

 

Programming in Secondary
Education in England
Technical Report

Alex Hadwen-Bennett

Peter EJ Kemp

October 2024

 

Abstract

This report provides an analysis of a national survey of  Computing teachers
between January and April . The research was undertaken by the Computing
Education Research team at King’s College London to examine current practices in
teaching programming education in England.

Key findings:

• Python dominates the programming landscape in schools with %+ of KS
and KS teachers using the language. KS provision offers more variety in
languages with C# being present in % of schools.

• State schools are more likely to have programming taking place in -% of
KS and KS lessons, whereas independent schools are more likely to have
programming taking place in -% and of KS lessons.

• PRIMM is the most popular programming pedagogical technique, with female
teachers being more likely to use this technique “often” than males. Male
teachers are more likely to often use Parson’s problems than female teachers.

• The majority of teachers have taught students better at programming than
themselves, with female teachers more likely to say this than male teachers. In
mixed schools, the gender split of best programmers is roughly in line with
national figures for entry to GCSE computer science.

• Most schools offer a computing-related club, but state non-selective schools are
the least likely to. Independent schools are more likely to offer Robotics clubs.

• Competitions are popular, with % of all schools supporting students in
entering competitions, including % of the independent schools surveyed
supporting entries. Independent schools are more likely to enter students into
programming competitions, whereas state-maintained schools are more likely to
enter students into game design and animation competitions.

 

Contents
Background and introduction ... 5

Methodology .. 5

Distribution ... 6

Analysis .. 6

Contextual information ... 6

Programming within the secondary curriculum ... 9

Programming languages taught ... 9

Lesson time dedicated to programming ... 11

Pedagogical approaches ... 15

Highly able programmers .. 18

Extra-curricular programming opportunities ... 20

Computing related clubs ... 20

Computing competitions ... 22

Discussion .. 26

Programming within the secondary curriculum ... 26

Extra-Curricular programming opportunities .. 27

Conclusion ... 28

Acknowledgements .. 29

Bibliography ... 30

 

Background and introduction

Since the introduction of the new national curriculum in , all children in England
have been required to learn how to program a computer (DfE ). There has been
some success in introducing computer science into schools across the country (Kemp
et al. a) with “computer and code clubs” being the most common clubs of any
type offered in primary and secondary schools (IFF Research ). However,
learning to program a computer is considered to be a challenging endeavour for most
learners due to the multiple levels of abstraction involved (Blackwell ). A
considerable effort has gone into developing tools and strategies to support learners in
the process, particularly those who struggle to access programming (e.g. NCCE /
PRIMM / Teaspoon). The survey outlined in this report was designed to provide
background contextual information regarding the current practices employed when
teaching programming in secondary schools in England. It forms a part of a larger
project which seeks to explore the learning journeys of highly able programmers.

Methodology

We designed an online survey which invited teachers who deliver GCSE1 Computer
Science in England to answer questions covering the following areas:

• Demographic information and programming background,

• Clubs, Extra-curricular activities and competitions,

• Programming languages taught at KS/2,

• Programming pedagogies employed,

• Perceptions of highly able programmers.

The survey was designed to be anonymous, however participants were asked to either
provide information regarding the characteristics of their school/college or its

1 General Certificate of Secondary Education – the standard qualification taken by / year olds in
England, Wales and Northern Ireland

2 The stages of education in England are split into  key stages. Key stages ,  and  apply to high school.
KS: ages - KS: ages - (when students might take GCSEs) KS: ages - (when students might
take A-Levels)

 

Postcode/URN so this information could be obtained to enable statistical comparisons
between responses from different types of provider.

Ethical clearance for the study was sought and obtained from the King’s College

London Ethics Committee (Ethical Clearance Reference Number: LRS/DP-/-
).

Distribution

The survey was distributed between January and April  through organisations
involved in Computing education in England such as CAS (Computing at School) and
examination boards. Additionally, it was also shared through social networks such as
Twitter/X, LinkedIn and closed Facebook groups for Computing teachers.

There were  responses to the survey, however, only  of these were complete
responses. The results below analyse the full responses.

