21.50 21.41 21.16 21.88 21.42 0.64 0.52 0.63 0.59 0.67 0.63

Panel D: Equal-Weighted Portfolios (No Microcaps) – NN-J1-m

Low 6.09 5.92 6.91 6.99 5.88 6.19 26.18 25.71 27.19 26.02 26.15 27.02 0.23 0.22 0.25 0.26 0.22 0.22
Q2 10.16 9.60 9.48 10.72 9.29 11.86 18.30 17.60 18.91 18.59 18.93 19.79 0.53 0.52 0.48 0.55 0.47 0.57
Q3 9.73 9.12 9.49 9.16 10.30 10.24 16.47 16.81 16.46 16.97 16.88 18.09 0.57 0.52 0.55 0.52 0.58 0.54
Q4 11.14 9.65 10.44 10.35 12.81 12.98 16.80 17.29 17.07 17.34 17.53 18.19 0.63 0.54 0.58 0.57 0.69 0.67
High 14.90 13.47 16.30 14.06 16.44 14.62 23.10 22.87 23.78 23.37 23.19 24.75 0.60 0.56 0.64 0.57 0.66 0.55

Table K.2:
Double-sorted portfolios (no microcaps) – 12-month momentum:
The table summarises the annualised average monthly returns, volatilities and Sharpe ratios of double-sorted quintile portfolios. The portfolios are benchmarked against
single-sorted quintile portfolios. Double-sorted portfolios are sorted on the characteristic first and by the out-of-sample sensitivity with respect to that sensitivity second.
Microcaps are excluded.
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Annualised Returns [%] Annualised Volatility [%] Annualised Sharpe Ratio

Single Sort Sens. – Low Q2 Q3 Q4 Sens. – High Single Sort Sens. – Low Q2 Q3 Q4 Sens. – High Single Sort Sens. – Low Q2 Q3 Q4 Sens. – High

Panel A: Value-Weighted Portfolios (No Microcaps) – NN-W2

Low 6.48 7.68 9.19 4.81 6.76 8.01 23.28 24.10 25.53 24.08 25.04 23.90 0.27 0.31 0.35 0.20 0.26 0.32
Q2 8.74 10.29 9.55 6.91 8.34 9.25 17.59 19.14 18.73 18.24 19.59 21.17 0.48 0.51 0.49 0.37 0.41 0.42
Q3 9.15 9.60 8.37 7.75 9.25 10.51 14.74 16.23 15.82 16.18 15.80 18.92 0.60 0.57 0.51 0.46 0.56 0.53
Q4 9.69 11.31 9.73 8.59 8.31 11.23 14.62 16.63 16.80 15.98 18.14 18.27 0.63 0.65 0.55 0.52 0.44 0.59
High 11.42 10.33 13.34 11.07 12.00 12.46 16.40 18.23 17.44 17.84 18.83 20.54 0.66 0.54 0.72 0.59 0.60 0.57

Panel B: Equal-Weighted Portfolios (No Microcaps) – NN-W2

Low 6.79 7.34 8.91 5.39 5.98 7.15 26.46 24.78 25.61 26.26 27.57 27.11 0.25 0.29 0.33 0.20 0.21 0.26
Q2 10.08 8.91 10.97 10.33 9.66 9.43 17.50 18.56 17.99 17.56 18.67 20.23 0.55 0.46 0.58 0.56 0.50 0.45
Q3 10.92 10.20 10.06 11.44 11.19 10.62 17.20 18.05 17.65 17.49 17.66 19.42 0.60 0.54 0.55 0.62 0.60 0.52
Q4 11.45 11.47 11.03 11.47 11.68 11.20 17.78 18.73 17.82 17.91 18.86 19.75 0.61 0.58 0.59 0.61 0.59 0.54
High 12.70 12.12 12.25 13.42 13.26 14.51 19.48 19.79 19.20 19.74 20.07 21.91 0.62 0.58 0.60 0.64 0.62 0.62

Panel C: Value-Weighted Portfolios (No Microcaps) – NN-J1-m

Low 6.48 7.86 6.85 5.56 6.59 6.47 23.28 24.69 24.59 25.50 25.18 25.24 0.27 0.31 0.27 0.21 0.25 0.25
Q2 8.74 9.78 7.39 8.51 8.38 9.06 17.59 18.20 17.16 18.70 19.11 19.87 0.48 0.51 0.42 0.44 0.42 0.44
Q3 9.15 10.53 7.48 8.86 9.60 11.25 14.74 16.26 15.99 16.14 16.31 16.65 0.60 0.62 0.45 0.53 0.56 0.64
Q4 9.69 10.08 10.38 8.33 10.61 9.30 14.62 16.30 16.01 16.41 16.30 15.96 0.63 0.59 0.62 0.49 0.62 0.56
High 11.42 9.65 10.79 12.69 12.28 11.57 16.40 19.10 18.47 17.77 17.48 19.26 0.66 0.48 0.56 0.68 0.67 0.57

