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Abstract

Structural VAR models are frequently identified using sign restrictions on

contemporaneous impulse responses. We develop a methodology that handles a

larger set of prior distributions than the one allowed for by traditional methods.

We then develop an importance sampler that conveniently explores the pos-

terior distribution. This alleviates the existing trade-off between careful prior

selection and tractable posterior sampling. We use this framework to combine

sign restrictions with information on the volatility of the variables. Applying

our methodology to monetary shocks, we confirm that monetary shocks had a

significant effect on the real economy during the Great Moderation.
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1 Introduction

Structural Vector Autoregressive models (SVARs) are extensively used in applied

Macroeconomics. To provide results that can be interpreted economically, SVARs

require identifying restrictions. It has become popular to introduce identifying re-

strictions in the form of sign restrictions on selected structural parameters. This is

typically implemented using a Bayesian approach with informative prior beliefs that

reflect the intended signs (Uhlig, 2005, Baumeister and Hamilton, 2015, Arias et al.,

2018).

Sign restrictions present the researcher with a trade-off. There exist infinitely many

prior probability distributions that reflect a desired set of sign restrictions. Out of this

large class of priors, the literature often limits the analysis to the independent or to the

conjugate Normal-inverse-Wishart-(Haar)Uniform priors (hereafter NiWU) in order to

ensure a tractable posterior distribution (Uhlig, 2005, Rubio-Ramirez et al., 2010).

However, this constrains the type of prior information introduced by the researcher

to the one that can be modelled by the NiWU prior. This is a potentially important

limitation, given that the results are affected by the specific probability distribution

used, even in a large sample. Yet, moving beyond the NiWU prior makes the posterior

distribution more challenging to analyse. A trade-off emerges between the flexibility

in the selection of the prior distribution used, advocated by Baumeister and Hamilton

(2015), and the tractability of the posterior distribution, favoured by Rubio-Ramirez

et al. (2010).

The first contribution of the paper consists in developing a methodology that re-

duces the strength of the above trade-off. Following Arias et al. (2018), we build our

approach on a tractable importance sampler that uses the posterior distribution of

the NiWU case as an importance distribution. We then show that the sampler can

handle a wider class of prior beliefs relative to what studied in Arias et al. (2018) if

one builds the sampler in two separate stages: first on the reduced form parameters,

and then on the mapping into structural parameters. After acknowledging this point,
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one can follow Baumeister and Hamilton (2015) and specify prior beliefs on structural

parameters, and use the NiWU approach by Rubio-Ramirez et al. (2010) as the point

of departure to explore the posterior associated with the more general prior. We show

that the results of the applications in this paper are the same when exploring the

posterior distribution using the computationally more demanding sequential approach

by Waggoner et al. (2016), further confirming the effectiveness of our sampler.

The second contribution of the paper consists in using the new methodology to

propose a new approach for sign restrictions on impulse responses, which are arguably

the most important statistic of SVAR models. We parametrize the structural VAR

model as in Uhlig (2005), hence in the reduced form autoregressive elements and in the

contemporaneous impulse responses. We then depart from Uhlig (2005) and specify

the prior directly on the contemporaneous impulse responses, rather than using the

prior implied by the NiWU approach. We allow for sign restrictions on both contem-

poraneous and future impulse responses, and for contemporaneous ones, we provide

flexibility on the prior distribution used. In offering prior flexibility on the impulse

response horizon where flexibility is needed the most (Canova and Pina, 2005 and

Canova and Paustian, 2011), our approach offers a balance between prior flexibility on

the key structural parameters and conditionally conjugate priors on all the remaining

parameters.

Having developed a framework that handles a wide class of priors, we are in a

position to confirm that indeed the results in applied work can be quite sensitive to

the prior distribution used to model a given set of sign restrictions. When mapping

reduced form parameters into structural parameters, the NiWU approach uses orthog-

onal matrices drawn from the uniform (or Haar) distribution. Building on the analysis

by Baumeister and Hamilton (2015), we confirm that this approach can unintention-

ally imply ill-shaped distributions over the structural parameters. We propose a prior

specification that instead features bell-shaped distributions over the structural param-

eters, and ensures that the prior mass associated with one-standard-deviation shocks
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is in line with the scaling of the variables, in a way modelled through a training sample

and a set of hyperparameters. With our prior, the implicit mapping from reduced form

to structural parameters takes into account the volatility of the variables. Alternative

prior specifications are equally compatible with our posterior sampler.

We first show an illustration on the bivariate model by Baumeister and Hamilton

(2015) in order to highlight the key intuitions of our approach. We then apply our

model to the study of monetary policy shocks. We follow the model by Caldara and

Herbst (2019) and use a five-variable VAR model. Caldara and Herbst (2019) identify

monetary policy shocks using an external instrument, and show that monetary shocks

had an effect on the real economy even during the Great Moderation, despite what

is argued, for example, by Boivin et al. (2010). We replicate their analysis using sign

restrictions rather than an instrument. We show that the effects on the real economy

are quantitatively twice as strong as suggested by Caldara and Herbst (2019), further

strengthening their point. Modelling the same sign restrictions through the NiWU

confirms that the effects on the real economy are stronger than in Caldara and Herbst

(2019), but still delivers quantitatively lower estimates compared to our approach.

From the methodological point of view, we complement the work by Sims and Zha

(1998) and Baumeister and Hamilton (2015) and study the case of beliefs on con-

temporaneous impulse responses, rather than on the contemporaneous relation among

variables. Baumeister and Hamilton (2018) combine prior beliefs on contemporane-

ous relations and contemporaneous impulse responses. Relative to Baumeister and

Hamilton (2018), we focus on impulse responses and propose a different prior spec-

ification and posterior sampler. Last, we relate to Giacomini and Kitagawa (2015)

and Giacomini et al. (2019) in stressing the mapping from reduced form to structural

parameters, but we concentrate on a single prior.

The paper is organized as follows. Section 2 outlines the methodology proposed.

Section 3 shows an illustrative example on simulated data based on the estimated

bivariate VAR model by Baumeister and Hamilton (2015). Section 4 reports the
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application to monetary policy shocks in the US. Section 5 concludes.

2 The methodology

In this section we present the structural VAR model and summarize the traditional

NiWU approach to sign restrictions. We then outline our methodology and discuss

the new importance sampler. Last, we propose one possible prior distribution that

can be used with our approach.

2.1 The model

Following Uhlig (2005), we write the structural VAR model as

yt = π0 +

p∑
l=1

Πlyt−l +Bεt,

= Πwt +Bεt, εt ∼ N(0, Ik), (1)

where yt is a k × 1 vector of endogenous variables, εt is a k × 1 vector of structural

shocks, and wt = (1,y′t−1, ..,y
′
t−p)

′ is an m× 1 vector of the constant and p lags of the

variables, with m = kp+ 1. The matrix Π = [π0,Π1, ..,Πp] is of dimension k×m. We

normalize the covariance matrix of εt to the identity matrix.1

Matrix B in equation (1) captures the contemporaneous effects of one-standard-

deviation shocks, while future horizons of the impulse responses are calculated using

model (1) recursively. Although structural VARs can also be specified in matrix A =

B−1 rather than in B (see, for example, Sims and Zha, 1998), we use model (1) as in

Uhlig (2005) in order to emphasize the key objects of interest for our analysis, which

are the contemporaneous impulse responses.2

1 This normalization is frequently used in applications that employ sign restrictions on impulse
responses, see for example Canova and De Nicoló (2002), Uhlig (2005), and Benati and Surico (2009).

