
ThermoFisher SCIENTIFIC

System Suitability

María de Castro

GasIRMS Field Applications Specialist EMEA/Global London, 22-23 September 2023

System Suitabilty Test

- Used to verify that an analytical instrument is suitable for its intended purpose the day the analysis is done.
- To prove that system is working perfectly before the analysis.
- System Suitability Test (SST) is generally performed to evaluate the suitability and effectiveness of the entire chromatographic system not only prior to use but also during the time of analysis (due to several reasons the performance and the capacity of the entire chromatographic system may abruptly or mildly change during their regular uses).
- > There are several instruments involved in the GC-C-IRMS analysis, not just the GC-IRMS:
 - IRMS
 - GC-C-IRMS
 - Sample Preparation (SPE, HPLC, ...)

System Suitability GC-IRMS

- Autofocus (IRMS, not required only daily basis, only for troubleshooting purposes)
- Backgrounds (GC-IRMS)
- Standard onoff (IRMS)
- Peak Shape (IRMS, in Thermo Instruments only for troubleshooting purposes)
- Linearity (IRMS)
- Solvent Injection for system conditioning and backgrounds check (GC-IRMS)
- Internal Standard (GC-IRMS) RT
- Certified Reference Materials (GC-IRMS)
 - Control / Allows to perform normalization (reference gas correction)
- GC QCs / Reference Mixes (GC-IRMS)
 - Control
- Urine Quality Controls (GC-IRMS + Sample Preparation)
- Linearity for target compounds?
- 3 Proprietary & Confidential | maria.castro@thermofisher.com | September-2023

Backgrounds Check and Record GC - IRMS

Instrument Logbook

1.0															<u> </u>
	H ₂	.20 ·	Ú Ú	N ₂	6	O ₂		Ar	c	CO2					
Date	Backflush mode	n <mark>Straight</mark> mode	Backflush mode		Backflush mode	n Straight mode	t Backflush mode	sh Straight mode	de Backflush mode	h Straight mode	REMARKS / Maintenances		Total Injections	Onoff CO2 (%o)	Linearity Reference Gas (‰/V)
10/19/2022	4398	8 4309	375	18 760	50 1038	8 1478	/8 7	11 2	26 168	\$ 19	96 Oxidación 15hs antes, PTV	1	1	(/
25/10/2022	2122	·[127	1	815	5	Actuation	6	147	/				0.021	4
26/10/2022		3900	J '	800	.0	1000	.0	2	26	200	0		/		
27/10/2022	1772	2 496	55	8 731	650	50 1384	<u>4</u>	4 1	10 136	ó 2.ª	0		,	1	
2/11/2022	1791	1 1521	1 307	07 112	12 345	15 834	<i>j</i> 4 7	26	9 133	3 17	18	//////////////////////////////////////	/		
4/11/2022	2400	0 2387	7 349	9 239	39 49650	50 49720	20 7	20 1	15 565	/5	540 Despues de 45 min de oxidacion + 45 min BF		, T	/	1
7/11/2022	4225	5 3928	5 68	58 135	35 1175	1250	10	4	8 245	23 از	136 Cambio a columna TG-624SIIMS/SSL/new septum/Liner HS			/	1
11/11/2022	ļ	í					9	12 2	25		BTEX Supelco	Ĩ	.2 17	2 0.025	5 0.004
14/11/2022		1											6 18	5	
23/11/2022		1							1			2	A 47'	4	
24/11/2022		1										,	.1 57	3	
25/11/2022		('			270	70 590	10 7	10 4	45		BTEX Schimmelmann	1	.1 6/	4	

Linearity Reference Gas (‰/V)	TransferTest (3ul air, Split 1:20, 2mlmin column flow)				Flows (ml/min)-Disconnected					LINEARITY CAL	LINEARITY CALCULATION		
		(3ul air, Split 1:20, 2mlmin column flow)	P He (bar)	P He+O2 (bar)	P O2 (bar)	GC oven Set	GC column Set	BF CN	BF HTC	HTC+O2		<u>Ampl. 44 (V)</u>	<u>d13C(‰)</u>
		1.5		0.55	80	1.5	3.50/3.10				0.48	-0.05	
											0.48	-0.07	
											0.80	0.00	
											1.98	-0.04	
											2.15	-0.07	
											2.65	-0.12	
											4.56	-0.08	
0.004	10.5				50	2	3.70/3.45				6.10	-0.09	
											6.10	-0.10	
											8.74	-0.04	
										Linearity (‰/V)	0.003	≤ 0.06	