Panel D: Equal-Weighted Portfolios (No Microcaps) – NN-J1-m

Low 6.79 7.65 7.22 6.51 6.25 6.45 26.46 26.67 26.79 27.43 26.84 27.15 0.25 0.28 0.26 0.23 0.23 0.23
Q2 10.08 10.92 10.11 9.83 9.34 9.87 17.50 17.79 17.71 18.02 18.00 18.91 0.55 0.59 0.55 0.52 0.50 0.50
Q3 10.92 11.65 10.89 10.48 10.63 11.17 17.20 18.16 17.48 17.41 17.85 18.68 0.60 0.61 0.59 0.57 0.57 0.57
Q4 11.45 12.24 11.77 10.56 11.66 11.05 17.78 18.56 17.96 18.19 18.01 18.76 0.61 0.63 0.62 0.55 0.62 0.56
High 12.70 12.61 12.22 13.54 12.41 13.12 19.48 20.09 19.59 20.41 19.39 19.57 0.62 0.59 0.59 0.63 0.61 0.63

Table K.3:
Double-sorted portfolios (no microcaps) – return-on-assets:
The table summarises the annualised average monthly returns, volatilities and Sharpe ratios of double-sorted quintile portfolios. The portfolios are benchmarked against
single-sorted quintile portfolios. Double-sorted portfolios are sorted on the characteristic first and by the out-of-sample sensitivity with respect to that sensitivity second.
Microcaps are excluded.

160



All stocks No microcaps
NN-J1-m

equal-weighed
NN-J1-m

value-weighed
NN-J1-m

equal-weighed
NN-J1-m

value-weighed
Double-Sort Single-Sort Double-Sort Single-Sort Double-Sort Single-Sort Double-Sort Single-Sort

intercept (α) 0.000 −0.003 0.006∗∗∗ 0.002 0.002 0.000 0.003 −0.002
(0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.002) (0.001)

Mktrf (β1) 0.018 0.010 −0.142∗ −0.166∗∗∗ 0.049 0.029 0.023 0.061∗∗

(0.058) (0.054) (0.079) (0.044) (0.048) (0.031) (0.066) (0.026)
HML (β2) 0.193∗ 0.231∗∗ −0.057 −0.021 −0.079 −0.067 −0.240∗∗ −0.113∗∗∗

(0.101) (0.111) (0.067) (0.064) (0.073) (0.063) (0.109) (0.041)
SMB (β3) −0.206∗∗∗ −0.199∗∗∗ −0.317∗∗∗ −0.156∗∗ 0.190∗∗∗ 0.246∗∗∗ 0.131∗ 0.203∗∗∗

(0.076) (0.070) (0.080) (0.067) (0.071) (0.093) (0.079) (0.057)
UMD (β4) 1.135∗∗∗ 1.242∗∗∗ 1.398∗∗∗ 1.437∗∗∗ 1.201∗∗∗ 1.208∗∗∗ 1.263∗∗∗ 1.302∗∗∗

(0.082) (0.116) (0.070) (0.073) (0.085) (0.063) (0.105) (0.064)

Observations 432 432 432 432
R2 0.633 0.706 0.649 0.875 0.786 0.904 0.710 0.913
Adjusted R2 0.630 0.703 0.646 0.874 0.784 0.903 0.707 0.912

Annualised Return [%] 7.85 4.45 14.99 10.24 10.98 8.35 11.38 6.64
Annualised Volatility [%] 22.23 23.01 28.63 25.13 21.55 20.31 24.46 21.75
Annualised Sharpe Ratio 0.34 0.19 0.49 0.39 0.49 0.40 0.44 0.30

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table K.4:
Portfolio summary – J1-m, 12-month momentum:
The table summarises standard Fama-French regressions, following

Rp,t = α+ β1Mktrft + β2HMLt + β3SMBt + β4UMDt + ϵt,

where we regress the respective portfolio returns on the Fama-French 3 Factor model plus a market factor. The market and Fama-French portfolios are sourced directly from
Fama’s website through WRDS. The constructed portfolio returns are in excess of the risk-free rate.
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All stocks No microcaps
NN-W2

equal-weighed
NN-W2

value-weighed
NN-W2

equal-weighed
NN-W2

value-weighed
Double-Sort Single-Sort Double-Sort Single-Sort Double-Sort Single-Sort Double-Sort Single-Sort

intercept (α) 0.004 0.002 0.004 0.005∗∗ 0.005∗∗ 0.006∗∗∗ 0.003 0.006∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Mktrf (β1) −0.075 −0.070 −0.233∗∗∗ −0.297∗∗∗ −0.202∗∗∗ −0.199∗∗∗ −0.222∗∗∗ −0.282∗∗∗

(0.057) (0.055) (0.066) (0.062) (0.050) (0.053) (0.070) (0.059)
HML (β2) 0.425∗∗ 0.405∗∗ 0.258 0.196 0.084 −0.020 −0.170 −0.290∗∗