2 Whether the model is more conveniently expressed in A = B−1 or B (or even in a combined
form) depends on whether the identifying restrictions introduced by the researcher are more naturally
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The reduced form representation of the structural model is

yt = π0 +

p∑
l=1

Πlyt−l + ut,

= Πwt + ut, ut ∼ N(0,Σ), (2)

where it holds that ut = Bεt and Σ = BB′. Orthogonal matrices Q, which by

construction satisfy QQ′ = Ik, allow for the mapping from reduced form to structural

parameters, with

B = h(Σ)Q, (3)

and h(Σ) a factorization of Σ satisfying h(Σ)h(Σ)′ = Σ, for example the Cholesky

factorization. Common estimators for (Π,Σ) are Π̂T = YW ′(WW ′)−1 and Σ̂T =

(Y−Π̂TW )(Y−Π̂TW )′

T−m , with Y = [y1, ..,yT ], W = [w1, ..,wT ], wt = (1,yt−1, ..,yt−p)
′ .

2.2 The NiWU approach used in the literature

The most popular approach for sign restricted SVAR models expresses prior beliefs on

the parameters (π,Σ, Q), with π = vec(Π) the km× 1 vector that stacks the columns

of Π. As already discussed in the literature, when p(π,Σ) falls within either the

independent or the conjugate Normal-inverse-Wishart prior, drawing from the joint

posterior distribution p(π,Σ|Y ) is technically convenient (see, for example, Koop and

Korobilis, 2010). One can then draw Q matrices from the (Haar)uniform distribution,

assess if the implied values for the structural parameters satisfy the sign restrictions,

and accept or reject the draw accordingly.

expressed on the contemporaneous relation among variables or on the contemporaneous effects of the
shocks, respectively. Restrictions imposed on one form might not be apparent in the other form, due
to the nonlinearities in the mapping from one to another. Going through the publications of all top-
five journals and the Journal of Monetary Economics between 1998 and 2017, we found that around
13% of the total number of issues checked included at least one application of Structural Vector
Autoregressive models. Of the total number of SVAR applications that we found, approximately 15%
specifies the model in the A form, 76% specifies the model in the B form, and 9% specifies the model
in the hybrid AB form. The detailed list is available at this link.
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The convenience of the NiWU approach lies in the existence of efficient algorithms

for the sampling of the posterior distribution. In addition, the possibility of discarding

undesired draws allows for the straightforward introduction of sign restrictions not

only on contemporaneous impulse responses, but also on future horizons, as well as on

other structural parameters. The inconvenience lies in the fact that the distribution

p(Q|Σ) is never updated by the data (see Section C.1.1 of the Online Appendix). This

holds true irrespectively on whether the prior is explicitly introduced on p(Q|Σ) (as in

the NiWU approach), or if p(Q|Σ) is determined indirectly by a prior belief on some

structural parameter of interest, say B or B−1. In structural VARs, the researcher

imposes on the posterior of structural parameters the curvature implied by p(Q|Σ),

evaluated at Σ approaching Σ0 = E(utu
′
t) at a speed that depends on the sample size.

The NiWU approach makes it immediate to appreciate the shape of p(Q|Σ), which is

flat in Q and can vary only in Σ. However, since p(Q|Σ) is flat in Q, the researcher

has no control on the implications of p(Q|Σ) on the structural parameters of interest

given Σ.

To appreciate the importance of the above point, consider for simplicity the case

of sign restrictions on the contemporaneous impulse responses. Define SRB the set

of sign restrictions for B, and p(B) the probability distribution used in the analysis.

One can introduce SRB to the analysis by ensuring that p(B) attaches zero mass to

the values of B that fail to satisfy SRB. However, there are infinitely many proba-

bility distributions {p(B)1, p(B)2, p(B)2, ...} that ensure this property. Since B is not

identified, the posterior distributions {p(B|Y )1, p(B|Y )2, p(B|Y )3, ...} differ even in a

large sample in a way that asymptotically depends only on the distributions p(Q|Σ)

implied by p(B), i.e. {p(Q|Σ)1, p(Q|Σ)2, p(Q|Σ)3, ...}. The NiWU approach can flex-

ibly introduce sign restrictions on a wide class of parameters, at the cost of working

with an inflexible p(Q|Σ).
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2.3 The Np(B) approach proposed in this paper

To overcome the limitation summarized in the previous section, we follow the sug-

gestion by Baumeister and Hamilton (2015) and express prior beliefs directly on the

structural parameter of interest, which in our case is B. We now discuss this approach

and develop an importance sampler for it.

2.3.1 Prior beliefs expressed directly on (π, B)

We parametrize the model as in equation (1) and express prior beliefs on (π, B) as

p(π, B) ∝ p̃(π|B) · p̃(B) · I{π, B}. (4)

Since π is identified, p̃(π|B) matters less compared to p̃(B). Hence, we follow the

NiWU approach and set

p̃(π|B) = φ(µπ, Vπ), (5)

where φ(·, ·) represents the Normal probability distribution, and µπ and Vπ can be a

function of B. By contrast, we remain general for p̃(B) and grant the researcher flexi-

bility on the prior beliefs used on B (and, in turn, on the implied distribution p(Q|Σ)).

Additional restrictions can be introduced via the indicator function I{π, B}, for ex-

ample sign restrictions on the impulse responses on future horizons, or stationarity of

the model.3

The above approach strikes a balance between flexibility and tractability. On the

one hand, it provides flexibility on the prior beliefs p̃(B) used for sign restrictions on

arguably the most important impulse response horizon, namely the contemporane-

ous response. On the other hand, as also the NiWU approach, it makes the analysis

more tractable by using a normal prior distribution on the reduced form parameters

3 As in Baumeister and Hamilton (2015) and Baumeister and Hamilton (2019), we require that
p̃(B) is everywhere non-negative, and when integrated over the set of all values of B, it produces a
finite positive number.
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π, allowing for a flexible accept/reject algorithm to introduce additional restrictions

of interest. Conditioning on B, all structural parameters are identified, making flex-

ibility on the remaining structural parameters less important. The normality on π

is not restrictive except in small samples, given that π is identified. In addition, by

parametrizing the model in π, our approach makes it straightforward to use the prior

by Litterman (1986), which is applied directly on π.

The prior from equations (4)-(5) nests two special cases that are particularly com-

mon in the literature, and which we will focus on in the analysis:

Case 1 : p̃(π, B) = p̃(π) · p̃(B), p̃(π) ∝ 1, (6)

Case 2 : p̃(π, B) = p̃(π) · p̃(B), p̃(π) = φ(µπ, Vπ). (7)

Case 1 uses a flat prior on π. It is also suitable to implement the Minnesota prior

through dummy observations, as in the application in Section 4. Case 2 keeps the

proper Normal prior on π, but introduces prior independence. It allows for the in-

troduction of a more flexible specification of the Minnesota prior. As we show in

Section C of the Online Appendix, the joint posterior distribution associated with the

general prior (4)-(5) satisfies

p(π, B|Y ) ∝ p̃(π, B|Y ) · I{π, B},

∝ p̃(π|B, Y ) · p̃(B|Y ) · I{π, B}, (8)

p̃(π|B, Y ) = φ(µ∗π, V
∗
π ), (9)

p̃(B|Y ) ∝ p̃(B) · |det(B)|−T · |det(Vπ)|−
1
2 · |det(V ∗π )|

1
2 · (10)