4 Proprietary & Confidential | maria.castro@thermofisher.com | September-2023

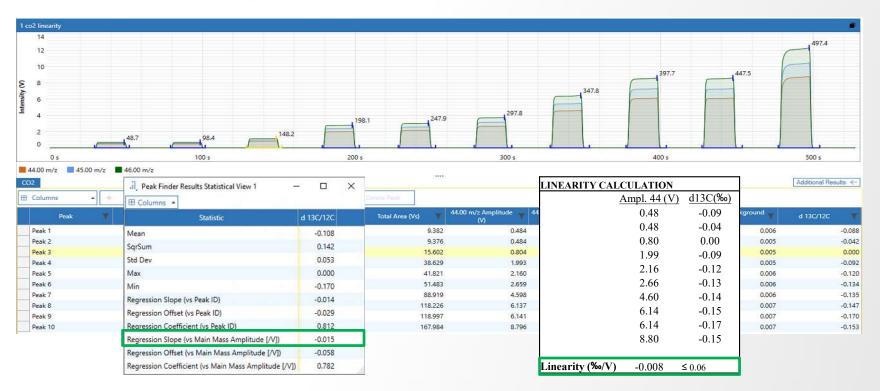
ThermoFisher SCIENTIFIC

Stability: Standard onoff test

IRMS

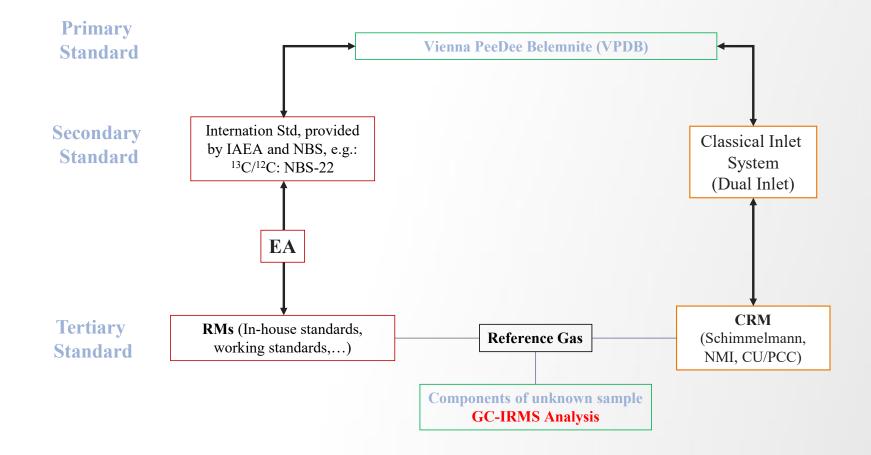
- Specification for ¹³C reference gas pulses precision: 0.06‰
- Necessary to check the IRMS stability as well as to condition the instrument (must be performed just before running the samples sequence)
- First run is generally drifting, some instruments require more than one run to get stable
- Minimum requirement n=3 stable runs (n=4/5, first one or two runs for conditioning)
- Can also be used to control sensitivity