Analysis

In this initial report on the findings from the survey, descriptive statistics were built
from the responses given by participants. In several instances below results are
analysed against the gender of the teacher, or the type of school that the respondent
teaches in.

Contextual information

Although we received responses from across England, Table  demonstrates that a
large proportion of the responses (.%) originated from London and the South of
England. This is likely to be related to the research team and much of their
professional network being based in London.

 

Table : School/College Location

Table  shows that over half (.%) of the responses came from state-maintained
schools (Comprehensive / Secondary Modern / Free Schools / University technology
colleges), .% from grammar schools and .% from independent schools.
Additionally, as can be seen in Table , over three quarters of the responses come from
schools with a mixed gender intake. Nationally, .% of KS students attend a
comprehensive school, .% attend a grammar and .% attend a private school.
Splitting population by gender, .% attended all girls schools, . % all boys and
.% mixed3. Therefore, the responses to the survey show an over representation of
grammar and independent schools in the survey results, as well as an over
representation of single sex schools, potentially a reflection of increased tendency
amongst grammar and private schools to be single sex schools.

Table  shows that the teachers who responded to the survey were nearly evenly split
between the genders, .% female and .% male. This contrasts with the national
statistics which show that % of teachers were female (Kemp et al. b).

3 national statistics calculated from the  Department for Education KS results tables, excluding special
schools.

Region n %

East Midlands  .

East of England  .

London  .

North East  .

North West  .

South East  .

South West  .

West Midlands  .

Yorkshire and the Humber  .

NA  .

 

Table : School/College Type

Type n %

Comprehensive / Secondary Modern / Free  .

Grammar  .

Private / independent  .

NA  .

Table : School/College Gender

Gender n %

Boys  .

Girls  .

Mixed  .

NA  .

Table : Teacher gender

Gender n %

Female  .

Male  .

Prefer not to say  .

 

Programming within the secondary curriculum

We begin by exploring the results which provide an insight into the ways in which
programming is currently being taught in secondary schools in England. This will
include a discussion of the programming languages being employed in the classroom,
the amount lesson time dedicated to programming, the pedagogical approaches
employed by teachers and the perceived programming expertise of teachers in relation
to the best programmers they have taught.

Programming languages taught

We will examine the programming languages being used to teach programming in
secondary schools and colleges. Table  provides an overview of the languages that are
taught at different key stages. It is important to note that respondents were able to
select multiple languages.

Python has been a popular programming language for education in England for some
time as indicated in the Royal Society () ‘After the Reboot’ report in which
Python topped the list of programming languages used in secondary education. Our
results demonstrate that this continues to be the case, with over % of schools using
Python at KS and KS. At KS this dips to % with languages such as C#, Java
and Javascript increasing. The use of Javascript at KS shows the biggest increase
between key stages, going from .% at KS to over .%. This increase is likely to
be partially explained by the number of A-Level students choosing to develop web
applications for their NEA (Non-Examined Assessment)4. Scratch and other block-
based languages continue to be a popular choice at KS, with over % of schools
using it with this age group. The use of block-based languages drops to less than % at
KS and . However, this is likely to be related to them not currently being accepted
for assessments in the main GCSE and A-Level Computer Science examination
specifications in England.

4 The Non-Examined Assessments in Computer Science take the form of what is traditionally thought of as
coursework

 

Table : Programming languages taught

 Python Scratch VB C# JS Java Pascal

KS Total n % n % n % n % n % n % n %

Clubs   .  . - -  . - - - - - -

Don't   .  .  .  .  .  .  .

KS   .  .  .  .  .  . - -

KS   .  .  .  .  .  . - -

KS   .  .  .  .  .  .  .

 

Lesson time dedicated to programming

The participants were asked the percentage of lesson time that they spend on
programming at different key stages. Figure  shows that at KS .% of schools
spend -% of lesson time on programming with .% spending -%. At KS,
almost half (.%) of schools and colleges spend -% of lesson time
programming, whereas % spend -%. A similar pattern is observed at KS with
% spending -% and % spending -% of lesson time.