· e−
1
2

{
ỹ′
(
IT⊗(BB′)−1

)
ỹ−µ∗′π V ∗

−1
π µ∗π+µ′πV

−1
π µπ

}
,

with ỹ, W , µ∗π and V ∗π defined in Section C.1.1 of the Online Appendix. Equation
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(10) implies

p̃(Σ|Y ) ∝ v{B→Σ,Q} · |det(Σ)|−
T
2 · |det(Vπ)|−

1
2 · |det(V ∗π )|

1
2 · (11)

· e−
1
2

{
ỹ′
(
IT⊗Σ−1

)
ỹ−µ∗′π V ∗

−1
π µ∗π+µ′πV

−1
π µπ

}
·
∫
O(k)

p̃
(
h(Σ)Q

)
dQ,

∝ |det(Σ)|−
T+1

2 · |det(Vπ)|−
1
2 · |det(V ∗π )|

1
2 · (12)

· e−
1
2

{
ỹ′
(
IT⊗Σ−1

)
ỹ−µ∗′π V ∗

−1
π µ∗π+µ′πV

−1
π µπ

}
·
∫
O(k)

p̃
(
h(Σ)Q

)
dQ,

with v{B→Σ,Q} = |det(Σ)|− 1
2 the volume element when mapping B to (Σ, Q), and O(k)

the space of orthogonal matrices of dimensions k×k. The results further simplify when

considering Cases 1 and 2 from equations (6)-(7), see Section C.1.2-Section C.1.3 of

the Online Appendix.

Equations (8)-(10) suggest that as long as we can obtain draws from p̃(B|Y ),

generating draws from p(π, B|Y ) is straightforward. However, to become practical in

applied work, our approach requires a convenient algorithm to draw from p̃(B|Y ). We

turn to this issue in the next section.

2.3.2 A new posterior sampler for p(B|Y )

We use two approaches to explore p̃(B|Y ). We first use our importance sampler, which

we discuss in this section. We then use the Dynamic Striated Metropolis-Hastings

(DSMH) algorithm by Waggoner et al. (2016), which is computationally more demand-

ing, but it can handle irregularly shaped posterior distributions and a large number

of parameters. We use the draws from the DSMH algorithm to approximate the true

posterior distribution of interest used as a benchmark to assess the performance of our

sampler. Section D of the Appendix discusses how we implement the algorithm by

Waggoner et al. (2016).

We build our sampling procedure on importance sampling techniques. Consider a

vector of parameters of interest, θ. Suppose we are interested in sampling from the
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target distribution p(θ), and we cannot draw from p(θ) directly, but can evaluate it.

Suppose that we can extract proposal draws from the importance distribution q(θ).

To the extent that the importance distribution fully covers the support of p(θ), we

can obtain draws from q(θ) by resampling with replacement the draws {θi} obtained

from the importance distribution using weights w(θi) = p(θ=θi)
q(θ=θi)

(see for example Koop,

2003, chapter 4).

Define p̃(B|Y )Np(B) as the posterior distribution associated with the general prior

p̃(B) from our Np(B) approach (equation 10), and p(B|Y )NiWU as the posterior dis-

tribution implied on B by the NiWU approach. Since sampling from p(B|Y )NiWU is

not challenging, one could set θ = B, p(θ) = p̃(B|Y )Np(B) and q(θ) = p(B|Y )NiWU .

Arias et al. (2018) show that this approach works successfully if the target distribu-

tion p̃(B|Y )Np(B) does not differ too much from p(B|Y )NiWU . However, this procedure

does not work in a general framework, because one cannot ensure that p(B|Y )NiWU

sufficiently covers the support of p̃(B|Y )Np(B).

We circumvent the above challenge by exploring p̃(B|Y )Np(B) indirectly. First,

define the following functions:

• p̃(Σ|Y )Np(B): posterior distribution on Σ implied by p̃(B|Y )Np(B), equation (12);

• p̃(Q|Y,Σ)Np(B): conditional distribution on Q implied by p̃(B|Y )Np(B);

• p(Σ|Y )NiWU : posterior distribution on Σ corresponding to the NiWU approach;

• p(Q)U : (Haar)uniform distribution on Q employed in the NiWU approach;

Then, notice that drawing from p̃(B|Y )Np(B) is equivalent to drawing from p̃(Σ|Y )Np(B)

and mapping Σ into B using draws of Q from p̃(Q|Y,Σ)Np(B). Accordingly, con-

sider the following importance sampling procedure. First, explore p̃(Σ|Y )Np(B) using

p(Σ|Y )NiWU as an importance distribution, with weights

wstage A =
vB→Σ,Q · p̃(B|Y )Np(B)

q(Σ|Y )
=
p̃(Σ|Y )Np(B)

p(Σ|Y )NiWU

. (13)
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Since Σ is identified, p(Σ|Y )NiWU and p̃(Σ|Y )Np(B) are close to each other except in

small samples, making p(Σ|Y )NiWU a candidate importance function for p̃(Σ|Y )Np(B).

Then, use p(Q)U as a proposal function for p̃(Q|Y,Σ)Np(B) to turn draws from p̃(Σ|Y )Np(B)

into draws from p̃(B|Y )Np(B). Since p(Q)U is uniform in O(k), it ensures zero proba-

bility that the parameter space covered by p(Q|Y,Σ)Np(B) is not explored.

Case 1 from equation (6) is particularly convenient to further build intuition behind

our sampler. As shown in Section C.1.2 of the Online Appendix, under Case 1 the

mode of the target distribution p̃(Σ|Y )Np(B) is implicitly defined by the equality

Σ =
T −m

T −m+ 1
Σ̂− 2

T −m+ 1

d

dΣ−1
log
(∫

O(k)

pB
(
h(Σ)Q

)
dQ
)
. (14)

By contrast, if proposal draws are generated from a Conjugate Normal inverse Wishart

prior that is flat in π, the mode of the proposal distribution equals 1
d+T+k+1−mS +

T−m
d+T+k+1−mΣ̂T , see Section B.1 of the Online Appendix. As the sample size increases,

both modes approach Σ̂T , which approaches the population moment Σ0 = E(utu
′
t).

This result is not new and it plays a central role in our algorithm work: since Σ is

identified, as the sample size increases differences in prior beliefs on Σ become irrelevant

in the posterior, provided the priors are strictly positive in the neighbourhood of Σ0.

Draws from p(Σ|Y )NiWU are easy to generate and offer the starting point for the

importance sampler.

The crucial step of the algorithm is to select the hyperparameters in the prior

proposal distribution q(Σ) to make the weights from equation (13) as balanced as

possible, while still ensuring that the proposal draws are easy to generate from the

posterior q(Σ|Y ). Building on this intuition, the appendix of the paper provides the

derivations for the following algorithm:

Algorithm: Sign restrictions

Stage A: generate draws from p̃(Σ|Y )Np(B):

11



1. Select the proposal prior beliefs q(π,Σ) = q(π) · q(Σ) as

Case 1 : q(π) ∝ 1, q(Σ) = |det(Σ)|−
1
2 , or

Case 2 : q(π) = φ(µπ, Vπ), q(Σ) = |det(Σ)|−
1
2 ;

2. Generate m1 proposal draws {Σ(d)}m1
d=1 through either direct sampling

or Gibbs sampling, using

Case 1 : Σ|Y ∼ iW(S∗, d∗), or

Case 2 : Σ|Y,Π ∼ iW(S∗, d∗), π|Y,Σ = φ(µ∗π, V
∗
π ),

through Algorithms A or C discussed in Section B of the Online Ap-

pendix, with (S∗, d∗, V ∗π ,µ
∗
π) specified in Table 2 in the appendix of

the paper.