(0.184) (0.188) (0.218) (0.164) (0.179) (0.150) (0.193) (0.134)
SMB (β3) −0.695∗∗∗ −0.788∗∗∗ −0.684∗∗∗ −0.889∗∗∗ −0.241∗∗ −0.533∗∗∗ −0.092 −0.532∗∗∗

(0.135) (0.170) (0.102) (0.098) (0.094) (0.179) (0.069) (0.134)
UMD (β4) 0.622∗∗∗ 0.411∗∗∗ 0.509∗∗∗ 0.229∗∗∗ 0.383∗∗∗ 0.152 0.475∗∗∗ 0.182∗∗

(0.147) (0.120) (0.114) (0.086) (0.137) (0.095) (0.149) (0.082)

Observations 432 432 432 432
R2 0.324 0.357 0.387 0.512 0.332 0.331 0.273 0.415
Adjusted R2 0.383 0.351 0.346 0.508 0.235 0.325 0.209 0.410

Annualised Return [%] 7.54 4.28 5.05 4.26 6.74 5.57 4.77 4.73
Annualised Volatility [%] 21.44 20.1 21.7 17.91 16.44 13.3 20.15 13.68
Annualised Sharpe Ratio 0.34 0.21 0.23 0.23 0.4 0.41 0.23 0.34

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table K.5:
Portfolio summary – W2, return-on-assets:
The table summarises standard Fama-French regressions, following

Rp,t = α+ β1Mktrft + β2HMLt + β3SMBt + β4UMDt + ϵt,

where we regress the respective portfolio returns on the Fama-French 3 Factor model plus a market factor. The market and Fama-French portfolios are sourced directly from
Fama’s website through WRDS. The constructed portfolio returns are in excess of the risk-free rate.
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All stocks No microcaps
NN-W2

equal-weighed
NN-W2

value-weighed
NN-W2

equal-weighed
NN-W2

value-weighed
Double-Sort Single-Sort Double-Sort Single-Sort Double-Sort Single-Sort Double-Sort Single-Sort

intercept (α) −0.001 −0.003 0.002 0.002 0.002 0.000 −0.002 −0.002
0.003) (0.002) (0.002) (0.002) (0.002) (0.001) (0.003) (0.001)

Mktrf (β1) 0.048 0.010 −0.066 −0.166∗∗∗ 0.081 0.029 0.049 0.061∗∗

(0.080) (0.054) (0.071) (0.044) (0.050) (0.031) (0.074) (0.026)
HML (β2) 0.331∗∗ 0.231∗∗ 0.068 −0.021 0.072 −0.067 0.063 −0.113∗∗∗

(0.149) (0.111) (0.079) (0.064) (0.099) (0.063) (0.129) (0.041)
SMB (β3) −0.230∗∗ −0.199∗∗∗ −0.172∗∗ −0.156∗∗ 0.146∗∗ 0.246∗∗∗ 0.110 0.203∗∗∗

(0.099) (0.070) (0.070) (0.067) (0.067) (0.093) (0.080) (0.057)
UMD (β4) 1.338∗∗∗ 1.242∗∗∗ 1.571∗∗∗ 1.437∗∗∗ 1.294∗∗∗ 1.208∗∗∗ 1.403∗∗∗ 1.302∗∗∗

(0.169) (0.116) (0.099) (0.073) (0.090) (0.063) (0.113) (0.064)

Observations 432 432 432 432
R2 0.606 0.706 0.718 0.875 0.779 0.904 0.708 0.913
Adjusted R2 0.603 0.703 0.716 0.874 0.777 0.903 0.706 0.912

Annualised Return [%] 7.56 4.45 11.54 10.24 11.39 8.35 6.87 6.64
Annualised Volatility [%] 26.55 23.01 29.46 25.13 22.72 20.31 25.95 21.75
Annualised Sharpe Ratio 0.28 0.19 0.37 0.39 0.48 0.40 0.26 0.30

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table K.6:
Portfolio summary – W2, 12-month momentum:
The table summarises standard Fama-French regressions, following

Rp,t = α+ β1Mktrft + β2HMLt + β3SMBt + β4UMDt + ϵt,

where we regress the respective portfolio returns on the Fama-French 3 Factor model plus a market factor. The market and Fama-French portfolios are sourced directly from
Fama’s website through WRDS. The constructed portfolio returns are in excess of the risk-free rate.
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Figure K.1:
Cumulative portfolio returns – 12-month momentum)
The graphs shows the cumulative portfolio returns of single and double-sorted portfolio returns, where the out-of-
sample sensitivities of the double-sorted portfolios are estimated by NN-J1-m (top) and NN-W2 (bottom). The
cumulative portfolio returns are benchmarked against the cumulative market return, where the market portfolio
is sourced from Kenneth French’s website.
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