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Abstract

We find that deep contractions have highly persistent scarring effects, depressing
the level of GDP at least a decade hence. Drawing on a panel of 24 advanced and
emerging economies from 1970 to the present, we show that these effects are nonlin-
ear and asymmetric: there is no such persistence following less severe contractions or
large expansions. While scarring after financial crises is well known, it also occurred
after the deep contractions of the 1970s and 1980s that followed energy price shocks
and restrictive monetary policy to combat high inflation. These results are very ro-
bust and have important implications for policy making and macro modelling.
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1 Introduction

Since the beginning of the new millennium, the global economy has experienced several

major contractions that were characterised by non-linearities and scarring effects. The

Great Financial Crisis (GFC) is the best know example, when GDP remained below the

pre-shock trend path in many countries for a long time.1 More recently, the deep reces-

sions following the outbreak of the Covid-19 pandemic and the economic fallout from

the Russian invasion of Ukraine have raised the fears of long-term scarring.2 At the

same time, we still know little about the determinants of scarring more generally and

the circumstances under which it becomes more probable, even though these are critical

questions for both policymakers and researchers. For example, whether or not contrac-

tions cause long-term scarring has radically different implications for macroeconomic

policy and the cost-benefit analysis of mitigating policy actions.3 And from an economic

research perspective, hysteresis effects challenge the still dominant paradigm of linear

Dynamic Stochastic General Equilibrium models, which continue to be the workhorse

models used by many academics and practitioners.

In this paper, we develop a new statistical test for scarring based on the properties of

long-horizon growth rates. The approach is very simple and intuitive. We first define

contractions as time periods where the (standardised) annual real GDP growth rate is

below the median, and order such events in terms of their severity. We then calculate

multi-year real GDP growth rates (up to 10 years) and compare those from the origin of

contractions – the quarter immediately preceding the drop in GDP – with those calcu-

lated from all other points in the sample. If contractions have only transitory effects, the

level of GDP will converge back to trend and we will observe no significant difference in

long-term growth rates from the origin of contractions vis-à-vis the rest of the sample.

In contrast, if contractions cause scarring, long-term growth rates will remain depressed

1See, for instance, Ball (2014).
2For a very recent contribution see e.g. Financial Stability Board (2022).
3See Cerra et al. (forthcoming) for discussion.
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relative to other periods, regardless of the horizon.4

Using a panel of 24 advanced and emerging economies from 1970 to the present, we

find significant non-linearities in that there is a tipping point in recovery dynamics: con-

tractions whose severity exceeds a certain threshold have highly persistent costs whose

effects can be observed in the level of GDP a decade hence. This phenomenon is not

present for less severe contractions, the effects of which dissipate with the forecast hori-

zon. Empirically, this tipping point occurs at around the 20th percentile, and we find

that the more severe the initial contraction, the larger the scarring effects in the long run.

At the same time, we find no evidence of similar persistence following the largest expan-

sions. These findings are economically significant: real GDP growth in the ten years after

very severe contractions is almost one standard deviation weaker than otherwise, which

is equivalent to a 4.25% drop in the level of GDP for an average advanced economy.

Our second main finding is that the potential for scarring reflects the size of the con-

traction rather than the reasons it occurred. Several of the largest contractions in our

dataset are associated with financial crises, phenomena which are known to have highly

persistent effects.5 But many others were triggered by different factors, including sharp

increases in energy prices or restrictive monetary policy actions taken in response to

high inflation. While it is hard to disentangle the drivers of any particular recession

episode and many factors tend to coincide (e.g., restrictive monetary policy actions and

oil prices shocks in the late 70s), we use judgement to allocate recessions to specific

types depending on what we view as the dominant narrative of the event in question.

Our surprising finding is that when we condition on these recession types separately,

we find that all have long-term effects on the level of GDP, with contractions associated

4There is a read-across between our method and the old and inconclusive debate on whether GDP
contains a unit root. As we discuss in the next section, our approach does not rely on the trend versus
difference stationary distinction (see e.g., Christiano and Eichenbaum, 1989 for a summary of this litera-
ture). While it does share similarities with other non-parametric approaches, such as Reinhart and Rogoff
(2014) and Blanchard et al. (2015), it does not involve judgment about e.g., turning points and definitions
of recovery phases.

5See e.g., Cerra and Saxena (2008), Reinhart and Rogoff (2009), Claessens et al. (2012), Jorda et al. (2013),
and Jordà et al. (2015).
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with supply shocks caused by energy market disruptions having the largest long-term

effects.

The scarring caused by large contractions is also apparent in the unconditional dis-

tribution of multi-period GDP growth. While growth rates are unimodal with a signifi-

cant left skew at short horizons,6 we find that distributions of multi-period growth of 5

years and above are multi- and predominantly bimodal. Growth tends to be polarised

into two cases: a ‘normal growth’ state and a ‘depressed growth’ state. That this phe-

nomenon is visible in the unconditional growth distribution signals a regularity in the

data-generating process, with large adverse shocks having similar magnitude both over

time and across countries (in terms of standard deviations).

Our findings are robust. They are not driven by the Great Financial Crisis – we obtain

similar results using a sample that ends in 2000. They are also not driven by long-term

growth trends or cross-country growth differentials. In our baseline specification, we

remove a long-run trend using a Hodrick-Prescott filter and normalise each country’s

multi-period growth rates by subtracting the mean and dividing by the standard devia-

tion (both calculated using the full sample). We obtain similar findings using alternative

approaches to detrending including the Hamilton projection filter (Hamilton, 2018) and

subtracting 20-year rolling averages; we find similar results too using the raw unfiltered

data. Our results are also not sensitive to the method used to define large contractions.

The results also do not reflect another potential concern that large economic contrac-

tions tend to follow unsustainable booms, in which case our finding of protracted weak

growth could simply reflect a reversion to the (lower) trend path. To address this, we use

an approach advocated by Blanchard et al. (2015) where we repeat our baseline analysis,

but shift back the starting point used to calculate long-term growth rates by 2 and 3-years

from the origin of the contraction. For example, if GDP begins declining in 1990Q1, we

calculate 10-year growth rates from 1988Q1 and 1987Q1. Intuitively, this allows us to

6For recent evidence, see e.g., Jensen et al. (2020).
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‘look through’ the effects of unsustainable booms that may precede contractions. We

find that this has no impact on our findings.

In the last part of the paper, we explore what these results imply for models of the

business cycle. Our findings are manifestly inconsistent with textbook Real Business Cy-

cle and New Keynesian models. Even in their pre-linearized form, these models do not

generate significant differences between large and small shocks;7 the dynamics of these

models are also typically saddlepath stable, implying the economy will return to steady

state following a shock, whatever its magnitude. Our results seem more consistent with

strands of the literature that emphasise the potential for contractions to cause long-term

scarring via their impact on labour markets, capital accumulation or technical progress

(see Cerra et al., forthcoming for a detailed review). Endogenous growth models feature

prominently in this literature. But the nonlinearity and asymmetry in our results points

to interacting mechanisms, such as non-Gaussian shocks and/or occasionally-binding

constraints associated with the effective lower bound on monetary policy or financial

constraints. Indeed, our finding that smaller contractions and economic expansions are

not associated with long-lasting effects on GDP is inconsistent with the predictions of

endogenous growth models, where all shocks will have long-term effects.