3. for each Σ(d),

3a. extract one matrix Qc using the algorithm by Rubio-Ramirez

et al. (2010);

3b. compute the candidate matrix Bc = h(Σ(d))Qc. If Bc satisfies the

sign restrictions on B, store
(
Qi(Σ

(d)), Bi(Σ
(d)), wi(Σ

(d))stage B
)

=(
Qc, Bc, w

stage B
dc

)
, with wstage B

dc equal to p̃(B) evaluated at Bc,

otherwise move back to Step 3a;

3c. repeat Steps 3a-3b untilm2 draws
{
Qi(Σ

(d)), Bi(Σ
(d)), wi(Σ

(d))stage B
}m2

i=1

are stored. Store the number of attempts m3(Σ(d)) required to

generate m2 successful draws. Check that the effective sample

size ESSB
d =

(∑
i

(
wi(Σ

(d))stage B
)2
)−1

is sufficiently high, other-

wise increase m2;

12



3d. compute

w(Σ(d))stage A =
p̃(Σ|Y )Np(B)

p(Σ|Y )NiWU

≈
∑m2

i=1 p̃
(
Bi

)
m3(Σ(d))

, (15)

and assess if the relative effective sample size

rel ESSA =
(∑

d

(
w(Σ(d))stage A/

∑
d

(w(Σ(d))stage A)
)2
)−1

, (16)

is sufficiently high;

4. generate a new set
{

Σ(d)
}m4

d=1
by drawing from

{
Σ(d)

}m1

d=1
with replace-

ments using weights
{
w(Σ(d))stage A

}m1

d=1
;

Stage B: move from p̃(Σ|Y )Np(B) to p(π, B|Y )Np(B):

5. randomly select Σc from
{

Σ(d)
}m4

d=1
generated in Step 4;

6. randomly select one matrix Bc out of the set
{
Bi(Σc)

}m2

i=1
stored from

Step 3 using weights {wi(Σc)
stage B}m2

i=1;

7. compute (µ∗π, V
∗
π ) associated with Bc and generate one draw πc from

p̃(π|Y,B) = φ(µ∗π, V
∗
π );

8. if I{πc, Bc} = 1, store (πc, Bc), otherwise move back to Step 5;

9. repeat until m5 draws are successfully generated.

Our algorithm effectively resamples the posterior draws from the NiWU approach

and makes them representative of the posterior distribution associated with the prior

beliefs p̃(B) from our approach. We design the algorithm in two stages to stress that

Stage B should be carried out only if the relative effective sample size in Stage A

is satisfactory. In the rest of the paper we document that the sampling time of our

algorithm is roughly 4 minutes in the bivariate simulation exercise and 40 minutes in

the monetary application. The relative effective sample size is very high and equals

13



more than 0.95 in the simulation exercise and around 0.80 in the monetary application.

Figure F1 in the Online Appendix report the statistics that document the performance

of our sampler in the applications of the paper, and Section C.2 discusses a number

of additional diagnostic tests.

2.4 Proposing one possible prior p̃(B)

The paper has so far developed an approach that is general in the prior distribution

p̃(B). We conclude the section on the methodology by discussing one possible prior

specification for p̃(B). Other prior beliefs are also possible, and must ultimately be

chosen by the applied researcher.

Specifying prior beliefs p̃(B) is challenging. The literature still provides limited

guidance on explicit prior beliefs on structural parameters. Baumeister and Hamilton

(2015) introduce restrictions on B−1 rather than on B, and use the existing literature

to form prior beliefs on the contemporaneous elasticities among variables. However, as

discussed by Kilian and Lütkepohl (2017) and Uhlig (2017), researchers’ beliefs do not

frequently go beyond the sign of contemporaneous impulse responses. Such beliefs, in

turn, require taking a stand on expected magnitudes of the responses, on which it is

indeed challenging to form beliefs. As an example, one may entertain the belief that

an exogenous, one-standard-deviation monetary increase in the interest rate decreases

inflation, but lacks prior beliefs on the scale of such a decrease.

To overcome this challenge, we propose a prior specification that builds on the

Minnesota prior. With the Minnesota prior, one first approximates a reasonable scale

si of each variable variable yi (see, for example, the discussion in Canova, 2007 and

Kilian and Lütkepohl, 2017). This is frequently done using a training sample, setting

si either equal to the standard deviation of the residual of univariate AR(1) processes

estimated on each variable, or equal to the standard deviation of the variable. Once

{si}ki=1 is set, Bayesian shrinkage is introduced through a set of hyperparameters that

shrink the elements in π towards the random walk or the white noise process, taking
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the relative scale of the variables into account. We extend this approach as follows.

Call bij the entry of B capturing the effect of a one-standard-deviation shock j to

variable i, and call γi the reasonable scale of such effect. γi can be set equal to the

same statistic si from the the Minnesota prior. Alternatively, one can use the training

sample to estimate Σ and then set γi = Σ̂0.5
ii,training since it can be shown that the

covariance restrictions Σ = BB′ imply

− Σ0.5
ii ≤ bij ≤ Σ0.5

ii , (17)

with Σii the i − th element of the diagonal of Σ.4 Given {γi}ki=1, we set p̃(B) =∏
i

∏
j p̃(bij|γi, ψ1, ψ2), with p̃(bij|γi, ψ1, ψ2) = I(bij) · φ(µij, σij) the probability distri-

bution of (potentially truncated) normal distributions φ(µij, σij). I(bij) takes value 1

if the sign restrictions on bij are satisfied. The underlying hyperparameters are set as

follows:

1. if no sign restriction is imposed on bij, set µij = 0 and σij = ψ2γi/1.96, so

that the distribution is symmetric around 0, with 95% prior mass in the space

(−ψ2γi, ψ2γi);

2. if bij is restricted to be positive, start from a normal distribution with µij = ψ1γi

and calibrate the variance such that the truncated distribution has 95% prior

mass in the space (0, ψ2γi);

3. if bij is restricted to be negative, start from a normal distribution with µij =

−ψ1γi and calibrate the variance such that the truncated distribution has 95%

prior mass in the space (−ψ2γi, 0).

With this prior, the researcher sets a plausible upper bound γi for the effect of the

shock, and then introduces Bayesian shrinkage through the hyperparameters ψ1 and

4 Given Σ = BB′, the equations corresponding to the diagonal elements of Σ are Σii = b2
i1 + b2

i2 +
...+b2

ik. Since Σii is non-negative and since b2
ij ≥ 0, each element bij must satisfy −Σ0.5

ii ≤ bij ≤ Σ0.5
ii .

See also equation (33) in Baumeister and Hamilton (2015).
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ψ2. ψ1 controls for the first moment of the prior, ψ2 controls for the second moment.

Our prior is a generalization of the Generalized Normal prior in Arias et al. (2018),

with the advantage that the implied distribution p(Q|Σ) is not necessarily flat in Q.

We refer to Section E of the Online Appendix for more details.

3 An illustrative example

In this section we outline the intuition for our approach using simulations on a bivariate

VAR model. We then discuss what drives the difference between our Np(B) approach

and the traditional NiWU approach.

3.1 Simulation exercise

We build our simulation exercise on the model by Baumeister and Hamilton (2015).