Figure : Percentage of programming taught per key stage

When looking at the amount of lesson time spent programming broken down by
school type in Figure , we can see that state-maintained schools are more likely to
spend -% of lesson time at KS on programming, whereas independent schools are
more likely to spend -%. At KS, although there are differences in the
percentages, -% is the most popular amount of lesson time dedicated to
programming in both state maintained and independent schools. At KS, there is
roughly an equal split among independent schools between spending -% and -

42.7

9.3

6.2

38.8

49.1

45

13.6

37

40

4.9 4.6

8.8

0

10

20

30

40

50

0-25% 26-50% 51-75% 75-100%

%

KS3

KS4

KS5

 

%. For state-maintained schools and colleges slightly more spend -% than
those that spend -% of lesson time.

When looking at the gender of the teacher delivering programming lessons, Figure 
shows that there is very little difference in delivery pattern in KS. However, there are
differences in KS, where .% male teachers had programming in -% of their
lessons, compared to .% of female teachers. This might be a reflection of the
lessons that different teachers deliver, with potentially more programming lessons
being taught by male teachers.

Figure : Percentage of programming taught per key stage and school type

5.6

51.9

66.7

33.3

27.8

9.9

4.9

11.9

55.6

47.6
44.4

34.5

6 6.2 6.7

43.8
46.7

43.8

38.3

6.2
8.3

KS3 KS4 KS5

0-2
5%

26
-50

%

51
-75

%

75
-10

0%
0-2

5%

26
-50

%

51
-75

%

75
-10

0%
0-2

5%

26
-50

%

51
-75

%

75
-10

0%
0

20

40

60

%

Independent State

 

Figure : Percentage of programming taught per key stage and teacher gender

In  Ofqual, the exam regulator for England, announced that they would be
withdrawing the non-examination assessment from GCSE Computer Science (Ofqual,
). Exams for the largest two exam boards, OCR and AQA, are now sat entirely
on paper and anecdotal evidence suggests that the amount of on-screen programming
to support the exam has decreased 5. However, this may change in the coming years as
there is a drive to offer digital versions of the GCSE Computer Science examinations
(OCR, ).

We asked participants if having an onscreen programming exam would change the
amount of lesson time they dedicated to programming. Figure  shows that around
% of teachers said they would not change the amount of time they spend and almost
% said they would increase the time dedicated to it.

5 Anecdotal evidence from school visits. Pearson/Edexcel now offer an onscreen programming exam.

42.6 41.8
40.4

38.2

12.8
14.5

4.3
5.5

8.2 8.6

53.1

46.6

32.7

41.4

6.1

3.4
5.7

6.8

45.7 45.5

37.1

40.9

11.4

6.8

KS3 KS4 KS5

0-2
5%

26
-50

%

51
-75

%

75
-10

0%
0-2

5%

26
-50

%

51
-75

%

75
-10

0%
0-2

5%

26
-50

%

51
-75

%

75
-10

0%
0

10

20

30

40

50

%

Female Male

 

Figure : Impact of exam on programming time allocation

0.9%

61.1%

37%

0

20

40

60

I w
ou

ld
ge

t s
tud

en
ts

to
do

 le
ss

I w
ou

ld
do

 th
e s

am
e a

mou
nt

I w
ou

ld
ge

t s
tud

en
ts

to
do

 m
ore

%

n=107

 

Pedagogical approaches

The survey participants were asked which pedagogical approaches they employ when
teaching programming. Figure  shows that the approach that is used most often is
PRIMM (Predict, Run, Investigate, Modify Make) (Sentance, Waite, and Kallia
) with .% of teachers stating they use it often and .% saying they use it
sometimes. Over half of teachers also reported that they use a number of other
approaches sometimes, such as: Pair Programming, Project-Based Learning, Program
Tracing and Unplugged Computing.

Figure : Programming pedagogies employed

14.8

58.3

26.9

13.9

44.4
41.7

31.5

55.6

13

22.2

52.8

25

42.6

38

19.4

35.2

54.6

10.2

PRIMM Project-based Unplugged

Code tracing Pair programming Parson's problems

Never Sometimes Often Never Sometimes Often Never Sometimes Often

0

20

40

60

0

20

40

60

%

 

When looking at the responses broken down by school type as shown in Figure , we
can see that teachers in independent schools are more likely to often use PRIMM and
Parson’s problems whereas state schools are more likely to often use code tracing
project-based learning.