ample	List														
4	Label 💎	4 Status ⊽-	¤ Comment ⊽+⊧	¤ Evaluate ⊽	- Sample Typ	pe 3 co2 onoff									
	co2 onoff	0	Conditioning		Unknown	3.92	,48.9 ,98.6	148.4	, 198.3	, 248.1	,297.8	347.6	, 397.3	447 3	. 497.0
	co2 onoff	0	Conditioning	2	Unknown	3.5	40.9		1.00.0		C Lorino	- Salia			
	co2 onoff	0	co2 onoff		Unknown	3									
	co2 onoff	0	co2 onoff	~	Unknown	S 2.5									
	co2 onoff	0	co2 onoff	2	Unknown	1.5									
	<u></u>					1									
						0.5									
					Sec.	0 12.212 s	100 s	4	200 s	1 4	300 s		400 s		500 s
	Peak Fin	nder Results Statist	tical View 1	- 🗆	×	44.00 m/z 45.00 m/z			200 5		300 5		400 5		500 5
	E Columns	*				CO2	- 1000								Additional Results
		Statistic	e	d 13C/12C		E Columns	+ Add Pesk 🥖 Modify Backgr	round 🕜 Scan	× Delete I	Peak					
	Mean														
	INCOLL			0.023		Peak T	T Dilution T Retention	Time (s) 👖 Wic	ith (s) 📱 Tota				z Background y 46.0	0 m/z Background 🕌	d 13C/12C 🛛 📲
	SarSum					Peak T	Dilution Retention	Time (s) 👕 Wid 48.9	ith (s) T ota 24.9			z Background ¥ 45.00 m/ (V) 0.005		0 m/z Background (V) 0.006	d 13C/12C 🛛 🕊 0.046
	SarSum			0.023		Peak 1 Peak 2		48.9 98.6	24.9 24.9	51.755 51.737	(V) 2.667 2.665	(√) 0.005 0.005	(V) 0.005 0.005	(V) 0.006 0.006	0.046
	SorSum Std Dev			0.023		Peak 1 Peak 2 Peak 3	0.00	48.9 98.6 148.4	24.9 24.9 24.9	51.755 51.737 51.670	(V) 2.667 2.665 2.663	0.005 0.005 0.005	(V) 0.005 0.005 0.005	(V) 0.006 0.006 0.006	0.046 0.022 0.000
	SqrSum Std Dev Max			0.023 0.009 0.020 0.046	3	Peak 1 Peak 2 Peak 3 Peak 4	0.00	48.9 98.6 148.4 198.3	24.9 24.9	51.755 51.737 51.670 51.768	(V) 2.667 2.665 2.663 2.664	0.005 0.005 0.005 0.005 0.005	(V) 0.005 0.005 0.005 0.005	(V) 0.006 0.006 0.006 0.006	0.046 0.022 0.000 -0.014
	SorSum Std Dev			0.023		Peak 1 Peak 2 Peak 3	0.00	48.9 98.6 148.4	24.9 24.9 24.9 24.9 24.7	51.755 51.737 51.670	(V) 2.667 2.665 2.663	0.005 0.005 0.005	(V) 0.005 0.005 0.005	(V) 0.006 0.006 0.006	0.046 0.022 0.000
	SqrSum Std Dev Max			0.023 0.009 0.020 0.046		Peak 1 Peak 2 Peak 3 Peak 4 Peak 5	0.00 0.00 0.00 0.00	48.9 98.6 148.4 198.3 248.1	24.9 24.9 24.9 24.7 24.7 24.7	51.755 51.755 51.737 51.670 51.768 51.705	(V) 2.667 2.665 2.663 2.664 2.664	(V) 0.005 0.005 0.005 0.005 0.005	(V) 0.005 0.005 0.005 0.006 0.006	(V) 0.006 0.006 0.006 0.006	0.046 0.022 0.000 -0.014 0.022
	SqrSum Std Dev Max			0.023 0.009 0.020 0.046	Ţ	Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6 Peak 8	0.00 0.00 0.00 0.00 0.00 0.00 0.00	48.9 98.6 148.4 198.3 248.1 297.8 347.6 397.3	24.9 24.9 24.9 24.7 24.7 24.7 24.9 24.9 24.9 24.9	a) Area (Vs) 51.755 51.737 51.670 51.768 51.705 51.747 51.732 51.732 51.836	(V) 2.667 2.665 2.664 2.664 2.667 2.668 2.667	(V) 0.005 0.005 0.005 0.005 0.005 0.005 0.005	(V) 0.005 0.005 0.006 0.006 0.006 0.006 0.006 0.006	(V) 0.006 0.006 0.006 0.006 0.006 0.006 0.006	0.046 0.022 -0.014 0.022 0.018 0.018 0.016
	SqrSum Std Dev Max			0.023 0.009 0.020 0.046	Ţ	Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6 Peak 7	0.00 0.00 0.00 0.00 0.00 0.00	48.9 98.6 148.4 198.3 248.1 297.8 347.6	24.9 24.9 24.9 24.7 24.7 24.7 24.9 24.9	51.755 51.737 51.670 51.768 51.705 51.705 51.747 51.732	(V) 2.667 2.665 2.664 2.664 2.664 2.667 2.668	(V) 0.005 0.005 0.005 0.005 0.005 0.005 0.005	(V) 0.005 0.005 0.006 0.006 0.006 0.006	(V) 0.006 0.006 0.006 0.006 0.005 0.006	0.04 0.02 -0.01 -0.01 0.02 0.01 0.04