We first employ ordinary least squares to estimate their bivariate reduced form VAR

model, which uses data on the growth rates of the US real labour compensation and

of total employment. The model includes a constant and 8 lags, and covers the period

1970Q1 through 2014Q4. We then use the estimated reduced form VAR as the data

generating process. We generate a dataset of 680 observations, initializing the data

from the estimated unconditional mean. We discard the first 100 observations to make

the data less dependent on the initial point, and store the next 100 observations to

use as a training sample. We then divide the remaining 480 observations into four

pseudo datasets, including up to the first 60, 120, 240 and 480 observations. We use

the same training sample for all datasets to improve the comparison, and to avoid an

unreasonably short training sample for the dataset of smaller size.

We estimate the structural VAR model from equation (1) by introducing sign

restrictions on the contemporaneous impulse responses. We identify the demand shock

and the supply shock as the structural shocks that move wages and employment in

the same and in the opposite direction, respectively. For each dataset, we estimate
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the model multiple times, always introducing the same sign restrictions, but modelling

them with different approaches. For the Np(B) approach proposed in our paper, we

use Case 1 for the main illustration, featuring a flat improper prior on π as discussed

in Section 2.3. We specify p̃(B) as from Section 2.4, setting ψ1 = 0.8 and ψ2 =

1.5 for the illustration, using γi = Σ̂0.5
ii,training with Σ̂training the estimate of Σ on the

training sample. For the NiWU approach, we use the most popular specifications and

parametrizations used in the literature, see Table 2 of the Appendix of the paper. All

models include a constant term and 8 lags, in accordance with the DGP. Section D of

the Online appendix discusses how we implement the Dynamic Striated Metropolis-

Hastings algorithm, which we use to further assess the effectiveness of our sampler.

Since we introduce no additional restrictions through the indicator function I{π, B},

there is no distinction between p̃(B|Y ) and p(B|Y ). Table F1 in the Online Appendix

reports the values of the tuning parameters for the algorithms used.

3.2 The intuition behind our importance sampler

We illustrate the intuition behind our posterior sampler in two steps. First, we show

graphically that proposal distributions are, in principle, easier to find for p̃(Σ|Y )Np(B)

then for p̃(B|Y )Np(B). Second, we argue that the hyperparameters in the prior distri-

bution q(Σ) behind the actual proposal distribution q(Σ|Y ) can be selected to heuris-

tically minimize the distance between q(Σ|Y ) and the target function p̃(Σ|Y )Np(B).

Figure 1 starts from two alternative parametrizations of an inverse Wishart distri-

bution on Σ, one in line with Kadiyala and Karlsson (1997), the other purely arbitrary

for the sake of illustration.5 These priors on Σ are then separately used in the NiWU

approach with the prior p(π,Σ) = p(π) · p(Σ), p(π) ∝ 1. The figure shows the pos-

terior distributions corresponding to the sample sizes T = 60 and T = 120, sampled

5 The inverse Wishart distribution p(Σ) ∝ |det(Σ)|− d+k+1
2 · e−

1
2 trace

[
Σ−1S

]
requires specifying the

hyperparameters (S, d). We parametrize (S, d) either as in Kadiyala and Karlsson (1997), or setting
S = 4 · Ik and d = 4 · k as arbitrary values that help the illustration.

17



Figure 1: On prior beliefs and sample size for Σ
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Note: The draws for this figure are generated using Algorithm B discussed in Section B of the
Online Appendix. See Table F1 for how we set the tuning parameters.

using Algorithm B discussed in Section B.1 of the Online Appendix. As shown in

the figure, the two parametrizations of the inverse Wishart distribution imply very

different priors for Σ, one being much tighter than the other. The posteriors, instead,

are very close to each other, a difference that becomes even more negligible for larger

datasets. This confirms the well-known result that for identified parameter, differences

in prior beliefs do not matter asymptotically, provided the prior gives non-zero mass

in the area that is relevant asymptotically. This suggests that exploring the distribu-

tion p̃(Σ|Y )Np(B) associated with our general prior p̃(B) can, at least in principle, take

advantage of some proposal prior q(Σ) such that the corresponding posterior q(Σ|Y )

is sufficiently close to the distribution of interest p̃(Σ|Y )Np(B), given the size of the

sample at hand.

Figure 2 builds on the above intuition and reports the update from our Np(B)

approach for T = 120. Proposal draws are obtained from the posterior distribution

q(Σ|Y ) associated with the proposal prior q(π) ∝ 1, q(Σ) = |det(Σ)|− 1
2 discussed in the
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Figure 2: Performance of our sampler (T = 120)
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Stage B:
from p̃(Σ|Y )Np(B) to p(B|Y )Np(B)
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Note: The draws for this figure are generated using our algorithm, discussed in Section 2.3.2. See
Table F1 in the Online Appendix for how we set the tuning parameters.

appendix of this paper. The right panel of the figure shows the posterior distribution of

interest p(B|Y )Np(B) = p̃(B|Y )Np(B), sampled either through Stage B of our algorithm

or using the Dynamic Striated Metropolis-Hastings algorithm. It is encouraging to see

that these distributions overlap, suggesting that our sampler is correctly sampling the

posterior of interest.

Table 1: Relative effective sample size from Stage A for different proposal priors q(Σ)

Proposal prior q(Σ) T = 60 T = 120 T = 240 T = 480

Case 1 )
1a) Σ ∼ iW(SKK , dKK) 0.4134 0.7166 0.8588 0.9269

1b) q(Σ) ∝ |det(Σ)|−
1
2 (our approach) 0.9595 0.9822 0.9873 0.9881

Case 2 )
2a) Σ ∼ iW(SKK , dKK) 0.5031 0.7134 0.8614 0.9302

2b) q(Σ) ∝ |det(Σ)|−
1
2 (our approach) 0.9682 0.9823 0.9875 0.9880

Note: The relative effective sample size is defined in equation (16). See Table 2 in the appendix of
the paper for the proposal distributions q(Σ|Y ) used in the sampler, and Table F1 in the Online
Appendix for how we set the tuning parameters.
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Figure 3: Comparison to the NiWU approach (T = 480)
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Note: The draws for this figure are generated using Algorithm B discussed in Section B of the On-
line Appendix, our algorithm discussed in Section 2.3.2, and their Dynamic Striated Metropolis-
Hastings algorithm discussed in Section D of the Online Appendix. See Table F1 for how we set
the tuning parameters.

Table 1 further elaborates on the role played by the selection of the prior distri-

bution associated with the proposal posterior distribution p(Σ|Y ). The table reports

the relative effective sample size from Stage A of our sampler for different sizes of the

dataset. Case 1a shows the illustrative case in which the proposal prior distribution

specifies the hyperparameters as in Kadiyala and Karlsson (1997). While it is con-

firmed that the effective sample size increases as T increases, for T = 60 the effective

sample size is still too low, suggesting that the proposal posterior distribution is still

far from the distribution of interest. By contrast, our selected proposal prior implies a

relative effective sample size above 0.95 already for T = 60. This intuition is confirmed

when our prior on π is replaced with Case 2, as shown in the second half of the table.6

The results suggest that a careful selection of the proposal prior distribution make the

algorithm work.

6 The illustration for Case 2 specifies the hyperparameters in the Minnesota prior for π as in
Canova (2007), leaving the prior for B unchanged.
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3.3 Comparison to the NiWU approach

Having discussed the key intuition of the sampler, we now illustrate what drives the

difference between the Np(B) and the NiWU approach. Figure 3 compares our Np(B)

approach with the NiWU approach, where the latter is calibrated as in Kadiyala

and Karlsson (1997).7 The left panel shows that the prior distributions on Σ are quite

different when comparing the explicit prior introduced by the NiWU approach (labelled

as p(Σ)NiWU, KK), and the distribution on Σ implied by our prior p̃(B) (labelled as

p̃(Σ)Np(B)). Yet, the posteriors are effectively identical. Again, this finding is due to

Σ being identified, and is in line with the discussion of Figure 1. By contrast, the

posterior distributions on B remain different even as the size of the dataset increases,

due to B being not identified. In this illustration, the marginal distributions p(Bi,j|Y )

associated with p(B|Y ) have fatter tails under the NiWU approach than under our

approach, an issue which we now inspect further.