Figure : Programming pedagogies employed by school type

5.6

14.3

83.3

57.1

11.1

28.6

5.6

13.1

38.9

45.2

55.6

41.7

44.4

28.6

44.4

57.1

11.1
14.3

33.3

17.9

50

56

16.7

26.2

27.8

42.9

27.8

41.7
44.4

15.5

33.3
35.7

55.6 54.8

11.1 9.5

PRIMM Project-based Unplugged

Code tracing Pair programming Parson's problems

Never Sometimes Often Never Sometimes Often Never Sometimes Often

0

25

50

75

0

25

50

75

%

Independent State

 

When looking at the responses broken down by gender, Figure  shows that % of

female teachers were often employing PRIMM in their teaching, compared to just

.% of male teachers. Parson’s problems were used often by .% of male teachers
compared to .% of female teachers.

Figure : Programming pedagogies employed by teacher gender

12.2

17.2

57.1
60.3

30.6

22.4

8.2

17.2

40.8

48.3
51

34.5

32.7 31

51

58.6

16.3

10.3

26.5

19

51
55.2

22.4
25.9

49

36.2 36.7
39.7

14.3

24.1

24.5

44.8

61.2

48.3

14.3

6.9

PRIMM Project-based Unplugged

Code tracing Pair programming Parson's problems

Never Sometimes Often Never Sometimes Often Never Sometimes Often

0

20

40

60

0

20

40

60

%

Female Male

 

Highly able programmers

When we asked teachers if they had ever taught a student who was a better
programmer than them, the vast majority, %, said that they had. Figure  shows
that the percentage differed between male and female teachers, with .% of female
teachers saying they had met such students, compared to .% of male teachers.

Figure : Would you say that you teach/have taught students that are better programmers

than you, by teacher gender

We also asked teachers to answer some questions regarding the best programmer they
currently teach. Figure  shows that .% of learners described as best programmers
are male and .% female. This distribution is roughly in line with the national
uptake of GCSE Computer Science which was % female in  (JCQ, ).
When asked whether their best programmer was on their school’s highly able pupils
(or equivalent) register, % of teachers confirmed that they were, as shown in Figure
.

 

Figure : Gender of best programmers

Figure : % of best programmers on highly able pupils register (or equivalent)

76.2%

22.6%

1.2%
0

20

40

60

80

Male Female Non-binary / third gender

%

n=84, responses from mixed gender schools

59%

41%

0

20

40

60

Yes No

%

n=67, responses from schools with highly able pupil programmes

 

Extra-curricular programming opportunities

In order to gain a clearer picture of the extra-curricular programming opportunities
that students are offered, we asked the participants whether they run any Computing
clubs or support their students in entering competitions.

Computing related clubs

As can be seen in Figure , a high proportion of all schools run Computing related
clubs, however, non-selective state schools have the lowest representation with % of
providers running clubs.

Figure : Do you run any computing related clubs?

The participants which indicated that they do run Computing clubs were asked to
select the topics they cover. Although not all Computing clubs will necessarily feature
programming, Table  indicates that the majority do with .% featuring text-based
programming and .% featuring block-based.

77.8%
83.3%

72%

0

25

50

75

Yes

%

Grammar Independent State (Non-Selective)

n=102

 

Table : Computing club topics

Club n All schools Schools with clubs

Textual programming  .% .%

Block-based programming  .% .%

Homework / revision  .% .%

Robotics  .% .%

Hardware  .% .%

Music creation  .% .%

All schools n = 

Schools with clubs n = 

When looking at the types of clubs offered by school type, we see in Table  that
grammar schools are more likely to offer textual programming clubs than other types of
school and independent schools are more likely to offer robotics clubs.

Table : Computing club topics by school type

 State Private / independent Grammar

Club type n with clubs all n with clubs all n with clubs all

Block-based programming  % %  % %  % %

Textual programming  % %  % %  % %

Homework / revision  % %  % %  % %

Robotics  % %  % %  % %

Hardware  % %  % %  % %

Music creation  % %  % % - - -

 

Computing competitions

Our data shows that % schools and colleges participating in the survey support

students in entering external competitions. Figure  shows that all participating
independent schools support students entering computing competitions compared to
.% of comprehensives and .% of grammar schools.

