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Abstract

Protected Areas (PAs) are a key tool in the conservation of biodiversity and ecosystem
function. However, PA effectiveness and potential confounding factors must be understood in
order to justify the global PA network. This study assesses deforestation rates in newly
designated tropical forest PAs using the Global Forest Change dataset; deforestation was
quantified within the PA and the surrounding 10km buffer zone before and after designation
to identify spillovers that could compromise effectiveness. Statistical matching and
difference-in-differences regression was used to generate counterfactual controls and identify
significant changes across time, respectively. Designation did not significantly reduce
deforestation, although rates were lower than the controls. Leakage was potentially found in 2
of the 9 PAs, however the combination of geo-physical, socioeconomic, and political factors
on a local spatial scale require more in-depth analysis for conclusive assessment; further

work should be targeted at this scale of inquiry for research on PA spillovers.
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1. Introduction

The acceleration of technological development and population growth from the 19th century
to present has resulted in unprecedented environmental crises (Sanderson et al., 2002;
Zalasiewicz et al., 2010): Climate change, habitat loss, biodiversity declines, and increased
extinctions (Dirzo et al., 2014; Ceballos et al.,2015). As a result, a new geological epoch is
proposed — the ‘Anthropocene’, characterised by humanity’s role as the defining global
environmental forcing agent, the impacts of which will be recognisable on the scale of
geological time (Crutzen, 2002; Zalasiewicz et al., 2010). Arresting this degradation of
environmental processes is imperative to avoid permanent loss of ecosystem function and the

accompanying cost to human society (Sannigrahi et al., 2018).

The modern Protected Area (PA) concept was originally conceived in the 19th century to
preserve iconic landscapes and wildlife before expanding throughout the 20th century to fill a
complex role of managing ecosystem services, supporting local livelihoods, and preserving
charismatic flora and fauna (see Figure 1) (Watson et al., 2014). PAs are a key tool in the
conservation of nature (Dudley, 2008) as evidenced by the expansion of the global PA
network (Figure 1), exemplified by the Convention on Biological Diversity's "Aichi target"

11 — to conserve 17% of land and 10% of marine waters by 2020 through PAs and other area-
based conservation measures (CBD, 2010); this multilateral treaty, ratified by all UN member
states, represents a massive global commitment and currently 15% of land and 8% of oceans
fall under a form of protection (IUCN and UNEP-WCMC, 2020). It is critical to the
legitimacy of conservation that the restrictions on these vast swathes of land and sea are

achieving the desired outcomes.

Although research on Protected Area Effectiveness (PAE) with strong counterfactual study
design is relatively sparse (Geldmann et al., 2013), it has become clear that simply
designating an area ‘protected’ does not necessarily confer the desired benefits to the
environment — there are complex social, economic, and political dynamics that impact
effectiveness (Spracklen et al., 2015; Pfaff and Robalino, 2017; Fuller et al., 2019).
Additionally, there is bias in the non-random location of PAs (i.e. remote and inaccessible)
and which ecosystems and species are represented (Joppa et al., 2008; Joppa and Pfaff, 2011;

Watson et al., 2014). It is essential that these factors are fully understood and considered
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Figure 1. The historical evolution of PAs from the 19" century to present, taken from
Watson et al. (2014). Top is a timeline of key events and organisations. Middle shows
the numerical growth of the number of PAs and the millions of square kilometers
covered by the global network. Bottom is the change of the role that protected areas are
expected to fill.
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when planning and managing PAs, particularly under major resource constraints (Coad et al.,
2019). One of the ways that PAE can be inflated is through ‘leakage’: Originally
conceptualised regarding carbon sequestration through avoidant deforestation policies (e.g.
REDD), whereby net carbon sequestration fails due to demands for timber/land being met
elsewhere (Brown et al., 1997; Schwarze et al., 2002; Aukland et al., 2003). In the context of
PAs designated for the preservation of ecology/habitats, leakage could result in elevated
conversion of land (e.g. deforestation) immediately surrounding the PA; this loss of the

‘buffer zone’ could offset the benefits of the restriction (Ewers and Rodrigues, 2008).