While tempting, it is not advisable to interpret the differences the posteriors

p(B|Y )Np(B) and p(B|Y )NiWU by eyeballing differences in the corresponding priors

on B. To appreciate why, note that our prior on B is wider than the prior implied by

the NiWU approach shown. However, our posterior is actually tighter than the poste-

rior from the NiWU. This finding is due to the fact that, as the sample size increases,

differences in p(B|Y ) are driven by differences in the distribution p(Q|Y,Σ), where it

holds that p(Q|Y,Σ) = p(Q|Σ). Yet, inspecting the implications of p(Q|Σ) on B is

not straightforward when looking at p(B), neither in our approach nor in the NiWU

approach.

The bivariate case used in this illustration makes the comparison of p(Q|Σ)NiWU

and p(Q|Σ)Np(B) feasible graphically, further helping assess the difference between our

approach and the NiWU approach. When Q is of dimension 2 × 2, distributions on

Q can be shown graphically as the distribution on the corresponding rotation angle

θ of Givens transformations matrices (see, for example, Fry and Pagan, 2011, as well

7The results are the same with alternative parametrizations of the inverse Wishart distribution.
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Figure 4: Implications of p(Q|Σ) on B
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Note: The draws for this figure are generated using Algorithm F discussed in Section C.1.1 of
the Online Appendix. See Table F1 for how we set the tuning parameters.

as the analysis in Baumeister and Hamilton, 2015). Uniformity on Q is equivalent

to uniformity on θ. The top-left plot of Figure 4 shows that indeed the angle of the

rotation matrices that replicate draws of Q from the algorithm by Rubio-Ramirez

et al. (2010) is uniformly distributed in the support [−π/2, π/2]. Conditioning on

Σ, the rotation angles consistent with the sign restrictions are uniform in a subset

of the space [−π/2, π/2]. While the NiWU approach treats such angles as equally

plausible, the Np(B) approach does not, taking an explicit stand on the part of the

structural parameter space that is considered more in line with the scaling of the

variables. The remaining panels of Figure 4 show the implications of p(Q|Σ)NiWU and

p(Q|Σ)Np(B) on B by showing p(B|Σ). Given the constraint from equation (17), no

draw of bij is obtained outside of the interval [−Σ0.5
i,i ,+Σ0.5

i,i ]. The NiWU approach

implies a distribution that is skewed towards such bounds (see also equation (33)
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in Baumeister and Hamilton, 2015 and their Figure 1), while the Np(B) approach

features a bell-shaped distribution within these bounds. This clarifies the origin of

the update of the prior distributions. Our prior on B is actually wider than the prior

on B implied by the NiWU approach. Yet, what either prior actually imposes upon

the data is p(B|Σ), which is very wide and ill-shaped for the NiWU approach, and

smoother and tighter for our approach.

All applications of the Np(B) approach are set to generate 25,000 posterior draws

and take approximately four minutes to run. The algorithm for the NiWU approach

was run to generate the same number of posterior draws and takes less than a minute.

The Dynamic Striated Metropolis Hastings algorithm run for less then 90 minutes.

See Table F2 in the Online Appendix for the details.

4 Application to monetary policy shocks

In this last section we apply our methodology to study the effects of monetary pol-

icy shocks on the real economy. We use the model by Caldara and Herbst (2019),

which includes five variables. In their analysis, Caldara and Herbst (2019) show that

monetary policy shocks in the US had an economically significant effect on the real

economy during the Great Moderation, contrary to what was found, for example, by

Boivin et al. (2010). Using sign restrictions, we find that the effects on the real econ-

omy are even larger than what is documented by Caldara and Herbst (2019). This

result is confirmed when applying sign restrictions through the traditional NiWU ap-

proach, an approach that yet delivers a smaller quantitative difference from the results

in Caldara and Herbst (2019).

4.1 Model, prior specifications, and posterior sampler

We specify the model as in Caldara and Herbst (2019), except that we identify mone-

tary policy shocks using sign restrictions instead of an external instrument. We include
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the average federal funds rate over the last week of each month, the log of manufactur-

ing industrial production, the unemployment rate, the log of the produced price index

for finished goods. We include a constant and 12 lags of the endogenous variables. As

in Caldara and Herbst (2019), the model uses the period 1990M1 through 1993M12

as training sample and the period 1994M1 through 2007M7 as estimation sample.

We use the same prior beliefs for π as Caldara and Herbst (2019). We set p(π) ∝ 1,

which corresponds to Case 1 discussed in Section 2.3. We then add dummy variables

to model the Minnesota Prior as discussed in Del Negro and Schorfheide (2011). We

use the same hyperparameter values for the Bayesian shrinkage on π as Caldara and

Herbst (2019).8 While Caldara and Herbst (2019) introduce dummy variables also

to model prior beliefs on Σ, we follow our approach and specify the prior on B. We

introduce the sign restrictions that a contractionary monetary policy shock does not

decrease unemployment and corporate credit spreads, and does not increase the federal

funds rate, industrial production and prices. We introduce these restrictions in the

month when the shock hits, and up to three months after the shock. We model the prior

p̃(B) as discussed in Section 2.4. We set γi = Σ̂0.5
ii,training, ψ1 = 0.8 and ψ2 = 1.5. This

gives prior probability mass also above the estimated upper bound for bij, making the

prior less dogmatic. Last, given that the model is partially identified, we impose non-

repetition of the sign of the identified column of B compared to its remaining columns.

Due to the shortness of the training sample relative to the number of parameters of

the model, Σ̂training is estimated with a VAR including one lag.

As in the illustration from Section 3, we sample the posterior distribution p̃(B|Y )

using both the Dynamic Striated Metropolis-Hastings algorithm and our algorithm,

always checking that the results for p(B|Y ) are virtually identical. We set our sampler

using proposal draws as discussed in the appendix of the paper. The sampler delivers

8 The approach by Caldara and Herbst (2019) strictly requires no prior beliefs on π, but on the
corresponding structural autoregressive parameters. Yet, they specify such prior to indirectly imply
the Minnesota Prior on π. Having specified the model directly in π, our approach makes it more
natural to introduce prior beliefs on π.

24



a relative effective sample size for Stage A of 0.80. The computational time of our

sampler is 37 minutes, compared to the DSMH algorithm, which took approximately 5

hours. The NiWU approach took 4 minutes to generate the same number of posterior

draws compared to our sampler. See Table F1 for how we set the tuning parameters

and Table F2 in the Online Appendix for the details of the computational time.

4.2 Results

Figure 5 shows the results for the impulse responses to a contractionary monetary

policy shock normalized to increase the federal funds rate by 25 basis points. The

left two columns report the pointwise median and the pointwise 90% credible band.

The remaining columns complement the illustration by plotting the marginal posterior

distribution of the same normalized impulse responses contemporaneously or after 12

months. The figure shows the results from Caldara and Herbst (2019) adjusted to the

same normalization of the impulse responses, as well as when applying sign restrictions

either through our Np(B) approach or through the traditional NiWU approach.