Figure : Do you run/support any computing competitions?

Table  shows that the most popular competition is Bebras with .% of schools that
support a competition running it.

70.7%
77.8%

100%

0

25

50

75

100

Yes

%

State (Non-Selective) Grammar Independent

n=108

 

Table : Supporting students entering competitions

Competition n All schools Schools with competitions

Bebras  .% .%

Advent of code  .% .%

Informatics Olympiad  .% .%

Perse  .% .%

Young Games Developer of the Year  .% .%

Cyber First Girls  .% .%

Lego League  .% .%

Vex Robotics  .% .%

Young Animator of the Year  .% .%

Student Robotics (Southampton)  .% .%

Uni of Oxford Computing Challenge  .% .%

AWS  .% .%

BAO  .% .%

National Cipher Challenge  .% .%

Other competitions with only one school reporting them were: Cipher Challenge; Code Wars; Cyber
Explorers; Cybercenturion; DressCode; First Robotics; First Tech Challenge; Hackathon; Immersive Labs;
PA Consulting Raspberry Pi; Samsung Solve for Tomorrow; School/Trust Specific; UKLO; Your Voice is
Power

All schools n = 

Schools with competitions n = 

Only students who achieved a top % score in the Bebras Challenge are invited to take part.

If we compare the responses between state-maintained and independent schools in
Table , it can be seen that entries to the Bebras Challenge and Advent of Code
remain high for both settings. However, the Informatics Olympiad and Perse School
Team Coding Challenge are twice as popular for independent schools when compared
with state maintained. On the other hand, other competitions, such as the Young
Game Designer and Young Animator of the Year competitions, are more popular with
state-maintained schools.

 

Table : Computing competitions by school type

 State Private / independent

Competition n % who enter
comps (n=)

% of all
(n=)

n % who enter
comps (n=)

% of all (n=)

Bebras  . .  . .

Advent of code  . .  . .

Informatics Olympiad  . .  . .

Perse  . .  . .

Young Games Developer of the Year  . .  . .

Cyber First Girls  . .  . .

Lego League  . .  . .

Young Animator of the Year  . .  . .

Vex Robotics  . .  . .

AWS DeepRacer  . . - - -

Uni of Oxford Computing Challenge  . .  . .

Student Robotics (Southampton) - - -  . .

BAO - - -  . .

Other competitions with only one state school reporting them were: Code Wars; Cyber Explorers;
Cybercenturion; DressCode; First Robotics; First Tech Challenge; Hackathon; Immersive Labs; National
Cipher Challenge; PA Consulting Raspberry Pi; Samsung Solve for Tomorrow; School/Trust Specific;
Your Voice is Power

Other competitions with only one private school reporting them were: National Cipher Challenge; Cipher
Challenge; UKLO

Only students who achieved a top % score in the Bebras Challenge are invited to take part.

If we compare the types of competitions entered between state maintained and
independent schools shown in Table , it can be seen that game design and animation
competitions are more popular with state-maintained schools, whereas to robotics and
cyber security competitions are much more popular with independent schools.
Competitions focusing on programming and algorithms are popular choice for
independent schools with .% supporting their students entering them, however less
than half of state-maintained schools participate in these competitions.

 

Table : Type of competition entered by school type

 State Private / independent

Competition type n % who enter
comps (n=)

% of all
(n=)

n % who enter
comps (n=)

% of all (n=)

Computational thinking  . .  . .

Programming & algorithms  . .  . .

Game design and animation  . .  . .

Robotics  . .  . .

Cyber security  . .  . .

AI and ML  . . - - -

The computational thinking category only includes the Bebras competition.

Competitions focusing on programming and algorithms included: Advent of Code,
Informatics Olympiad, Perse School, Oxford University Computing Challenge and
British Algorithmic Olympiad.

The game design and animation category included: Young Games Developer of the
Year and Young Animator of the Year.

The robotics category included: Lego League, VEX Robotics and Student Robotics
(Southampton University).