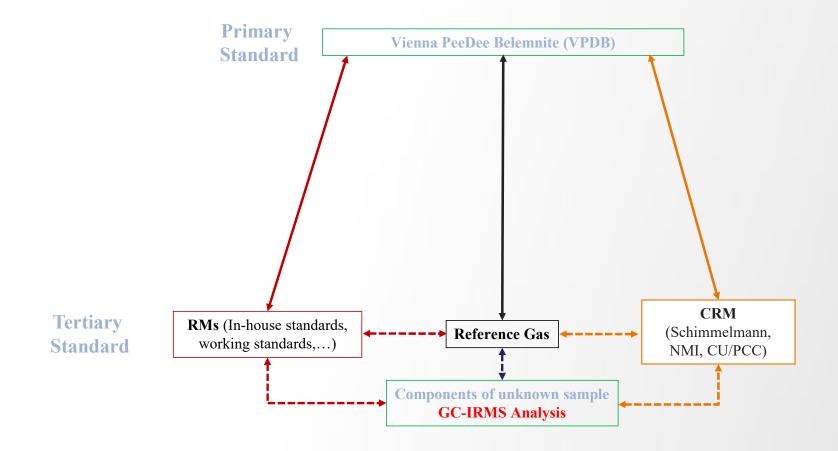

5 Proprietary & Confidential | maria.castro@thermofisher.com | 08-February-2023

Thermo Fisher s c i e n t i f i c

Thermo Fisher SCIENTIFIC


Linearity Reference Gas (IRMS)

- Slope must be ≤ 0.066 ‰/V (≤ 0.02 ‰/nA)
- Must be performed regularly (once a month)?
- ✤ WADA -TD2022IRMS: within the specifications of the instrument manufacturer



Isotopic Standarization

Isotopic Standarization

Precision and Accuracy

Certified / In-house RMs (GC – IRMS) & Urine Quality Controls (GC-IRMS + Sample Preparation)

Certified Reference Materials: Control / Allows to normalize the data (= reference gas correction)

Forensic Isotope Ratio Mass Spectrometry (FIRMS)

For results to be comparable between laboratories, measurements must be traceable to the international δ -scales and, because isotope ratio measurements are reported relative to standards, a key aspect is the correct selection, calibration, and use of international and in-house RMs.

Four principles:

The principle of identical treatment by which samples and RMs are processed in an identical manner and which incorporates three further principles;

- The principle of identical correction (by which necessary corrections are identified and evenly applied),
- The principle of identical scaling (by which data are shifted and stretched to the international δ-scales),
- The principle of error detection by which quality control (QC) and quality assurance (QA) results are monitored and acted upon.

To achieve both good repeatability and good reproducibility it is essential to obtain RMs with internationally agreed δ -values. These RMs will act as the basis for QC and can be used to calibrate further in-house QC RMs tailored to the activities of specific laboratories.

The δ -values assigned to RMs must be recorded and reported with all data.

Reference materials must be used to determine what corrections are necessary for measured data.

Each analytical sequence of samples must include both QC and QA materials which are subject to identical treatment during measurement and data processing. Results for these materials must be plotted, monitored, and acted upon.

Periodically international RMs should be analysed as an in-house proficiency test to demonstrate results are accurate.