While sign restrictions make it fruitless to assess if a restricted effect is different

from zero or not, they can assess if the effects are quantitatively stronger or weaker than

what found by Caldara and Herbst (2019), and can highlight qualitative differences

at longer horizons. The first column of Figure 5 documents that sign restrictions

broadly confirm the qualitative results by Caldara and Herbst (2019). In response to

a monetary tightening, the real economy is affected through a decrease in industrial

production and an increase in unemployment for up to three years. In addition, prices

decrease for well after the periods for which sign restrictions are introduced. However,

the effects are quantitatively stronger when identifying monetary policy shocks through

sign restrictions. While delivering very similar results for the policy rate and the credit

spreads, the results from sign restrictions for the remaining variables suggest a response

that is double in size as the one from Caldara and Herbst (2019).

We now turn to study the differences when applying sign restrictions either through
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Figure 5: Monetary policy shocks: Impulse Responses
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Note: The monetary shock is normalized to imply an impact 25 basis points increase in the
policy rate. For the comparison to the responses by Caldara and Herbst (2019), we run their
codes, apply the same normalization of the impulse responses as in our analysis, and compute
the pointwise percentiles as well as the marginal distributions.

the traditional NiWU approach or through our approach. When inspecting only the

pointwise median and 90th band, the results seem to be limited to a milder effect on

the pointwise median responses from the NiWU approach. The remaining columns of
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Figure 5 suggest, instead, that there is a relevant difference in the results depending

on how sign restrictions are modelled. The NiWU approach delivers results that imply

a weaker response of all variables broadly on all horizons within the first year from the

shock, yet still confirming that sign restrictions imply stronger results than in Caldara

and Herbst (2019). According to the NiWU approach, the mode of the impact response

of unemployment is +5 basis points. Modelling the same sign restrictions taking

into account the volatility of the data changes the results. According to our Np(B)

approach, the mode of the same contemporaneous responses of unemployment is more

than doubled and equals around +11 basis points. The same holds for industrial

production.

A similar result holds for the forecast error variance decomposition, which is shown

in Figure 6. The illustration is organized in the same way as with the impulse re-

sponses, except that the marginal distributions are now shown for 12 and 36 months

after the shock, as stressed in Caldara and Herbst (2019). Caldara and Herbst (2019)

document that monetary shock play a non-negligible role in explaining the forecast

error variance of industrial production and unemployment. Our approach suggests an

even stronger effect, as can be best seen from the last two columns of Figure 6. The

mode of the marginal distributions in Caldara and Herbst (2019) suggest that less

than 10% of the forecast error variance of industrial production and unemployment

is explained by monetary shocks. Applying sign restrictions through our approach

increases this statistic to around 25%. As for the analysis of impulse responses, sign

restrictions applied without taking into account the volatility of the data deliver re-

sults that are quantitatively in-between the results by Caldara and Herbst (2019) and

our results. As also in Caldara and Herbst (2019), we stress that posterior uncertainty

on forecast error variance decompositions remains high.
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Figure 6: Monetary policy shocks: Forecast Error Variance Decomposition
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5 Conclusions

Structural Vector Autoregressive models are frequently identified using sign restrictions

on the impulse response of selected structural shocks of interest. However, it is not

clear how this identification approach should be implemented in practice. On the

one hand, it is convenient to use the independent or the conjugate Normal-inverse-
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Wishart-Uniform prior employed in the literature, as this makes posterior sampling

highly tractable given the existing methodologies. On the other hand, it is important

to retain flexibility on the prior beliefs implied for the key structural parameters of

interest, since such prior affects the statistics of interest even in a large sample.

We propose an approach that offers flexibility for the prior specification on the

contemporaneous impulse responses, while ensuring that the joint posterior distribu-

tion is tractable. We illustrate the intuition of our approach using simulations on

the bivariate demand and supply model by Baumeister and Hamilton (2015). We

then develop an application to study the effects of monetary policy shocks in the US

during the Great Moderation. We confirm the results by Caldara and Herbst (2019)

that monetary shocks were effective at moving the real economy, and document that

the effects on unemployment and industrial production are actually twice as big as

in Caldara and Herbst (2019) when identifying the monetary shocks using relatively

conventional sign restrictions on the impulse responses.
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Appendix

As shown in Section B.1 of the Online Appendix, the proposal prior distributions

p(π,Σ)prop = q(π) · q(Σ), (18)

q(π) ∝ 1, (19)

q(Σ) ∝ |det(Σ)|
c
2 · e−

1
2

trace
[

Σ−1S
]
, (20)

allows for proposal draws directly generated from the proposal posterior distribution

Σ|Y ∼ iW(S∗, d∗), (21)

d∗ = T −m− c− k − 1, (22)

S∗ = S + Σ̂T (T −m). (23)

Under Case 1 considered in the paper (equation 6, derived analytically in Section C.1.2

of the Online Appendix), the weights in Stage A of our algorithm equal

wstage A
d =

p̃(Σ|Y )Np(B)

p(Σ|Y )NiWU

, (24)

=
v{B→Σ,Q} · |det(Σ)|−T−m2 · e−

1
2

trace
[

Σ−1Σ̂T (T−m)
]
·
∫
O(k)

pB
(
h(Σ)Q

)
dQ

|det(Σ)|−T−m−c2 · e−
1
2

trace
[

Σ−1
(
S+Σ̂T (T−m)

)] , (25)

=
|det(Σ)|− 1

2 · |det(Σ)|−T−m2 · e−
1
2

trace
[

Σ−1Σ̂T (T−m)
]
·
∫
O(k)

pB
(
h(Σ)Q

)
dQ

|det(Σ)|−T−m−c2 · e−
1
2

trace
[

Σ−1
(
S+Σ̂T (T−m)

)] ,

(26)

= |det(Σ)|−
c+1

2 · e
1
2

trace
[

Σ−1S
]
·
∫
O(k)

pB
(
h(Σ)Q

)
dQ. (27)

The integral in equation (27) can be evaluated using Algorithm E, see Section C.1.1

of the Online Appendix or Step 3d of our algorithm. In our applications, setting
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(c, S) = (−1, 0 · Ik) is sufficient to reduce the volatility of the weights considerably,

delivering a sufficiently high effective sample size.

Consider now Case 2 (equation 7, derived analytically in Section C.1.3 of the

Online Appendix). The weights in Stage A corresponding to the same proposal draws

from equation (21) now equal

wstage A
d =

p̃(Σ|Y )Np(B)

p(Σ|Y )NiWU

, (28)

=
v{B→Σ,Q} · |det(Σ)|−T2 · |det(V ∗π )| 12 · e−

1
2

{
ỹ′
(
IT⊗Σ−1

)
ỹ−µ∗′π V ∗

−1
π µ∗π

} ∫
O(k)

pB
(
h(Σ)Q

)
dQ

|det(Σ)|−T−m−c2 · e−
1
2

trace
[

Σ−1
(
S+Σ̂T (T−m)

)] ,

(29)

=
|det(Σ)|− 1

2 · |det(Σ)|−T2 · |det(V ∗π )| 12 · e−
1
2

{
ỹ′
(
IT⊗Σ−1

)
ỹ−µ∗′π V ∗

−1
π µ∗π

} ∫
O(k)

pB
(
h(Σ)Q

)
dQ

|det(Σ)|−T−m−c2 · e−
1
2

trace
[

Σ−1
(
S+Σ̂T (T−m)

)] ,

(30)