Leakage has been assessed almost exclusively in tropical forest ecosystems; this may be
because of the disproportionate representation of the world’s terrestrial biodiversity, severe
anthropogenic pressure (Gardner et al., 2010; Giam, 2017), and the recent increase in PA
coverage, particularly in South America (Jenkins and Joppa, 2009). Additionally, the loss of
ecosystem function through deforestation is one of the most common methods of evaluating
PAE (impact evaluation) (Andam et al., 2008; Fuller et al., 2019; Ribas et al., 2020). The
loss of buffer zones through leakage is particularly important to identify due to the ecological
dependence of tropical PAs on the surrounding ecosystems, especially in terms of
maintaining biodiversity and climate change mitigation (DeFries et al., 2005; Laurance et al.,
2012; Mitchard, 2018). Although there have been several studies investigating leakage (e.g.
Sanchez-Azofeifa et al., 2003; Oliveira et al., 2007; Lui and Coomes, 2016; Poor et al.,
2019), there is little consensus on the causes and only Oliveira et al. (2007) investigated the

temporal effects after the designation of new land use restrictions.

This study will investigate the temporal effects of PA designation on deforestation using a
global remotely-sensed dataset. Counterfactual control samples will be identified using
statistical matching to control for bias in PA location. These will be used to compare the
deforestation rates of the PA and buffer over time, followed by detailed spatial analysis of the
patterns and drivers of deforestation within the buffer zone to identify leakage and potential
drivers. The socioeconomic and political status of the regions surrounding the PAs will also
be considered to assess commonality between cases and potential future directions for further

research.

The research questions for this study are as follows:
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Does protected area designation displace deforestation to the surrounding landscape
(leakage)?

Are there spatial, socioeconomic, political patterns affecting leakage?
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2. Literature Review

2.1 Protected Area Impact Evaluation
The commitments to ecological preservation and the conservation of biodiversity under
constrained resources, as outlined in the introduction, necessitate comprehensive and robust
evaluation. Impact evaluation in conservation first started gaining attention in the 1990s but
was focused on straightforward measurable outputs (e.g. staff trained, km” protected,
communities instructed etc.) rather than the outcomes (e.g. biodiversity/ecosystem preserved)
(Ferraro and Pattanayak, 2006); by the time of the Millennium Ecosystem Assessment in
2005 it was clear that “Few well-designed empirical analyses assess even the most common
biodiversity conservation measures.” (MEA, 2005). This is particularly relevant to PAs as
they are broadly judged in terms of their number and area of coverage, with an assumption
that effectiveness is inherent (Chape et al., 2005), as evidenced by the Aichi targets (see
Section 1). The expectation of conservation practitioners, donors, and governing bodies that
PAs are justified and demonstrably (with rigorous evaluation) valuable as conservation
investments has grown considerably over the past 3 decades (Ferraro and Pattanayak, 2006;

Ferraro, 2009; Ferraro and Pressey, 2015; Baylis et al., 2016).

In the environmental sciences, establishing an experimental control group is often practically
impossible due to ethical, logistic, and financial constraints (Schleicher et al., 2020). This
creates a challenge of establishing a counterfactual control (i.e. what would have happened
with no intervention) in observational studies. Although challenging, in comparison to other
fields like economics and public health, the quality of impact evaluation in conservation is
poor (Baylis et al., 2016). Some studies naively avoid counterfactual thinking and (i) simply
compare outcomes of treated against untreated (in this case protected land against
unprotected land) (e.g. Rodriguez et al., 2013), or (i1) compare outcomes before and after the
treatment is implemented (e.g. Macdonald et al., 2011) (Ribas et al., 2020). However, these
methods have assumptions that are unlikely to be upheld in reality — (i) that treatments are
randomly selected and distributed, and (ii) that the outcome in question is uniform across
time (Joppa and Pfaff, 2010; Baylis et al., 2016). For example Lui and Coomes (2016) used
control samples within a distance of 25km from the PA boundary, not controlling for
confounding variables and assuming that there is a similarity in land characteristics affecting
the outcome (deforestation) between the control samples and the PA due to spatial proximity,

which has previously been found not to be the case (Joppa and Pfaff, 2011).
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Counterfactual thinking requires well-constructed theories of change to determine which
characteristics or confounding covariates can affect the conservation outcome in order to
control for them (Qiu et al., 2018; Schleicher et al., 2020). In the case of tropical forest PAs,
deforestation is the simplest measure of conservation outcome and used almost exclusively
for impact evaluation (Fuller ez al., 2019), indeed all of the studies referenced herein will be
using tropical forest deforestation as a measure of PA evaluation; remote sensing techniques
can be used to cover deforestation at a high spatial resolution on a global scale, with data sets
now going back decades (Hansen et al., 2013). Therefore, the question for the theory of
change is: What are the socio-geophysical characteristics (confounding variables) that affect
the likelihood of both deforestation and protected area designation, and then how do you
control for them? For the former, it is known that both deforestation and PA designation are
linked to agricultural suitability and accessibility/remoteness (Andam et al., 2008; Venter et
al.,2018) — PAs are more likely to be established in remote, inaccessible regions where
deforestation rates are unlikely to be high and opportunity costs are low; these areas are
therefore protected de facto, without the necessity of a PA (Andam et al., 2008; Joppa et al.,
2008; Joppa and Pfaff, 2010, 2011; Amin ef al., 2019). There are a number of techniques
used to control for confounding factors, but the most commonly used and effective method in

PA impact evaluation is statistical matching (Ribas et al., 2020).