Isotopic Data Corrections

- Blank Correction (EA-IRMS)
- Drift Correction: A linear regression line is fitted through the δ^{13} C values vs. measurement time t_{sample} (sample start time). The slope *m* of that line is then used to correct the other samples:

 $\delta^{13}C_{corr} = \delta^{13}C_{measured} - m x t_{sample}$

Linearity Correction

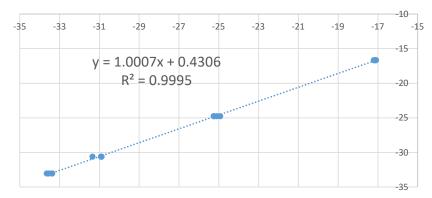
 $\delta^{13}C_{corr} = \delta^{13}C_{meas} - m x Ampl.$

• Normalization: data is shifted and stretched to the international δ -scales. A linear regression line is fitted through the measured δ^{13} C values vs. the certified δ^{13} C

 $\delta^{13}C_{corr}$ = Slope x $\delta^{13}C_{meas}$ + Intercept

Thermo Fisher

Normalization


						Ref. Gas	
	Raw Data	Certified	Offset	Corrected	Offset	Correction 0.41	Offset
5a-ol_ac	-31.338	-30.61	-0.73	-30.93	-0.32	-30.93	-0.32
5a-ol_ac	-30.887	-30.61	-0.28	-30.48	0.13	-30.47	0.14
5a-ol_ac	-30.898	-30.61	-0.29	-30.49	0.12	-30.49	0.12
5a-ol_ac	-30.913	-30.61	-0.30	-30.50	0.11	-30.50	0.11
Choles_ac	-25.221	-24.77	-0.45	-24.81	-0.04	-24.81	-0.04
Choles_ac	-24.922	-24.77	-0.15	-24.51	0.26	-24.51	0.26
Choles_ac	-25.095	-24.77	-0.32	-24.68	0.09	-24.68	0.09
Choles_ac	-25.252	-24.77	-0.48	-24.84	-0.07	-24.84	-0.07
andro_ac	-33.645	-33.04	-0.61	-33.24	-0.20	-33.23	-0.19
andro_ac	-33.375	-33.04	-0.34	-32.97	0.07	-32.96	0.08
andro_ac	-33.538	-33.04	-0.50	-33.13	-0.09	-33.13	-0.09
andro_ac	-33.368	-33.04	-0.33	-32.96	0.08	-32.96	0.08
11ketoE_ac	-17.202	-16.69	-0.51	-16.78	-0.09	-16.79	-0.10
11ketoE_ac	-17.147	-16.69	-0.46	-16.73	-0.04	-16.73	-0.04
11ketoE_ac	-17.089	-16.69	-0.40	-16.67	0.02	-16.68	0.01
11ketoE_ac	-17.144	-16.69	-0.45	-16.73	-0.04	-16.73	-0.04
		Average	-0.41				
				Slope	1.001		

 Slope
 1.001

 Intercept
 0.431

 Correlation
 1.000

USADA 33-1

Thermo Fisher S C I E N T I F I C

ISTD 0 Drift Correction ~ MX018-1 Delta Standard (CSIA) MX018-1 0 ~ MX018-2 Delta Standard (CSIA) MX018-2 0 ~ MX018-1 ۲ • Unknown MX018-2 0 Unknown ~ RM_QC 0 • **Drift Correction** RM_QC 0 Unknown -F1_QCN_11-Keto • Unknown F2_QCN_Testo 0 Unknown ~ F3_QCN_11-EpiT -Unknown F4_QCN_5b-diol ~ Unknown F5_QCN_5a-diol • Unknown F6_QCN_PD 0 ~ Unknown MX018-1 0 • Unknown MX018-2 0 Unknown • RM_QC **Drift Correction** 0 ~ F1_QCP_11-Keto ~ Unknown F2_QCP_Testo Unknown 0 ~ F3_QCP_11-EpiT • Unknown F4_QCP_5b-diol Unknown 0 • F5_QCP_5a-diol 0 ~ Unknown F6_QCP_PD Unknown 0 ~ RM_QC 0 Unknown ~ RM_QC ۲ ~ Unknown MX018-1 0 ~ Unknown MX018-2 0 ~ Unknown ISTD Drift Correction 0 .