= |det(Σ)|−
m+c+1

2 · |det(V ∗π )|
1
2 · e

1
2

trace
[

Σ−1S
]
· e−

1
2

{
ỹ′
(
IT⊗Σ−1

)
ỹ−µ∗′π V ∗

−1
π µ∗π

}
·

·
∫
O(k)

pB
(
h(Σ)Q

)
dQ. (31)

Since this function is less convenient to evaluate compared to equation (27), we replace

the proposal prior beliefs (18)-(20) with

p(π,Σ)prop = q(π) · q(Σ), (32)

q(π) = φ(µπ, Vπ), (33)

q(Σ) ∝ |det(Σ)|
c
2 · e−

1
2

trace
[

Σ−1S
]
. (34)

where the prior mean and variance equal the ones used in our prior p̃(π) in equation

(7). As shown in Section B.2 of the Online Appendix, the proposal draws obtained
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from a Gibbs sampler built on the conditional distributions

π|Y,Σ ∼ N
(
µ∗π, V

∗
π

)
, (35)

Σ|Y,Π ∼ iW(S∗, d∗), (36)

V ∗π =
(
V −1
π +WW ′ ⊗ Σ−1

)−1
, (37)

µ∗π = V ∗π
(
V −1
π µπ + (WW ′ ⊗ Σ−1)π̂T

)
, (38)

d∗ = T − c− k − 1, (39)

S∗ = S + (Y − ΠW )(Y − ΠW )′, (40)

are representative of the marginal posterior distribution

p(Σ|Y ) ∝ |det(V ∗π )|
1
2 · |det(Σ)|−

T−c
2 · e−

1
2

{
trace
[

Σ−1S
]

+ỹ′
(
IT⊗Σ−1

)
ỹ−µ∗′π V ∗

−1
π µ∗π

}
. (41)

Hence, the weights for Stage A,

wstage A
d =

p̃(Σ|Y )Np(B)

p(Σ|Y )NiWU

, (42)

=
v{B→Σ,Q} · |det(Σ)|−T2 · |det(V ∗π )| 12 · e−

1
2

{
ỹ′
(
IT⊗Σ−1

)
ỹ−µ∗′π V ∗

−1
π µ∗π

} ∫
O(k)

pB
(
h(Σ)Q

)
dQ

|det(V ∗π )| 12 · |det(Σ)|−T−c2 · e−
1
2

{
trace
[

Σ−1S
]

+ỹ′
(
IT⊗Σ−1

)
ỹ−µ∗′π V ∗

−1
π µ∗π

} ,

(43)

=
|det(Σ)|− 1

2 · |det(Σ)|−T2 · |det(V ∗π )| 12 · e−
1
2

{
ỹ′
(
IT⊗Σ−1

)
ỹ−µ∗′π V ∗

−1
π µ∗π

} ∫
O(k)

pB
(
h(Σ)Q

)
dQ

|det(V ∗π )| 12 · |det(Σ)|−T−c2 · e−
1
2

{
trace
[

Σ−1S
]

+ỹ′
(
IT⊗Σ−1

)
ỹ−µ∗′π V ∗

−1
π µ∗π

} ,

(44)

= |det(Σ)|−
c+1

2 · e
1
2

trace
[

Σ−1S
]
·
∫
O(k)

pB
(
h(Σ)Q

)
dQ, (45)

are now the same as from equation (27), and become particularly tractable to evaluate

for (c, S) = (−1, 0 · Ik). In our applications, we find that the relative effective sample
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size for Case 2 is Section 3 is much higher when using the proposal prior distribution

(32)-(34) rather than (18)-(20).

Table 2 summarizes the key results needed to our the sampler. For each case con-

sidered for the prior beliefs, the table indicates a candidate proposal prior distribution,

the corresponding proposal posterior distribution, and the corresponding weights for

Stage A of our sampler.

Table 2: Proposal prior and posterior distributions for our sampler and comparison to the
NiWU approach

Proposal prior Proposal posterior Weights in Stage A NiWU approach
q(π,Σ) q(π,Σ|Y ) and q(Σ|Y ) of our algorithm for the comparison

Case 1) p̃(π) ∝ 1 (Flat prior or Minnesota prior via dummies observations)

1a) q(π,Σ) = q(π) · q(Σ) Σ|Y ∼ iW (S∗, d∗) p(π,Σ) = p(π) · p(Σ)

q(π) ∝ 1 d∗ = T −m− c− k − 1 ∝ |det(Σ)|−
c+1

2 · e
1
2

trace
[
Σ−1S

]
· p(π) ∝ 1

q(Σ) ∝ |det(Σ)|
c
2 · S∗ = S + Σ̂T (T −m) ·

∫
O(k) p̃

(
h(Σ)Q

)
dQ either p(Σ) ∝ 1 or

· e−
1
2

trace(Σ−1S)
T ≥ c +m + 2k + 1 Σ ∼ iW(S, d)

Special case for (c, S) =
(
− 1, 0 · Ik

)
, used in our algorithm

1b) q(π,Σ) = q(π) · q(Σ) Σ|Y ∼ iW (S∗, d∗)
q(π) ∝ 1 d∗ = T −m− k ∝

∫
O(k) p̃

(
h(Σ)Q

)
dQ (same as above)

q(Σ) ∝ |det(Σ)|−
1
2 S∗ = Σ̂T (T −m)

T ≥ 2k +m

Case 2) p̃(π|B) = p̃(π) N(µπ, Vπ) (Flexible Minnesota prior)

2a) q(π,Σ) = q(π) · q(Σ) vec(Π)|Y,Σ ∼ N(µ∗π, V
∗
π ) p(π,Σ) = p(π) · p(Σ)

πprop ∼ N(µπ, Vπ) Σ|Y,Π ∼ iW (d∗, S∗) ∝ |det(Σ)|−
c+1

2 · e
1
2

trace
[
Σ−1S

]
· π ∼ N(µπ, Vπ)

q(Σ) ∝ |det(Σ)|
c
2 · d∗ = T − c− k − 1 ·

∫
O(k) p̃

(
h(Σ)Q

)
dQ either p(Σ) ∝ 1 or

· e−
1
2
·trace(Σ−1S)

S∗ = S + (Y − ΠW )(Y − ΠW )′ Σ ∼ iW(S, d)
T ≥ c + 2k + 1

V ∗π =
(
V−1
π +WW ′ ⊗ Σ−1)−1

µ∗π = V ∗π
(
V−1
π µπ + (WW ′ ⊗ Σ−1)π̂T

)
Special case for (c, S) =

(
− 1, 0 · Ik

)
, used in our algorithm

vec(Π)|Y,Σ ∼ N(µ∗π, V
∗
π )

2b) q(π) ∼ N(µπ, Vπ) Σ|Y,Π ∼ iW (d∗, S∗) ∝
∫
O(k) p̃

(
h(Σ)Q

)
dQ (same as above)

q(Σ) ∝ |det(Σ)|−
1
2 d∗ = T − k

S∗ = (Y − ΠW )(Y − ΠW )′

T ≥ 2k

V ∗π =
(
V−1
π +WW ′ ⊗ Σ−1)−1

µ∗π = V ∗π
(
V−1
π µπ + (WW ′ ⊗ Σ−1)π̂T

)

Note: Our algorithm requires a proposal distribution q(Σ|Y ). The table lists different possible
proposal distributions depending on the corresponding proposal prior q(Σ), and reports the corre-
sponding weights for Step 3d of our algorithm. The last column shows which parametrization of
the NiWU approach is used as a comparison in the analysis of the paper.
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