2.2 Matching
Matching refers to a range of statistical techniques employed to establish or improve causal
inference. It is used across a variety of fields where experimental controls are not feasible,
such as economics, medicine, political science, and law (Sekhon, 2011). Controls are selected
ex post based on a degree of similarity or distance to the treatment group across a range of
predefined covariates (Schleicher et al., 2020); in this way the aim of matching is to create
two sample groups (treatment and control) with similar covariate distributions, resulting in an
‘apples to apples’ comparison (Joppa et al., 2008; Joppa and Pfaff, 2011). The most common
methods (Sekhon, 2011) (see Table 1) are nearest neighbor with propensity score matching
(PSM) (based on logistic regression) (Rosenbaum and Rubin, 1983), nearest neighbor with
Mahalanobis distance (Rubin, 1980), and genetic matching (Diamond and Sekhon, 2013).
Method selection should not be carried out a priori and the process should be iterative with
testing of different methods and models to find the best fit or ‘balance’ (Schleicher et al.,
2020), although many of the examples in Table 1 do not show evidence of this process. In a

review of PA impact evaluation, Ribas et al. (2020) found that studies neglecting
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counterfactual study design typically over-estimate PAE; confirming the findings of the first

implementations of matching in PA impact evaluation by Andam e al. (2008) and Joppa and
Pfaff (2011). In general, matching studies have found that PAs do confer benefits to tropical

forest ecosystems but these can be marginal and must not be assumed (Andam et al., 2008;

Gaveau et al., 2009; Joppa and Pfaff, 2011; Rasolofoson et al., 2015; Geldmann et al., 2019).

2.3 Leakage
Leakage is a form of spillover, whereby effects from a conservation intervention are
displaced onto non-intervention areas; this can be negative (leakage), or positive, known as
‘blockage’ — such as ecological benefits of population reservoirs within proximal PAs (Ewers
and Rodrigues, 2008; Fuller et al., 2019). Spillovers can occur across a range of spatial
scales, for example conservation interventions might raise the cost of timber in one region
causing increased deforestation in another distant region with lower costs (Moilanen and
Laitila, 2016). This ‘indirect’ leakage can involve complex market dynamics and occur
across national boundaries, such as Thailand’s 1989 logging ban increasing deforestation in
Cambodia and Myanmar (Gan and McCarl, 2007; Henders and Ostwald, 2014; Lim et al.,
2017; Pfaff and Robalino, 2017). For the purpose of this study however, ‘neighbourhood’ (or
‘direct’) leakage will be exclusively examined, whereby land-use conversion and

deforestation is offset to the immediate surroundings or ‘buffer zone’ of a PA.

Not accounting for spillovers in PA impact evaluation could result in significant inaccuracy,
especially due to the aforementioned bias in PA designation for land with low opportunity
costs rather than high biodiversity — human pressure could in theory be displaced onto areas
with a higher ecological value (Venter et al., 2018). Buffers are also important to preserve
because they maintain ecological health by increasing species capacity and connectivity of
habitats (Sayer, 1991; Bennett and Mulongoy, 2006; DeFries et al., 2005) and loss of buffer
will result in degradation within the PA as found by Curran ef al. (2004) in Kalimantan.
Buffer zones are also experiencing elevated population growth in Africa and Latin America
(Wittemyer et al., 2008) and even in remote regions deforestation pressure is still present

(Fuller et al., 2019).