▽쿠 Status ▽쿠 Comment ▽쿠 Evaluate ▽쿠 Sample Type ▽쿠

~

Unknown

Sample	List								
2		Status ⊽+Þ	Comment	⊽₽	Evaluate ⊽+¤		⊽₽	Reference	⊽₽
1	Solvent	0			$\mathbf{\overline{\mathbf{v}}}$	Unknown			
2	ISTD	0				Unknown			
3	MX018-1	0			•	Delta Standard (CSI	A)	MX018-1	
4	MX018-2	0			•	Delta Standard (CSI	A)	MX018-2	
5	MX018-1	0			•	Unknown			
6	MX018-2	0			•	Unknown			
7	RM_QC	0			•	Unknown			
8	RM_QC	0			~	Unknown			
9	F1_QCN_11-Keto	0			~	Unknown			
10	F2_QCN_Testo	0			~	Unknown			
11	F3_QCN_11-EpiT	0			~	Unknown			
12	F4_QCN_5b-diol	0			~	Unknown			
13	F5_QCN_5a-diol	0			•	Unknown			
14	F6_QCN_PD	0			~	Unknown			
15	MX018-1	0			~	Delta Standard (CSI	A)	MX018-1	
16	MX018-2	0			~	Delta Standard (CSI	A)	MX018-2	
17	RM_QC	0			•	Unknown			
18	F1_QCP_11-Keto	0			•	Unknown			
19	F2_QCP_Testo	0			~	Unknown			
20	F3_QCP_11-EpiT	0			~	Unknown			
21	F4_QCP_5b-diol	0			•	Unknown			
22	F5_QCP_5a-diol	0				Unknown			
23	F6_QCP_PD	0			~	Unknown			
24	RM_QC	0			~	Unknown			
25	RM_QC	0			~	Unknown			
26	MX018-1	0				Delta Standard (CSI	A)	MX018-1	
27	MX018-2	0			~	Delta Standard (CSI	A)	MX018-2	
28	ISTD	9			✓	Unknown			

nnlelis

Reference

⊽₽

12 Proprietary & Confidential | maria.castro@thermofisher.com | September-2023

Precision and Accuracy

Sample List

Label

0

Solvent

Thermo Fisher

Precision and Accuracy

1	Label 💎 ዋ	Status 🖓 🗖	Comment	⊽₽	Evaluate	⊽₽	Sample Type	⊽₽	Reference	⊽₽
1 🕨	Solvent	0					Unknown			
2	ISTD	0					Unknown			
3	MX018-1	0			•		Unknown			
4	MX018-2	0					Unknown			
5	MX018-1	0					Unknown			
6	MX018-2	0					Unknown			
7	RM_QC	0					Unknown			
8	RM_QC	0					Unknown			
9	F1_QCN_11-Keto	0					Unknown			
10	F2_QCN_Testo	0					Unknown			
11	F3_QCN_11-EpiT	0			•		Unknown			
12	F4_QCN_5b-diol	0					Unknown			
13	F5_QCN_5a-diol	0			•		Unknown			
14	F6_QCN_PD	0			~		Unknown			
15	MX018-1	0			•		Unknown			
16	MX018-2	0					Unknown			
17	RM_QC	0					Unknown			
18	F1_QCP_11-Keto	0			•		Unknown			
19	F2_QCP_Testo	0			•		Unknown			
20	F3_QCP_11-EpiT	0					Unknown			
21	F4_QCP_5b-diol	0					Unknown			
22	F5_QCP_5a-diol	0			•		Unknown			
23	F6_QCP_PD	0			•		Unknown			
24	RM_QC	0			•		Unknown			
25	RM_QC	0			•		Unknown			
26	MX018-1	0			~		Unknown			
27	MX018-2	0			~		Unknown			
28	ISTD	0			~		Unknown			

Australian GovernmentNationalDepartment of Industry,
Science and ResourcesMeasurement

Steroid CRM for GC-C-IRMS applications

Fong Liu National Measurement Institute, Australia (NMIA)

Measurement for a fair, safe, healthy and competitive Australia | measurement.gov.au