Our findings have important implications for policymakers. A key message is that

large shocks have the potential to depress the growth trajectory of the economy far

into the future. This places a premium on policy actions that reduce the potential for

deep contractions in the first place – be it active monetary and fiscal policy reactions

to cushion the impact of shocks or resilience-building macroprudential measures that

reduce the potential for shocks to be amplified via the financial sector. As such, it

underscores Olivier Blanchard’s assessment after the GFC that it should be a major

objective of policymakers to stay away from ”dark corners” (Blanchard, 2014).8 But our

7See Ascari et al. (2015) for an analysis of the properties of pre-linearised Real Business Cycle and New
Keynesian models.

8Blanchard (2014) defines dark corners are those states of the world when the economy malfunctions
badly and non-linearities kick in.
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findings also carry a cautionary note: if a large recession does occur, the economy will

likely not converge to its pre-recession trend. As such, standard measures of output

gaps that guide monetary policy may not be accurate for some time. Moreover, such

a deep recession is likely to augur a prolonged period of depressed GDP (relative to

its pre-crisis path) with consequences for public and private debt sustainablity, amongst

other things.

The rest of this paper is organised as followed. In section 2, we present our statistical

method for estimating scarring effects and compare it to other approaches advanced in

the literature. Section 3 describes our data and approach to identifying severe contrac-

tions. Section 4 presents our main findings, while section 5 examines their robustness to

a range of alternative specifications. Section 6 discusses the implications of our results

for macroeconomic modelling, and Section 7 concludes.

2 Detecting scarring effects

The most common approach to studying if shocks or economic contractions have long-

lasting effects on output exploits statistical differences between trend stationary and

difference stationary series.9 However, neither of these two specifications provides a

plausible description of output dynamics.

At one extreme, trend stationarity is hard to reconcile with downward step changes

that can be seen from time to time in real output series. At the other extreme, unit-root

dynamics impose a degree of symmetry that is also at odds with the data. Under this

specification, both big and small contractions have permanent effects leading to more

erratic behaviour in GDP than is observed in reality. Moreover, expansions also have

permanent effects on output, yet it is very rare to see upward jumps in the level of real

GDP. Forcing the data to choose between these two extremes can substantially distort

9E.g., Nelson and Plosser (1982), Campbell and Mankiw (1987), and Cochrane (1988).
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inference. For instance, other types of non-stationarity, such as structural breaks and or

regime-switching dynamics, tend to bias results toward finding unit-roots if not properly

accounted for.10

Recent contributions to the literature have moved away from explicit functional speci-

fications and have instead approached the problem in other ways. One strand attempts

to identify and date peaks and troughs in real GDP and use this information to study

characteristics of recovery periods.11 This approach requires some arbitrary choices that

can have large effects on the results. For example, peaks (troughs) are often identified by

periods of positive (negative) growth, followed by consecutive periods of negative (pos-

itive) growth. But this only picks up extreme business cycle events as growth tends to

remain positive during milder downturns. Moreover, an analysis of peaks and troughs is

cyclical by construction and so is not well suited to studying the possibility of scarring.12

An alternative approach attempts to identify shifts in trend output. For instance, Blan-

chard et al. (2015) compare linear trends estimated before and after large contractions

and Ball (2014) compares OECD forecasts of potential GDP before and after the Great

Financial Crises in 2007-2008. But both studies assume that output is on a sustainable

trajectory over the estimation interval.

In this section, we propose an alternative simple test of scarring, which avoids some of

the pitfalls of the aforementioned literature. The basic idea of our approach is illustrated

in Figure 1. In the left-hand panel, a big permanent shock to (log) output, yt, of size −d

occurs at time t0 + 1. At any t ≤ t0 − h or t > t0, the h-period ahead growth rate, defined

as xt+h,t ≡ h−1(yt+h − yt), is some constant µ. However, the h-period ahead growth rate

calculated at t0 (blue lines) or the h − 1 periods preceding it (orange line) is µ − d/h.

10Indeed, the literature has failed to reach consensus regarding whether a unit-root exists in real GDP,
see e.g., Darné and Charles (2012) and Cushman (2016).

11See Cerra and Saxena (2005), Claessens et al. (2012) , Jorda et al. (2013), and Reinhart and Rogoff
(2014).

12For example, a trough may be followed by one or two quarters of high growth before the economy
reverts back to trend growth. The business cycle dating method will only identify the turning-points even
if such a short recovery may not make up for initial GDP losses
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Clearly, as h increases the h-period ahead growth rate at t0 converges toward µ at the

rate 1/h, but it turns out that it remains statistically different from µ regardless of h. In

contrast, if the shock is transitory (middle panel), the h-period ahead growth rate will

return to µ by some horizon h̄ (in the middle panel we have set h̄ = 40).13

t0−30 t0 t0+20 t0+40

Output

h=20

h=40

t ∈ S0

Permanent shock

t0−30 t0 t0+20 t0+40

Transitory shock

t0−10 t0 t0+30

t0 in boom

Boom−bust

Figure 1: Illustrating the intuition behind our statistical test. The panels illustrate the impact of alterna-
tive shocks at t0 on multi-period growth rates. From the perspective of t0, a permanent shock (left hand
panel) of size −d at t0 + 1 reduces the h-period ahead growth rate by −d/h. In contrast, if the shock is
transitory, the average growth rate returns to µ for h ≥ h̄ for some h̄ (middle panel). The right hand panel
considers the case where there is a boom before the contraction.

We present our method formally in Appendix A, where we also consider the general

case where there are many contractions, and discuss other issues such as booms before

recessions, permanent effects of expansions, and growth slowdowns.

Implementing our approach is straightforward and amounts to:

1. Defining a contraction severity and identifying the starting points of all such con-

tractions in the sample;

2. Calculating the h-period ahead growth rate from these points; and

3. Testing whether the mean of these growth rates is significantly below the mean of

the h-period ahead growth rate at other points of the sample;

13It is sufficient that the h-period ahead growth rate at t0 returns to some close neighborhood of µ by
horizon h̄, as would for instance be the case with a large transitory AR(1) shock. For ease of exposition,
we maintain the simpler assumption of absolute convergence throughout this section.

8



4. Repeating this process for other severity levels.

We operationalise these steps as follows. We define contractions of different severity

by their percentile in the historical distribution of (standardised) annual GDP growth

(see Section 3). We start from the most severe contractions, which are those in the 0-

5th percentile interval, and then consider consecutive 5-percentile intervals up to the

median. This allow us to study contractions of different severity in an agnostic way.14

We consider a variety of alternative approaches as robustness checks in section 5. We

set the horizon h equal to 40, i.e., we look at growth 10-years ahead. While this choice is

somewhat arbitrary, it is important for our method that h is sufficiently large and exceeds

a reasonable estimate of the horizon at which transitory shocks will have dissipated.

Note, however, that when we identify the t0 of contractions in step 1, we are forced

to discard some data to ensure that we can observe 10-year growth rates thereafter.15

So a larger h entails discarding more data. We consider longer and shorter horizons

as robustness tests. Finally, we test the null hypothesis that the difference between the

mean of the 10-year ahead growth rates starting at t0 and the mean of the remaining

observations is zero. Since the 10-year growth rates involve overlapping samples by

construction and are likely to be both serially and cross-sectionally correlated, we employ

the stationary bootstrap resampling scheme originally proposed by Politis and Romano

(1994) to construct a confidence region for the difference in the means.16

Several aspects of our approach are worth highlighting. First, for h > 1 there will be

h − 1 time periods of subdued growth leading up to t0 as is clear from the orange line

in the left panel of Figure 1. And some of these growth rates (e.g., the one at t0 − h + 1)
14This can be contrasted with approaches that rest on narrative identification of specific severe events,

e.g., Cerra and Saxena (2008), prior to the analysis.
15Given our data end in 2019Q4, the last possible t0 of a contraction is therefore 2009Q4.
16Following this approach, we generate pseudo samples of the same size as the original data, N × T,

by first sampling N countries with replacement from the original data using a uniform distribution. For
each new country index, we then randomly select T time observations with replacement from the original
data by picking blocks of geometrically distributed lengths from uniformly distributed starting points.
In case a block runs over the end of the original sample, we continue from the beginning. We pick the
geometric survival probability to achieve the optimal average block length in Patton et al. (2009), and use
10000 replications.
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will be significantly lower that the rest by construction even if output eventually recovers

(orange line in the middle panel). Hence, the h − 1 observations leading up to t0 – call

this set S0 – may not be equally informative for whether losses are permanent or not.