There have been a number of PA impact evaluations that have included a buffer zone in their
analysis, although not always for the purpose of assessing spillovers (e.g. Sdnchez-Azofeifa

et al.,2003; Curran et al., 2004; DeFries et al., 2005). Global-level studies have found
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leakage only in a small number of PAs and blockage as a much more common spillover
(Joppa and Pfaff, 2011; Lui and Coomes, 2016; Fuller et al., 2019); although only Joppa and
Pfaff (2011) used robust counterfactual matching and spillovers was not the focus of their
study. Fuller er al.’s (2019) global meta-analysis found that national-scale socioeconomic
factors (population growth, proportion of agricultural land, and forestry product value) had
potential as drivers of spillover. However, because patterns of spillover have generally not
been found across different nationalities or regions this seems unlikely (Joppa and Pfaff,
2011; Lui and Coomes, 2016). For example, Poor ef al.’s (2019) counterfactual assessment of
Sumatran PAs found varying degrees of positive and negative spillover, as did Robalino ef al.
(2017) in Costa Rica and Herrera et al. (2019) in Brazil; if spillovers can vary significantly
within the same country, is it valuable to try and average spillover effects regionally or
globally in an attempt to draw out universal, large-scale drivers as Joppa and Pfaff (2011) and
Fuller et al., (2019) among others, have done? This inevitably dilutes the effects of what is
clearly a relatively uncommon issue, suggesting insignificance. Robalino et al. (2017) found
that leakage is directly related to distance to roads and from the PA entrances, supporting the
findings from theoretical and modelling studies that heterogeneous local factors are the key
drivers of spillovers such as policy, management, infrastructure, workforce mobility, and
tourism (Bode ef al., 2015; Renwick et al., 2015; Delacote et al., 2016; Pfaff and Robalino,
2017; Amin et al., 2019).

There is a major gap in the PA spillover literature regarding the effect immediately following
PA designation. Oliveira et al. (2007) found high neighbourhood leakage in the Peruvian
Amazon following logging concessions, with deforestation rates increasing up to 400%
(without counterfactual controls). Even though Ewers and Rodrigues (2008) drew attention to
this study in their oft-cited paper, to my knowledge there has not been a before-after-control-
impact (BACI) study of deforestation spillovers from PAs. This may be because of the
difficulties in establishing a counterfactual baseline deforestation rate and avoiding the
assumption that rates are stable over time as criticised by Joppa and Pfaff (2010) and Ribas et
al. (2020). Additionally, both Joppa and Pfaff (2011) and Fuller et al. (2019) suggest that
there is a lag in land-use change so PAE assessments should focus on PAs established long
before the deforestation data begins; however, these statements are not justified or drawn
from their empirical findings. A regression-based technique that has been used in

deforestation BACI experiments is ‘difference-in-differences’ (DiD) — used for longitudinal
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data to estimate causal effect when both treatment and control outcomes are known over time
(Lechner, 2011); DiD was used by Prem et al. (2020) for post-conflict Colombian
deforestation and in combination with matching for PA impact evaluation by Shah and Baylis

(2015) and Anderson et al. (2018).

This study will attempt to address the research aims in Section 1 and the gaps in the literature
by performing a counterfactual assessment of spillover from newly designated PAs using a
combination of matching and DiD; possible cases of leakage will be investigated further with

fine-scale spatial analysis.
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3. Materials & Methods

3.1 Data

K19048192

The Global Forest Change (GFC) dataset was published by Hansen et al. (2013) and

subsequently updated every year; the data are freely available for download and use under a

Creative Commons Attribution 4.0 International License and have been cited over 3500 times

according to Web of Science. A classification method adapted from Potapov ef al. (2012)

was applied using Google Earth Engine to 654,178 Landsat 7 ETM+ growing season images

to classify forest (=50% canopy cover). Forest loss was defined as “a stand-replacement

disturbance or the complete removal of tree cover canopy at the Landsat pixel scale

[30x30m]”. The use of high resolution (30m pixels) Landsat 7 means that small scale

disturbances are still identified, which can be significant in habitat loss, especially when

adding to existing clearings (Ryan et al., 2012). Furthermore, fine-scale differences in

deforestation, for example at PA boundaries, will need to be captured accurately for this

analysis. The dataset consists of a number of forest metrics covering global land surfaces (see

Table 2 and Figure 2), of which the tree canopy cover and forest loss layers will be used in

this study.

Table 2. Data layers available from Hansen ef al.’s (2013) Global Forest Change.

Name

Description

Tree canopy cover (year 2000)

Forest cover gain

Year of forest loss

Data mask

First available reference Landsat 7 multispectral

image

Last available Landsat 7 multispectral image

Percentage of pixel covered by canopy of >5m
vegetation in 2000

Conversion of non-forest to forest for the period
2000-2019 (1 = gain or 0 = no gain)

Year of conversion from forest to non-forest (0
for no conversion, 1-19 for conversion in years
from 2001-2019 respectively)

No data (0), land (1), permanent water body (2)
The first available (typically year 2000) cloud
free Landsat composite image

The last available (typically year 2019) cloud free

Landsat composite image
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Figure 2. Map of the global forest change dataset (Hansen et al., 2013). Each tile is a 10x10
degrees downloadable unit.