The cyber security category included: CyberFirst and the National Cipher Challenge.

The AI and machine learning category only includes AWS DeepRacer.

 

Discussion

Programming within the secondary curriculum

Python continues to be the most popular programming language employed by teachers
in secondary schools in England. Additionally, block-based languages such as Scratch
are used by over half of schools at KS. Their use drops to less than % at KS and ,
however this is most likely due to the main examination boards for GCSE and A-
Level Computer Science not currently accepting responses in block-based languages
in their assessments. Therefore, this does not mean that all teachers believe that these
languages are not suitable for teaching programming at these levels. The use of other
languages such as C#, Java and Javascript increases at KS. This is not surprising, as at
this level, learners work on their own original complex programming project and
therefore they need to select the most appropriate programming languages and
frameworks for their purpose.

It was interesting to explore the amount of lesson time that schools dedicate to
teaching programming at different key stages. There was quite a bit of variation, with
the majority of schools spending -% of lesson time on programming at KS. It
being less than % makes sense given the scope of the Computing National
Curriculum (DfE ) covers three broad areas: Computer Science, Information
Technology and Digital Literacy. At KS in most schools, students will be working
towards the GCSE which just focuses on Computer Science. Therefore, it makes
sense that the amount of time dedicated to programming increases, with the majority
of schools falling in the -% range and .% in the -% range. A similar
picture is seen at KS at which point most students take their Computer Science A-
Level. It is interesting to note that independent schools are more likely to dedicate -
% of lesson time to programming at KS whereas state-maintained schools are more
likely to spend -%.

The participants were also asked whether having an on-screen programming exam at
GCSE would change the amount of lesson time dedicated to programming. Currently
the two most popular examination boards for Computer Science in the UK assess
programming at GCSE through a written paper. .% of teachers said that the
amount of time dedicated to programming would stay the same and % said it would
increase. This is an important consideration given the OCR examination board

 

recently announced that their GCSE Computer Science qualification will be ‘the
UK’s first major high-stakes qualification set to be fully assessed on screen’ (OCR,
).

PRIMM has been shown to be the most popular pedagogical approach to teaching
programming in secondary education, with over % of teachers saying they use it
often. Over half of teachers said they sometimes use other approaches such as pair
programming, project-based learning, program tracing and unplugged computing.
Interestingly, .% of teachers had never used Parson’s problems which makes us
reflect on whether this is the case or if they do not know them by this name.

The majority of teachers reported that they have taught a student that is a better
programmer than them. Such learners may fit the category of highly able pupils
(previously known as gifted and talented) as it has been suggested that these learners
‘often know more than the teacher’ (NCCA, , p. ). However, only % of
teachers reported that the best programmer they currently teach is on their school’s
highly able pupils register (or equivalent).

Extra-Curricular programming opportunities

While it is positive to see that the majority of schools are offering and supporting extra-
curricular opportunities, % of state-maintained non-selective schools currently do
not. This is particularly relevant as Kemp et al. (c) found that girls attending
state-maintained schools were more likely to study GCSE Computer Science if they
were taking part in digital making activities outside curriculum time. However, there
were large gendered differences in the frequency and types of digital making
undertaken. This reinforces the importance of providing support and opportunities for
all students to engage with digital making activities outside curriculum time.

Although Computing clubs do not necessarily involve programming, it seems that the
many do with .% of schools running at least one club that involved text-based
programming and .% included block-based provision. The difference between
state-maintained and independent schools in terms of offering any type of Computing
related club is relatively small, however, independent schools are more likely to offer
robotics clubs, a type of club that potentially comes with significant hardware costs,
raising questions about how socio-economic factors might be influencing access to this
type of activity.

 

In terms of competitions, all independent schools reported that they support their
learners in entering them and most state-maintained schools do the same. The Bebras
challenge, which focuses on computational thinking, is by far the most popular
computing competition, with .% of schools taking part. Independent schools are
much more likely to enter their students into programming focused and robotics
competitions. Whereas state-maintained schools are more likely to enter their students
into game design and animation competitions. Why this is the case warrants further
investigation as it could have implications for the equity of computing competitions for
students from different backgrounds. Another area for potential investigation is the
exploration of the destinations of students who take part in programming focused
competitions compared with those that participate in applied computing competitions
which feature aspects of programming.