This highlights the importance of picking the right t0 points and selecting sufficiently

large h.

Second, the discussion so far has assumed that the t0 observations occur during nor-

mal periods, but it may be more realistic to assume that large contractions are preceded

by booms. If so, this would bias our results toward finding significant permanent effects

even if there are none (right hand panel, red line). We deal with this issue in the spirit

of Blanchard et al. (2015) by using the points t̃0 = t0 − k with k = 8, 12 in place of our

identified t0 as a robustness exercise. This implicitly assumes that booms last for at most

two or three years.

Third, under the null of no permanent losses, the potential growth rate is accurately

estimated. The reason is that the lower-than-average growth associated with the S0

sets are offset by higher-than-average growth as output recovers. However, under the

alternative hypothesis, this is no longer the case. For instance, suppose that the potential

growth rate is µ but there are occasional permanent reductions in the output level. In

this case, the estimated average growth rate is below the true one due to the influence

of the S0 sets, leading to underestimation of the output reductions. Moreover, if the

reductions are of approximately equal size, the growth distributions becomes bimodal

as h increases (and multi-modal if reductions are not of approximately equal size). One

way to overcome this issue, is to throw away the S0 sets before conducting the tests (this

is similar in spirit to the assumption about trends in e.g., Blanchard et al., 2015). But

while this works under the alternative, it biases results toward finding permanent losses

under the null. For this reason, we only report the results from discarding the S0 sets as

a robustness exercise.

Fourth, our test cannot distinguish between the case where both contractions and
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expansions have permanent effects and the case where only one of these has such ef-

fects. We discuss a modification of our test that allows us to make this distinction in

Appendix A. While we implement this as a robustness exercise, it is costly in terms of

observations.

3 Data and identifying severe contractions

For our main analysis, we use quarterly time series from 1970Q1 to 2019Q4 – we consider

alternative sample periods, including the pre-2000s and the Covid era in section 5. Our

sample contains 24 countries for which we have long-run, seasonally-adjusted GDP se-

ries, 19 of which are advanced economies and 5 are emerging market economies (EMEs).

This gives us a total 4,908 observations.17

We look at h-quarter ahead real GDP growth rates, defined as:

xi,t+h,t = h−1(yi,t+h − yi,t) (1)

with yi,t = ln(Yi,t) where Yi,t is the level of real GDP in country i at time t.18

To identify contractions and their magnitude, we take an agnostic approach based on

percentiles of the distribution of pooled (standardised) annual real GDP growth rates.

We focus in the main on 5 percentile interval ranges up to the median. More formally, let

F(xi,t+4,t) be the cumulative distribution of xi,t+4,t. We classify contractions of severity

17The following countries are included: Australia, Austria, Belgium, Brazil (EME), Canada, Denmark,
Finland, France, Germany, Italy, Japan, Korea (EME), Mexico (EME), the Netherlands, Norway, New
Zealand, Portugal, Sweden, Singapore (EME), South Africa (EME), Spain, Switzerland, the United King-
dom, and the United States. Real seasonally adjusted GDP series are available from 1970Q1 for all coun-
tries, except Singapore (1975Q1) and Brazil (1980Q1). Data are taken from national sources.

18See Table B.1 (Appendix B) for summary statistics at the various horizons. We also found that the
alternative growth rate transformation Xi,t+h,t = h−1(Yi,t+h − Yi,t)/Yi,t does not produce different results
on non-detrended data. This transformation is not applicable for detrended series as such series revolve
around zero by construction.
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p̄ = 5, 10, 15, ..., 50 by the following condition

xi,t+4,t ∈
(

F−1
(

p̄ − 5
100

)
, F−1

(
p̄

100

)]

where p̄ is the upper percentile of the 5 percentile interval that the contraction belongs

to. As an alternative classification, we also consider

xi,t+4,t ∈
(

F−1
i

(
p̄ − 5
100

)
, F−1

i

(
p̄

100

)]

where Fi(·) is the county-specific distribution of xi,t+4,t.

We make two adjustments to our GDP series prior to calculating percentiles. First, to

address the possibility that the underlying trend growth rate has slowed in some coun-

tries in recent decades (e.g., Antolin-Diaz et al., 2017), we remove country-specific long-

run trends from log levels of GDP. Our baseline specification is to use a Hodrick Prescott

filter with a smoothing factor lambda of 400,000, equivalent to assuming a 20-year long

cycle.19 Such a smoothing factor has also been used in the literature on medium-term

credit cycles. As robustness, we also consider: (a) no detrending; (b) a Hamilton pro-

jection filter based on country-specific local projections with a lag-length of four and

projection horizon of either 10 or 20 years (see Hamilton, 2018); and (c) removing 10 or

20-year rolling averages from xi,t+40,t. We focus on these relatively long projection hori-

zons or windows for rolling averages because we assess 10-year growth rates. Second, to

avoid average growth differentials between countries driving our results, we normalise

all xi,t+h,t by removing the country-specific mean and dividing by the country-specific

standard deviation, both calculated using the full sample of data.20 While this normali-

sation ensures cross-country comparability, it is not driving our results. As we show in

Section 5, results also hold at the country level.

19See Ravn and Uhlig (2002) on the relationship between cycle length and lambda.
20When we look at sub-samples, means and standard deviations are recalculated for this specific sample.
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3.1 Classifying severe contractions

To gain a better intuition about the circumstances surrounding severe contractions, we

classify these into one of the following four categories: (1) banking crisis; (2) restrictive

monetary policy to combat high inflation; (3) oil shocks; and (4) other. In total, we have

198 extreme contractions (i.e., at or below the 5th percentile): 100 of these are classified

as banking crisis-driven contractions; 51 are classified as monetary policy related, the

latest of which occurred in the very early 1990s; 19 are the result of the oil shocks of

the 1970s; and 9 have other causes. The full allocation is presented in Table B.2 and

summarised in Figure B.1 in Appendix B.

We use a combination of simple rules of thumb and judgment to perform this classi-

fication. We first ask whether the severe event coincides with either a banking crisis (as

defined by the superset of the Laeven and Valencia (2018), Reinhart and Rogoff (2009)

and ESRB datasets (see Lo Duca et al. (2016)), a substantial monetary policy tightening

(as defined by the increase in nominal interest rates during the period)21, or an oil price

shock (as defined by the 1973-74 and 1978-79 oil price shocks). In the case of multiple

potential causes, we examine the published literature and allocate depending on our

reading of the dominant driver of the event.

A few comments on this approach. First, we do not require the allocated cause to

precede the event in question. The thought experiment is rather whether the severity

of the recession cannot be understood without reference to the allocated category. For

example, while the proximate cause of the subprime crisis that triggered the US recession

of 2008 was arguably the modest tightening in the Fed Funds rate between 2004-2006,

the scale of the subsequent recession unquestionably reflected amplification created by

the financial crisis.