Current CRMs for GC-C-IRMS application

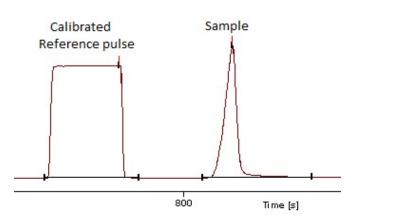
CRM	Steroid/Matrix type	δ ¹³ C _{VPDB} ± U(‰)	Traceability	Intended application
MX016	19-Norandrosterone in 20% methanol/water	-29.7 ± 0.8	CU-USADA 34-1	Calibration, Validation, QC
MX017	11 steroid metabolites in freeze dried urine	-30 to -20 (0.4 to 0.9)	Multipoint normalisation using MX018	Validation, matrix matched QC
MX018	13 pure steroid metabolites	-32 to -13 (0.1 to 0.6)	IAEA-CH-6, IAEA-CH-7	Multi-point calibration
MX020	Boldenone BM 1 (pure steroids)	-30.38 ± 0.29 -29.71 ± 0.28	USGS4-40, IAEA-CH-7	Calibration, Validation, QC
MX021	Formestane (pure steroid)	-30.71 ± 0.48	USGS4-40, IAEA-CH-7	Calibration, Validation, QC

New CRMs to be released – April 2024

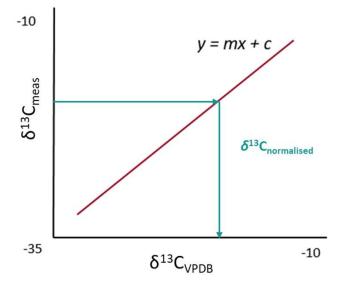
- MX023 to MX028 Six steroid CRM certified for $\delta^{13}C$
- For validation of GC-C-IRMS confirmatory analysis by linear mixing model (LMM)
- Funded by Sport Integrity Australia (SIA)

CRM	Steroid	Dried steroid (mg)
MX023	Androsterone	1
MX024	Etiocholanolone	1
MX025	Testosterone	0.5
MX026	5α-androstane-3α-17β-diol	0.5
MX027	5β-androstane-3α-17β-diol	0.5
MX028	Pregnanediol	0.5

Preparation and handling of ampoule CRM

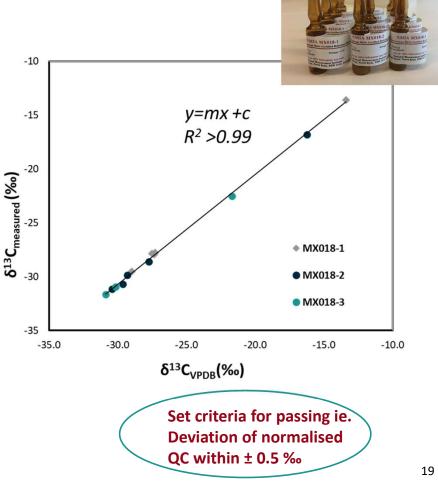

CRITICAL NOTE: Thorough rinsing of all glassware and tips with methanol is critical to minimise contamination for the stock and working solutions

- Ampoule reconstitution for stock solution ie. MX018
 - 2 mL of 2-propanol, equilibrate 3 hours
 - Transfer to a clean vial
- Storage of stock solution
 - +4°C protected from light when not in use
- Working standard preparation
 - In GC vial fitted with 200 μL insert (furnaced 500°C for 7 hours)
 - 10 μ L stock solution, internal standard, make up to 100 μ L with cyclohexane
 - Use only rinsed pipette tips for both stock solution and solvent


Two approaches to δ^{13} C measurement

Reference gas approach (MX005)

- δ^{13} C of CO₂ reference gas calibrated with steroid CRM
- Sample $\delta^{13}C$ is measured against an average batch $\delta^{13}C$ for reference gas
- Essentially a single point calibration!


Multi-isotopic calibration (MX017)

- δ -values for samples and standards expressed as relative to an approximate δ^{13} C value of the reference gas
- Sample normalised using linear calibration function,
 y = mx + c

MX018 CRM for Multi-point calibration

- System suitability-zero enrichment, linearity
- δ^{13} C -13 to -32‰ using 3 mixes
 - 15 calibration points, *y=mx+c*
 - $\delta^{13}C_{norm} = (\delta^{13}C_{meas} c)/m$
- Bracketing approach
- Set acceptance criteria for batch ie. ۲
 - $R^2 > 0.99$ •
 - In-house QC Spike (water/matrix)
 - QC standard to check calibration bias using • CRM

NMI Contact

Technical information

Email: fong.liu@measurement.gov.au

Sale of material:

Email: <a href@measurement.gov.au

Department of Industry, Science and Resources | National Measurement Institute

105 Delhi Rd North Ryde, NSW 2113 Australia