Conclusion

The results of this survey highlight the diverse approaches to teaching programming in
secondary education across England. Python remains the dominant language,
especially at KS and KS, while block-based languages like Scratch are popular at
KS but decline in later stages likely due to the way that programming is currently
examined. Programming instruction time varies significantly across key stages, with
independent schools generally dedicating more time than state-maintained schools.
The potential shift toward on-screen programming exams could further influence this
distribution. Pedagogically, PRIMM stands out as a favoured method, though other
strategies like code tracing and project-based learning are also frequently employed.

Extra-curricular opportunities, such as clubs and competitions, are prevalent across
schools, providing important platforms for students to engage with programming and
other forms of digital making outside the classroom. However, differences in
opportunities between state-maintained and independent schools, particularly in
robotics competitions, highlight disparities that may affect students' experiences and
opportunities. Further investigation into the reasons behind these discrepancies, as
well as the impact of participation in different types of competitions, could offer
insights into promoting greater equity in computing education.

 

Acknowledgements

This research was generously funded by the King’s College London Centre for
Research in Education based within the School of Education, Communication &
Society.

 

Bibliography
Blackwell, Alan F. . “What Is Programming?” In PPIG, :–. Citeseer.

DfE. . “The National Curriculum in England: Framework Document.” Department for
Education, London.

IFF Research. . “School and College Panel - June .”
https://assets.publishing.service.gov.uk/media/eeead/School_and_College_
Panel_June_.pdf.

JCQ. . “GCSE (Full Course) Results - August .” https://www.jcq.org.uk/wp-
content/uploads///GCSE-Full-Course-Results-Summer-.pdf.

Kemp, Peter E.J., Wong, Billy, Hamer, Jessica, Copsey-Blake, Meghan. a. “Computing
Provision Report: English School Data -.” https://scari.sites.er.kcl.ac.uk/cpre/.

Kemp, Peter E.J., Wong, Billy, Hamer, Jessica, Copsey-Blake, Meghan. b. SCARI Computing

Report - teacher workforce. King’s College London. Available at: http://kcl.ac.uk/scaricomputing

Kemp, Peter E.J., Wong, Billy, Hamer, Jessica, Copsey-Blake, Meghan. c. “The Future of
Computing Education - Considerations for Policy, Curriculum and Practice.”
https://www.kcl.ac.uk/ecs/assets/kcl-scari-computing.pdf.

NCCA. . Exceptionally Able Students: Draft Guidelines for Teachers. www.ncca.ie

OCR . “OCR to offer first GCSE with fully digital exams” https://www.ocr.org.uk/news/ocr-
to-offer-first-gcse-with-fully-digital-exams/

Ofqual (). Consultation on revised assessment arrangements for GCSE computer science.
Ofqual.

Royal Society. . “After the Reboot: Computing Education in UK Schools.” Policy Report.

Sentance, Sue, Jane Waite, and Maria Kallia. . “Teaching Computer Programming with

PRIMM: A Sociocultural Perspective.” Computer Science Education  (-): –.

https://assets.publishing.service.gov.uk/media/6537e3e65e47a5000d989912/School_and_College_Panel_June_2023.pdf
https://assets.publishing.service.gov.uk/media/6537e3e65e47a5000d989912/School_and_College_Panel_June_2023.pdf
https://www.jcq.org.uk/wp-content/uploads/2023/08/GCSE-Full-Course-Results-Summer-2023.pdf
https://www.jcq.org.uk/wp-content/uploads/2023/08/GCSE-Full-Course-Results-Summer-2023.pdf
https://scari.sites.er.kcl.ac.uk/cpre/
http://kcl.ac.uk/scaricomputing
https://www.kcl.ac.uk/ecs/assets/kcl-scari-computing.pdf
http://www.ncca.ie/
https://www.ocr.org.uk/news/ocr-to-offer-first-gcse-with-fully-digital-exams/
https://www.ocr.org.uk/news/ocr-to-offer-first-gcse-with-fully-digital-exams/