Second, we allocate some contractions as financial crisis-driven even if they do not

21Zarnowitz (1999) and more recently Blinder (2022) also argue that the severe recessions we identify in
the US in the late 1970s and early 1980s were related to monetary policy tightening.
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Figure 2: Difference in mean 10-year growth rates following contractions of different severity
versus that calculated using all other points in the sample. The solid lines show points estimates
of this difference for contractions in the percentile buckets indicated on the x-axis. The shaded
areas are 95% confidence intervals. The y-axis is in standard deviations of 10-year real GDP
growth.

appear in the Laeven-Valencia, Reinhart-Rogoff or ESRB datasets. Examples here in-

clude Italy and Japan’s contractions in 2008. Given the exceptional tightening in global

financial conditions triggered by the collapse of Lehman Brothers, and the crisis-driven

downturn occurring in these countries’ main trading partners, the banking crisis was

clearly the dominant cause of this downturn even though there was not a domestic

banking crisis at this point.

4 Results

Figure 2 summarises the main results of the paper. The solid lines show the estimated

differences in mean 10-year growth rates following severe contractions (i.e., annual de-

clines in real GDP in the percentile bucket indicated on the x-axis) compared to mean

10-year growth rates calculated from all other points in the sample. The shaded area

shows 95% confidence intervals. To interpret the results, recall that the data are nor-

14



malised by country-specific means and standard deviations, so the y-axis is expressed in

standard deviations of the 10-year growth rate.

Two results stand out. First, the estimates in the left-hand region of the figure are

significantly different to zero indicating that 10-year growth rates following severe con-

tractions are detectably weaker than the mean growth rate over the rest of the sample.

This effect is largest for the most severe contractions: the difference in 10-year growth

rates is 0.9 standard deviations following the 5% largest annual falls in GDP, but a more

modest 0.2 standard deviations for a contractions between the 15th and 20th percentiles.

These reductions in the 10-year growth rates translate approximately into permanent

losses in the level of real GDP of 4.75% and 1.05%, respectively, for a typical economy in

our sample.22 This is below the average loss estimate of 8.4% reported by Ball (2014) for

the Great Recession.

Second, following less severe contractions, the economy returns to trend and we ob-

serve no long-term impact. This is evident from the fact that mean differences are very

close to, and statistically indistinguishable from, zero for contractions above the 20th

percentile (with the impact of contractions between the 15th and 20th percentiles hav-

ing borderline statistical significance). Overall, these results point to the presence of

important non-linearities in the data-generating process.

Does the proximate cause of a recession matter for its persistence? To answer this

question, we exploit the classification scheme presented in section 3.1, which partitions

contractions into those associated with financial crises, monetary policy tightenings to

combat high inflation, oil and commodity price shocks, and those driven by other factors.

In Figure 3, we repeat the analysis of Figure 2 conditioning on these different recession

types. We focus on the most severe contractions, those at or below the 5th percentile. Our

novel finding is that, while severe contractions associated with financial crises indeed

22At growth horizon h, the difference between the average growth rate at t0 and other points is given by
−d/h which implies −d = h(−d/h). Since we look at annualized numbers, we should use h = 10 rather
than h = 40. Moreover, using the average standard deviation of the 10 year growth rate in Table B.1, we
can calculate the level effects as d = 0.9 · 0.53 · 10 ≈ 4.75% and d = 0.2 · 0.53 · 10 ≈ 1.05%, respectively.

15



−
3

−
2

−
1

0
1

Im
p
a
c
t

All Crises MP Oil Other

Figure 3: Difference in mean 10-year real growth rates following severe contractions (bottom
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is in standard deviations of 10-year real GDP growth.

have long-term effects, so do those associated with monetary policy tightenings and

oil price shocks.23 Indeed, while the point estimates of the growth shortfall following

monetary policy tightenings is somewhat smaller than that following financial crises,

oil price shocks generate materially larger growth shortfalls with 10-year growth rates

1.5 standard deviations weaker following such shocks. Interestingly, this resonates with

the finding in Blanchard et al. (2015) that recessions that are associated with supply

shocks are more likely to be followed by lower level of output compared to pre-recession

trend.24 Overall, these findings challenge the notion that it is only financial crises that

generate scarring effects; the perhaps surprising message from Figure 3 is that all severe

contractions have this characteristic.

An alternative way to present our findings is via the unconditional distribution of

10-year growth rates – this provides a useful sense-check as it does not depend on a

23The after-effects of severe contractions that we could not classify (i.e., those in the ‘other’ category)
are imprecisely estimated due to the small number of observations.

24With respect to monetary policy tightenings, our findings are in line with Amador (2022) who studies
the transmission of identified monetary policy shocks to total factor productivity and finds evidence of
substantial hysterisis.
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formal statistical test. As noted in Section 2, when contractions have long-term effects

on the level of GDP, we should expect the distribution of multi-period growth rates to

be multimodal rather than unimodal.

As Figure 4 shows, while the distribution in annual GDP growth is unimodal with

a typical left skew, the distribution in 10-year growth rates is multimodal: one mode is

located slightly to the right of zero; the other is located to the left; and there is perhaps

even a third mode located further to the right, although this is less clear. Recall that

our data have been standardised so zero corresponds to the mean growth rate across the

full sample. The presence of a clear second mode to the left of zero indicates that weak

10-year growth outcomes are not uncommon and there is a degree of uniformity in their

severity (as measured in country-specific standard deviations).
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Figure 4: Distribution of annual and 10-year real growth rates (normalised) and different types
of large contractions below or at the 5th percentile.

The figure also highlights growth realisations following severe contractions associated

with financial crises, monetary policy tightenings, and oil price shocks. These growth

outcomes are clustered around the left-hand mode, confirming our finding from Figure

3 that these contractions all have long-lasting impacts.

It is interesting to note that bimodality already emerges at shorter than 10 years (see
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Figure B.2. It is already evident for 5 year growth rates and, with good will, at the 3-year

horizon. And as would be expected from the 10-year results, at all horizons, the growth

outcomes following severe contractions remain clustered around the left-hand mode.

We conclude this section by examining whether large expansions (i.e., high annual

growth outturns) also have long-term, boosting effects. After all, theories of endogenous

growth suggest that capital accumulation in expansions may have long-term effects on

the level of GDP because of non-decreasing returns to scale effects. As we discuss in sec-

tion A.4, some care is needed when exploring this issue using our method. To see why,

suppose the true data generating process is asymmetric and that only severe contractions

have long-term effects. There will be a gap in this situation between the ‘normal’ 10-year

economic growth rate experienced outside of contractions and the mean calculated over

the sample excluding strong expansions because the latter will reflect the drag caused by

severe contractions. A naive application of our statistical test, therefore, risks delivering

false positives. To address this issue, we run a ‘two-sided’ version of the test, where

we adjust the sample mean by removing from the calculation the weakest (strongest)

annual growth outcomes when testing whether strong expansions (severe contractions)

have permanent effects.25

Figure 5 presents the results of these 2-sided tests alongside the ‘1-sided’ estimates

given by a naive application of the test. We focus on annual growth rates in the extreme

tails, at the 5th and 95th percentiles. The estimated impact of severe contractions is

marginally weaker in the 2-sided test as is to be expected, but remains economically

and statistically significant. By contrast, the 2-sided estimate of the long-term impact

of strong expansions is small and indistinguishable from zero. This is also strongly

supported if we look at the unconditional 10-year growth distribution and plot 10-year

growth outturns that follow large annual growth expansions. This is shown in Figure B.3

25An additional concern that we do not control for here is the possibility that the strongest growth
outcomes in the sample sometimes reflect bounce-back recoveries from severe contractions. In this case,
finding long-term effects of such ‘expansions’ is tantamount to finding that not the full effects of the initial
severe contractions are felt permanently.
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Figure 5: 1-sided and 2-sided estimates of the differences in mean 10-year real growth rates
following severe contractions and strong expansions versus rest of the sample (The shaded areas
are 95% confidence intervals). Severe contractions are annual growth outcomes at or below the
5th percentile; strong expansions are annual growth outcomes above the 95th percentile. ‘1-sided’
refers to a comparison with the mean 10-year growth rate calculated using all other points in the
sample For the ‘2-sided’ test, we also remove strong expansions from the calculation of the mean
when testing the long-term impact of severe contractions and vice versa. The y-axis is in standard
deviations of 10-year real GDP growth

in Appendix B, highlighting that 10 year growth rates after large expansion are centred

around the mean, albeit on average marginally positive in line with the intuition of the

one-sided test.

The key takeaway is that the growth process is both non-linear and asymmetric; while

large contractions appear to come with the risk of hysteresis and economic scarring, we

do not observe long-term positive effects following periods of strong economic growth.

5 Robustness

In this section, we present a battery of robustness tests to explore the impact on our

results of using different approaches to detrending the data, applying tests to different

sub-samples, and using different methods to identify severe contractions.
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Figure 6: Mean 10-year real growth rate differences under alternative approaches to detrending
the data (solid lines). The shaded areas are 95% confidence intervals. Hamilton 20y: detrending
by applying the Hamilton projection filter based on country-specific local projections with a lag-
length of four and a projection horizon of 20 years. 20y rolling average: removing 20-year rolling
averages from the 10-year growth rate, xi,t+10,t. The y-axis is in standard deviations of 10-year
real GDP growth.

Detrending methods

Figure 6 presents the impact on our baseline results of applying a range of alternative

detrending schemes. Recall that our baseline results were obtained using a slow-moving

Hodrick-Prescott filter with smoothing factor 400,000. The panels show the impact of

(a) not detrending the data at all; (b) applying the Hamilton projection filter based on

country-specific local projections with a lag-length of four and a projection horizon of 20

years (see Hamilton, 2018);26 and (c) removing 20-year rolling averages from the 10-year

26These forecast horizons are longer than the suggestions by Hamilton (2018) who proposes 5 years for
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growth rate, xi,t10,t.

Our baseline result that severe contractions have permanent effects goes through in

all cases. Moreover, in all cases we continue to find that the estimated long-term impact

diminishes as we consider the impact of less severe contractions. The main differences

across these detrending schemes relates to the degree of imprecision in the estimates,

which in some cases changes the specific threshold beyond which permanent effects

disappear. In all alternative specifications, the estimated scarring effects of the most

severe contractions continue to be statistically different to zero (the exception being the

10-year rolling average case). And there is no specification in which scarring effects are

statistically detectable beyond the 25th percentile.

Sample splits

Our results are also robust to using different sample splits (Figure 7). We find no real

difference between estimated effects for advanced economies or emerging markets; both

display long-term scarring after severe contractions. This challenges the result reported

in Aguiar and Gopinath (2007) that shocks to trend growth are the primary source of

economic fluctuations in emerging market economies whereas advanced economies are

better characterised as displaying transitory fluctuations around a stable trend. Similarly,

we find no material impact of splitting our sample pre- and post 2000, although only

very severe contractions have permanent effects in our post-2000 sample. Our baseline

results are also unchanged if we restrict the focus to countries that have not experienced

a financial crisis in our sample, corroborating our earlier finding that it is not only

contractions associated with financial crises that have long-term effects.27 Finally, our

baseline results are also unaffected by including the Covid era within the sample.

the credit cycle. This is too short given we look at 10 year growth rates. For instance, in the stylised picture
of a permanent shock in Figure 6, the Hamilton gap with a 5 year horizon would be zero 5 years after t0
despite the permanent drop in output. As an additional robustness check, we also used a Hamilton gap
with a 10 year horizon. Eve though this strongly biases us to find scarring, significant scarring effects are
found for very severe contractions below the 5th percentile

27Countries without a financial crises are Australia, Canada, New Zealand, Singapore and South Africa.
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Figure 7: Mean 10-year real growth rate differences under alternative sub-samples of the data
(solid lines). The shaded areas are 95% confidence intervals. No crises: only countries that did
not experience a financial crises Including Covid-crisis: Sample extended up to 2021Q3. The
y-axis is in standard deviations of 10-year real GDP growth

The horizon

The choice of the 10-year horizon also not drive the results (Figure 8). In this case we

focus on the very severe contractions below the 5th percentile. By construction, at the

one year horizon, the contractions are extremely different to normal times. Differences

decrease as the horizon increases and flatten out after year 6. And they remain large

and significant even after 15 years. Finally, our baseline results are also unaffected by

including the Covid era within the sample.

22



−
2
.5

−
2

−
1
.5

−
1

−
.5

0

Im
p
a
c
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Horizon

Figure 8: Mean 10-year real growth rate differences of very severe contractions (at or below the
5th percentile) for different horizons (in years). The shaded areas are 95% confidence intervals.
The y-axis is in standard deviations of GDP growth at the specific horizon.

Methodology for defining severe contractions

We conclude the set of robustness exercises by exploring the impact of alternative def-

initions of severe contractions. Overall, our main finding that large contractions have

scarring effects whereas smaller contractions do not continues to hold (Figure 9). In

our baseline, we categorised contractions by their percentile of the (standardised) an-

nual growth distribution in our pooled sample. We then compared 10-year growth rates

from T0 with 10-year growth rates for all periods in the sample. Here we examine the

following alternatives: (a) defining contractions according to their percentiles of country-

specific annual growth distributions rather than the pooled data; (b) using quarterly real

GDP growth rather than annual GDP growth to classify contractions; (c) defining con-

tractions based on the distribution of ‘shocks’ to growth rather than actual growth rates,

where shocks are the residuals of country-specific AR(4) regressions; (d) comparing 10-

year growth rates at T0 with 10-year growth rates for all periods except those 10-year

growth rates that contain T0 (i.e., we drop S0)28; and (e) controlling for booms up to

28Dropping S0 reduces the sample size significantly as we drop 9 years and 3 quarters prior to each
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Figure 9: Mean 10-year real growth rate differences under alternative approaches to defin-
ing severe contractions (solid lines). The shaded areas are 95% confidence intervals. Country
specific: defining contractions according to their percentiles of country-specific annual growth
distributions; Quarterly: using quarterly real GDP growth to classify contractions; Shocks: defin-
ing contractions based on the distribution of ‘shocks’ identified as residuals of country-specific
AR(4) regressions; Exclude S0: comparing 10-year growth rates at T0 with 10-year growth rates
for all periods except those 10-year growth rates that contain T0; Remove booms (2/3 years):
Using the points t̃0 = t0 − k with ˜k = 8, 12 quarters in place of the identified t0. The y-axis is in
standard deviations of GDP growth at the 10-year horizon.

three years before contractions. As it is evident from Figure 9, none of these changes has

a material impact on the key take-aways of the paper.

Given these findings, it is not surprising that our results also hold if we run the analy-

sis at the country level (Figure B.4 in the Appendix). The most severe contractions have

significant long-run effects for the vast majority of countries, albeit our estimates are

event. In turns out that for smaller sized contractions, this leads to so few observations that no tests can
be run.
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now less precise and these point estimates are statistically distinct from zero at the 5%

level only for 11 of the 24 countries.29

6 Connection to macroeconomic models

This section discusses how our empirical results link to, and what they imply for, various

strands of the theoretical literature on business cycles. 30

It is clear at the outset that simple autoregressive models with Gaussian shocks are

not consistent with our findings of non-linearity and asymmetry in the data generating

process of GDP. Such models imply either trend stationarity or, if the roots of the model

imply non-stationarity, that some shocks will have permanent effects regardless of their

sign or size. This implies that the two benchmark models used in the macroeconomics

literature – the Real Business Cycle (RBC) model and its close cousin the New Keynesian

model – are also inconsistent with our findings.

The potential for temporary shocks to have highly persistent or even permanent effects

on the economy arises naturally in endogenous growth models. But in contrast to our

findings, these effects are typically symmetric in such models. In models of endogenous

growth, temporary disturbances that change the amount of resources allocated to growth

leave a permanent imprint on the level of output.31 For example, a recession may make

innovation less profitable resulting in reduced R&D spend for a period, permanently

lowering the level of technology. This helps explain our finding that even recessions as-

sociated with monetary policy tightening – the archetypal temporary demand shock in

New Keynesian models – can have permanent effects on the level of output. By the same

logic, however, booms should also have this effect.32 So while endogenous growth mod-

29These are: Austria, Australia, Belgium, Brazil, Switzerland, Japan, Korea, Mexico, Norway, New
Zealand and South Africa.

30For an excellent recent comprehensive survey of models discussed in this section and the role they
can play in generating hysteresis, see Cerra et al. (forthcoming).

31See King et al. (1988) and Stadler (1990), and the discussion in Fatas (2000).
32Indeed, the stories embodied in these models via which the growth process occurs – e.g., “changes in
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els help us understand how some temporary shocks plausibly have permanent effects

on the supply capacity of the economy, they do not explain why only large contractions

have this effect.

Business cycle models with occasionally binding constraints and financial frictions

generate asymmetric and nonlinear responses to shocks, but not permanent scarring.

For example, in Brunnermeier and Sannikov (2014) credit-constrained entrepreneurs

hold precautionary buffers to navigate moderately sized shocks so that the economy

exhibits small fluctuations around the steady state in normal times. If shocks are suffi-

ciently large, however, or if this buffer is eroded, entrepreneurs are forced to sell assets,

depressing asset prices and kick-starting an adverse feedback loop because of tighten-

ing credit constraints. The stationary distribution of the model is bimodal: around the

steady state, volatility is low and growth is strong. But once constraints bind, the econ-

omy quickly transitions to a depressed growth regime at which it remains for some time.

33

A recent strand of the literature embeds occasionally binding financial constraints in

models with endogenous growth. One example of this approach is Queralto (2020), who

finds that financial frictions significantly depress medium-run productivity and output

losses following a crisis.34 Ikeda and Kurozumi (2019) develop a model in which adverse

financial shocks can induce a slow recovery and examine the implications for optimal

monetary policy. A recent paper by Bonciani et al. (2020) considered the implications for

macroprudential policy, finding that optimal bank capital ratios are significantly higher

the utilization of factor inputs when demand changes can result in reorganization and the acquisition of
new skills” (Stadler, 1990) – are arguably better suited to describing expansions than contractions.

33Other models feature similar dynamics. He and Krishnamurthy (2013) use a model with occasionally
binding constraints to study the transition from normal states to rare systemic risk states. Adrian and
Boyarchenko (2019) examine a similar economy, but relax the assumption that all household savings must
be intermediated by the banking sector. Holden et al. (2020) present a model in which banks face occasion-
ally binding borrowing constraints and costs to issuing fresh equity. Xing (2022) presents a related model
in which leverage (the credit multiplier) is strongly procyclical, implying even tighter credit constraints
during recessions that can further amplify the non-linear downward spiral.

34Borio et al. (2016) also provide evidence of how resource misallocations during credit booms persis-
tently depresses productivity during the credit bust.
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once we account for the slow recoveries from crises predicted by endogenous growth

models.

Finally, a distinct nonlinear mechanism consistent with our empirical findings arises

in models of so-called ‘debt traps’, where an economy can transition from a good equi-

librium to a low growth state. A recent example of such a model is proposed by Mian

et al. (2021), where savers have lower marginal propensities to consume than borrowers.

As indebtedness increases, higher debt service costs reduce aggregate demand, and with

it the equilibrium real interest rate. If the decline in the equilibrium rate is of sufficient

magnitude and there are nominal rigidities in the economy, the effective lower bound

may impair the capacity of monetary policy to stabilize the economy and the economy

can enter a low-growth debt-trap in which borrowers’ consumption is depressed by the

weight of debt servicing costs and savers’ consumption is insufficient to make up the

difference.35

7 Conclusion

In this paper, we present new evidence demonstrating that the size of economic contrac-

tions rather than their cause is the better indicator of the potential for scarring/hysteresis

effects.

Using a panel of 24 advanced and emerging economies from 1970 to the present, we

find significant nonlinearities in the long-run effects of contractions, with contractions

in the bottom 20% of the pooled annual growth distribution having effects that can be

observed in the level of GDP a decade hence. We find no such evidence following less

severe contractions or following large economic expansions. Our estimates are economi-

cally significant: real GDP growth in the 10-years after very severe contractions is almost

35A purely real model of such a debt trap is presented by Matsuyama (2007): when adverse shocks
deplete entrepreneurs’ net worth, they become heavily reliant on external borrowing and invest in low
productivity projects with high pledgeable returns.
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one standard deviation weaker than otherwise.

Perhaps surprisingly, our results do not simply reflect the impact of financial crises,

whose after-effects are now well known to be highly persistent. Deep contractions asso-

ciated with monetary policy tightenings to combat high inflation and with supply shocks

caused by energy market disruptions also have material long-term effects, with the latter

having the largest long-term costs overall. Our findings are robust to a battery of robust-

ness tests, including alternative detrending approaches, sample splits and methods for

defining severe contractions.

Our results have important implications for policymakers and business cycle mod-

elling. A key message for policymakers is that large shocks tend to depress the growth

trajectory of the economy far into the future, suggesting greater benefits from macroe-

conomic policies designed to mitigate the impact of large shocks and from monetary or

fiscal policy responses designed to prevent small contractions becoming severe ones.

For business cycle modelling, our results challenge the self-stabilising properties of

workhorse Dynamic General Equilibrium Models, and instead support models that com-

bine endogenous productivity growth with nonlinear constraints.
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A Methodological aspects

In this appendix, we motivate our approach more formally and discuss some issues that

arise.

A.1 Baseline model

To formalize this idea, let’s assume for simplicity (and without loss of generality)36 that

yt+1 is a trend stationary process given e.g. by

yt+1 = βyt + (1 − βL) (α + µ(t + 1)) + εt+1 (A.1)

where |β| < 1, L is the lag operator and εt+1 ∼ N(0, σ2). The solution of (A.1) is

yt+1 = α + µ(t + 1) +
∞

∑
i=0

βiεt+1−i (A.2)

implying that the h-period ahead growth rate follows

xt+h,t = h−1

(
µh +

∞

∑
i=0

βi (εt+h−i − εt−i)

)
(A.3)

with mean and variance

µh ≡ E[xt+h,t] = µ (A.4)

σ2
h ≡ E[xt+h,t − µh]

2 = h−2

(
2σ2(1 − βh)

1 − β2

)
. (A.5)

36For most stationary processes, the variance of the h-period ahead growth rate will have the form
h−2ϕ(h) where ϕ(h) converges to some finite number as h increases. This implies that the statements
below will go through with minor modifications.
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A.2 A one-off permanent shock

A one-off permanent reduction of size −d in yt can be modeled by adding −(1 − βL)d

to the right hand side of (A.1) at time t0 + 1. We assume that the permanent component

is large with respect to the one-period ahead growth rate, xt+1,t = yt+1 − yt, i.e. we set

d ≥ λσ1, where σ2
1 = 2σ2(1 + β)−1 is the variance of xt+1,t from (A.5) and λ is some

positive number (for instance 1.645 for a 5% one-sided significance level).

If this permanent reduction occurs, we have

yt+1 =

 α + µ(t + 1) + ∑∞
i=0 βiεt+1−i for t ≤ t0

α − d + µ(t + 1) + ∑∞
i=0 βiεt+1−i for t > t0

(A.6)

and therefore

xt+h,t =

 h−1 (µh + ∑∞
i=0 βi (εt+h−i − εt−i)

)
∀t /∈ S0

h−1 (µh − d + ∑∞
i=0 βi (εt+h−i − εt−i)

)
∀t ∈ S0

where S0 = [t0 − h + 1, t0], which implies

E[xt+h,t] = µh =

 µ ∀t /∈ S0

µ − d/h ∀t ∈ S0.

Specifically, the expected h-period ahead growth rate at t0 is µt0,h ≡ E[xt0+h,t0 ] = µ− d/h.

The variance is given by (A.5) in both cases.

Consider the sample estimator for µh outside the set S0 given by x̄h,t/∈S0 = (T −

2h)−1 ∑T−h
t=1,t/∈S0

xt+h,t, where we have assumed t0 ≥ h for simplicity so that the avail-

able number of observations for calculating x̄h,t/∈S0 is T − 2h. The central limit theorem

implies that

x̄h,t/∈S0 ∼ N(µ, (T − 2h)−1σ2
h). (A.7)
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for large T, where N(., .) denotes the normal distribution.

We want to show that x̄h,t/∈S0 converges sufficiently fast in distribution around µ so that

µt0,h remains in the tail for all h, i.e. that µ − µt0,h ≥ λ
√
(T − 2h)−1σ2

h = λstd[x̄h,t/∈S0 ]. To

do so, we first show that σ2
h ≤ h−1σ2

1 holds for all h ≥ 1. This follows from the fact that

∆(h2σ2
h) = h2σ2

h − (h − 1)2σ2
h−1

=
2σ2(1 − βh)− 2σ2(1 − βh−1)

1 − β2

=
2σ2βh−1(1 − β)

1 − β2

= βh−1σ2
1

< σ2
1

which implies h2σ2
h = σ2

1 + ∑h
j=2 ∆(j2σ2

j ) < hσ2
1 and therefore the inequality. Hence, as

long as T − 2h ≥ h, we have ((T − 2h))−1σ2
h ≤ ((T − 2h))−1(h−1σ2

1 ) ≤ h−2σ2
1 , which

implies that

µh − µt0,h = dh−1 ≥ λσ1h−1 = λ
√

h−2σ2
1 ≥ λ

√
(T − 2h)−1σ2

h . (A.8)

In other words, xt0+h,t0 is expected to be an outlier vis-a-vis the distribution of x̄h,t/∈S0 .

This result motivates the following test procedure: Calculate xt0+h,t0 and x̄h,t/∈S0 for

some h which is taken to be larger than h̄ – the horizon above which all temporary

shocks have dissipated. Test the null hypothesis that xt0+h,t0 is significantly smaller (or

larger) than x̄h,t/∈S0 . If the null is rejected, the shock is taken to be permanent.

Our suggested test procedure does not make use of the h − 1 observations for which

t ∈ [t0 − h + 1, t0 − 1] ⊂ S0. The reason is that these observations are not necessarily

informative about the permanency of the shock. To see this, suppose that β = 0 and

εt0+1 ≥ −d so that the shock at t0 + 1 is large but the process yt+1 = α + µ(t + 1) + εt+1

will have recovered by time t0 + 2. However, the 20-period ahead growth rate, say, at
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time t0 − 19 ∈ S0 has an expected value larger than µ − d/h whereas the same growth

rate at time t0 has the expected value µ. Hence, only the latter growth rate reveals the

temporary nature of the shock. More generally, if we knew h̄ all observations on xt+h,t

for h ≥ h̄ and t ∈ [t0 − (h − h̄), t0] would be informative of permanent effects. But since

we typically don’t know h̄ our best strategy is to pick some horizon, h, for which we

think h ≥ h̄ holds and only focus on the observations in t = t0.

It is interesting to note what happens under the alternative if we use x̄h instead of

x̄h,t/∈S0 . In this case, µh =
(

h
T−h

)
(µ − d/h) +

(
T−2h
T−h

)
µ = µ − d

T−h which implies that

the distance µh − µt0,h is reduced by the factor (T − 2h)/(T − h). This means that we

can no longer be assured that we would be able to distinguish between µh and µt0,h.

Nevertheless, finding that xt0+h,t0 is an outlier with respect to x̄h also implies that it is

one with respect to x̄h,t/∈S0 and, hence, provides a stronger result.

A.3 Recurring permanent shocks

A more interesting case arises when there are several outlier observations, t0j + 1 for

j = 1, ..., J, that might have permanent effects, dj ≥ λσ1. Assuming for simplicity that∣∣t0j − t0k
∣∣ ≥ h for all j ̸= k, we could still form x̄h,t/∈∪jS0j provided that T − (J + 1)h ≥ h.

In this case, our test procedure becomes: Calculate x̄h,t∈∪jt0j and x̄h,t/∈∪jS0j for some h

which is taken to be larger than h̄. Test the null hypothesis that x̄h,t∈∪jt0j is significantly

smaller than x̄h,t/∈∪jS0j . If the null is rejected, the shocks are taken to be permanent.

Note that
∣∣t0j − t0k

∣∣ ≥ h for all j ̸= k is a worst case scenario from the perspective of

the power of the test. If
∣∣t0j − t0k

∣∣ < h, there are both fewer elements in ∪jD0j and for

some horizons consecutive dj’s will pile up and thereby increase the distance between

the observations at t0j and x̄h,t/∈∪jS0j .

What if the arrival of permanent shocks is random, for example following a Bernoulli

distribution? In this case, the variance of x̄h would be larger than (A.5) under the alter-

native and therefore make it harder to detect a difference in the means all else equal.
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A.4 Issues

We end this section by discussing different issues that arise with the above approach. So

far we have assumed that the t0 observations occur during normal periods. But it may

be more realistic to assume that large economic contractions are preceded by booms. If

so, this would bias our result toward finding significant permanent effects even if there

are none. We deal with this issue in the spirit of Blanchard et al. (2015) by using the

points t̃0 = t0 − 8 in place of our identified t0 as a robustness exercise. This implicitly

assumes that booms last for at most two years, and that h̃ = 40 − 8 ≥ h̄ if the maximum

growth horizon is 10 years (ie 40 quarters).

Another issue is that our test cannot distinguish between the case where both expan-

sions and contractions have permanent effects since it is one-sided. Of course, one can

equally well find the t0,pos associated with large expansions and redo the tests to see if

they have permanent effects. But this raises a thorny issue: what happens if we tests

for positive permanent effects and there are, in truth, only negative ones? In this case,

there will be a S0,neg set associated with each negative event where the mean is reduced

by d/h. Since there are, in truth, no permanent positive effects, the expected value of

xt0,pos+h,t0,pos is µ, but even so, this growth rate is higher than the growth rate outside

of S0,pos due to the presence of the S0,neg sets. Hence, we are likely to reject the null

hypothesis of identical means and erroneously conclude expansions have permanent ef-

fects. Indeed, if either expansions or contractions have permanent effects, we are likely

to find symmetric results w.r.t. both. How can we then be certain that finding significant

negative permanent effects, say, is not just reflective of permanent positive effects? One

possibility is to simultaneously identify t0,neg and t0,pos and then remove S0,pos from the

sample before testing if the mean of the t0,neg observations is different from the mean

of the remaining observations (and vice versa for the mean of the t0,neg observations).

While we do implement this approach, it is costly in terms of removed observations as

we need to remove 39 quarters before each identified event.
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An alternative, less costly, approach is to first exclude the possibility that there are

both positive and negative permanent effects. This can be done by looking at the uncon-

ditional growth distribution at horizon h. If this distribution is bimodal, the permanent

effects are likely to be one-sided (either positive or negative), and if it is trimodal the

effects are likely to be two-sided. The reason is that the unconditional mean is different

for xt+h,t ∈ ∪jS0j,neg, xt+h,t ∈ ∪jS0j,pos and xt+h,t /∈ (∪jS0j,neg) ∪ (∪jS0j,pos) in the perma-

nent cases. Once, two-sided permanent effects are excluded, one can simply look at the

behavior of the output series around t0,pos and t0,neg to determine which case is likely to

prevail. We also note two further cases are of interest: when no disruptions have perma-

nent effects and when all disruptions have permanent effects. In both of these cases, we

should see a unimodal unconditional growth distribution. But x̄h,t∈∪jt0j ≈ x̄h,t/∈∪jS0j is the

former case so that the null of equal means cannot be rejected, whereas the distance be-

tween the two means should increase evenly and symmetrically with the distance from

the median in the latter case.

The last issue that we need to address is the possibility that the underlying growth

rate, µ, of the yt process is not fixed over time. For instance, evidence suggest that

growth has slowed down in many economies over the past decades (e.g., Antolin-Diaz

et al., 2017). Hence, it might be better to replace µ(t + 1) with µt+1 in (A.1). For instance,

setting µt+1 = µ + µt + υt+1 would lead to a difference stationary specification for yt+1.

However, from the perspective of detecting permanent outliers, such a growth slowdown

is problematic as it would bias xt0+h,t0 downward as h increases, making it more likely

to misinterpret the outlier as permanent even when it is not. In our application, we

deal with this issue by removing slow-moving trends from our growth rates prior to the

analysis.
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B Additional tables and figures

Figure B.1: Event type frequencies over time.
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Figure B.2: Distribution of annual , 3-year, 5-year and 10-year real growth rates (normalised)
around severe contractions at or below the 5th percentile of the annual growth distribution.
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Figure B.3: Distribution of annual and 10-year real growth rates (normalised) around large
expansions above the 95th percentile of the annual real GDP growth distribution.
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Figure B.4: Mean differences in 10-year real growth rates at the country level following severe
contractions at different percentiles. Shaded areas are the 95% confidence intervals. The y-axis is
in standard deviations of 10-year real GDP growth.
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Annual 10 year
Raw Detrended Raw Detrended

Country Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.
AT 2.31 1.93 0.10 1.82 2.18 0.59 -0.04 0.36

AU 3.01 1.74 -0.05 1.71 3.08 0.39 -0.03 0.28

BE 2.16 1.83 0.09 1.76 2.05 0.46 -0.03 0.33

BR 2.15 3.76 -0.35 3.71 2.55 0.77 -0.01 0.68

CA 2.67 2.16 0.09 2.08 2.55 0.64 -0.03 0.49

CH 1.67 2.25 0.01 2.22 1.69 0.50 0.01 0.42

DE 1.93 2.13 0.06 2.06 1.85 0.61 -0.02 0.37

DK 1.85 2.17 0.07 2.14 1.75 0.60 -0.05 0.44

ES 2.50 2.39 0.15 2.24 2.30 1.04 -0.12 0.74

FI 2.32 3.21 0.03 3.09 2.30 1.14 -0.03 0.88

FR 2.15 1.72 0.12 1.56 2.01 0.64 -0.03 0.33

GB 2.17 2.24 0.02 2.20 2.14 0.62 -0.06 0.46

IT 1.63 2.46 0.05 2.14 1.55 1.19 -0.03 0.38

JP 2.33 2.70 0.07 2.15 2.23 1.56 0.00 0.46

KR 6.63 4.28 -0.06 3.48 6.68 2.20 -0.07 0.61

MX 3.10 3.49 0.15 3.24 2.89 1.27 0.04 0.87

NL 2.25 2.09 0.07 1.99 2.16 0.79 -0.08 0.50

NO 2.77 1.99 0.09 1.88 2.64 0.69 -0.01 0.56

NZ 2.59 3.86 0.12 3.82 2.44 0.76 -0.06 0.53

PT 2.46 3.20 0.20 2.90 2.23 1.37 -0.07 0.60

SE 2.13 2.16 0.00 2.14 2.13 0.55 -0.02 0.48

SG 6.23 4.12 -0.14 3.90 6.37 1.17 -0.01 0.74

US 2.75 2.09 0.01 2.01 2.73 0.68 -0.06 0.41

ZA 2.31 2.36 -0.02 2.28 2.35 0.90 0.03 0.70

Average 2.67 2.60 0.04 2.44 2.62 0.88 -0.03 0.53

Table B.1: Descriptive statistics.
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Country Fin Crisis MP Oil Shock

AT 08q1, 08q2, 08q3 80q1 74q1, 74q2, 74q3, 77q4

AU 81q3, 81q4, 82q1, 82q2, 90q1, 73q4

90q2, 90q3, 90q4

BE 07q4, 08q1, 08q2, 08q3 80q1, 92q1 74q1, 74q2, 74q3

BR 80q3, 80q4, 89q2, 89q4, 90q1,

91q3

CA 08q1, 08q2, 08q3 81q1, 81q2, 81q3, 81q4, 82q1,

90q1, 90q2, 90q3

CH 08q1, 08q2, 08q3 74q1, 74q2, 74q3, 74q4, 75q1

DE 08q1, 08q2, 08q3, 08q4 74q1, 74q2,

DK 89q1, 07q4, 08q1, 08q2, 08q3, 80q1 74q1

ES 08q1, 08q2, 08q3, 11q2, 11q3 92q1, 92q2,

FI 90q1, 90q2, 90q3, 90q4, 91q1,

91q2, 08q1, 08q2, 08q3, 08q4

FR 07q4, 08q1, 08q2, 08q3 74q1, 74q2, 74q3

GB 07q4, 08q1, 08q2, 08q3 79q2, 79q4, 80q1 73q1, 73q2, 74q2, 74q3,

IT 08q1, 08q2, 08q3 74q1, 74q2, 74q3,

JP 07q4, 08q1, 08q2, 08q3 73q1, 73q2, 73q3, 73q4

KR 97q1, 97q2, 97q3, 97q4, 78q4, 79q1, 79q2, 79q3, 79q4

MX 81q4, 82q1, 82q2, 82q3, 85q3, 85q4,

94q2, 94q3, 94q4, 08q1, 08q2, 08q3

NL 08q1, 08q2, 08q3, 08q4 80q4, 81q2, 81q4, 82q1 78q1,

NO 87q2, 87q4, 88q1, 88q2, 88q3, 07q4,

08q2, 08q3

NZ 85q1 74q2, 74q3, 76q4, 77q, 177q3

PT 73q4, 74q1, 74q2, 74q3

SE 91q4, 92q1, 92q2, 07q4, 08q1, 08q2,

08q3

SG 97q2, 97q3, 97q4, 07q4, 08q1

US 07q4, 08q1, 08q2, 08q3 79q3, 81q1, 81q3, 81q4 73q4, 74q1, 74q2

ZA 84q2, 08q2, 08q3 91q3, 91q4

Table B.2: Classification of severe contractions. The dates for the “other” category are: PT (83q2),
SG (84q3, 84q4, 85q1, 00q3, 00q4), ZA (81q4, 82q1, 82q2).
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