The World Database on Protected Areas (WPDA) (UNEP-WCMC and IUCN, 2020a) is the
most comprehensive catalogue of the global PA network, constantly being updated and (as of
August 2020) containing freely accessible data on 261,766 PAs (Bingham et al., 2019;
UNEP-WCMC, 2020). These data include the spatial boundaries of the PAs accompanied by
29 meta-data attributes, such as date and type of designation etc. (see Figure 3) (UNEP-
WCMC, 2019). The WDPA was subsetted based on 6 criteria shown in Table 3 to identify
appropriate PAs.

The WWEF Terrestrial ecoregions of the world dataset is a freely available GIS compatible
map of 867 ecoregions that cover the global landmass, developed in collaboration with “over
1000 biogeographers, taxonomists, conservation biologists, and ecologists from around the
world” (Olson et al.,2001). This map was designed with biodiversity and conservation
planning at its core and delineates clear boundaries useful for fine-scale spatial analyses (Liu
et al.,2018). These data were used to further subset the WDPA by manually checking of each
PA to ensure that it was protecting a tropical or sub-tropical forest ecoregion and also used in
the sampling structure (see Section 3.2). The final selection of suitable PAs (n=9) can be seen

in Table 4.

Spatial Data
Polygons Points

WDPA = e + Tabular information +  Source information

Figure 3. Structure of the WDPA, taken from user rﬁanual (version 1.6)
(UNEP-WCMC, 2019).
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Table 3. Criteria and justification for subsetting the WPDA

Subset Justification

Located in the tropics (between 23.43661°N and  This study is looking at the impact of PAs on
23.43661°S). tropical forest ecosystems.
Terrestrial. Marine PAs are not relevant.
The WDPA contains proposed PAs, which would
Designated status.
not have a measurable effect.
To be within the deforestation data (GFC) range
(2001-2019) and have at least 5 years before and
2006 < Designation date < 2014.
after designation (see Appendix A for
comparative study lengths).
These are strict no-take PAs, ensuring that
IUCN category L, II, or IV.
sustainable-use is not misattributed to PA failure.
To avoid overlap of PA 10km buffer zones that
>20km from any other PAs. would confound estimates of individual PA

spillover.

The remaining data relates to the confounding covariates used in the matching analyses;
following the theory of change for PA deforestation covered in Section 2, the covariates were
selected as quantifiable measures of remoteness and low opportunity cost: Tree canopy
coverage (%), distance from roads (m), distance from human settlements (m), distance from
forest edge (m), elevation (m), and slope (%). This selection is supported by the
representation of these covariates in the published studies in Table 1. A full breakdown of the
data layers, dates, and accessibility is available in Appendix B. Administrative areas and
roads were accessed either from the respective country’s government cartographic/statistical
department if available, or from the Humanitarian OpenStreetMap Team (HOT), an open
source non-profit mapping organisation. OpenStreetMap is the largest and most successful
crowdsourced geospatial data project (Minghini and Frassinelli, 2019) and despite accuracy
concerns with open source data, in general this has not been found to be an issue (Zhang and
Malczewski, 2017; Nasiri et al., 2018). Human settlements were acquired from the Global
Rural-Urban Mapping Project (GRUMP), a global dataset derived from year 2000 night-
lights following the method of Balk et al. (2006). Elevation was provided by NASA’s Shuttle
Radar Topography Mission (SRTM) digital elevation model (USGS, 2014), offering global
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coverage at 30m resolution, with an accuracy of +7-9m (Rodriguez et al., 2006), adequate for

the purpose of this study.

Table 4. Final Selection of PAs from WDPA, their location, designation date, and size.

Name WDPA ID Country Year Size (km?)
Designated
Boumba Bek/Nki 308624 & Cameroon 2005 2361.76 /
30674 (CAM) 3129.65

Deng Deng 555547995 Cameroon 2013 687.35
(CAM)

San Miguel de los Farallones 555555800 Colombia (COL) 2011 33.79

Congolén, Piedra Parada y 62051 Honduras (HON) 2010 11046

Coyocutena

Montaiia de Botaderos Carlos 555582981 Honduras (HON) 2012 967.55

Escaleras Mejia

Papikonda 1774 India (IND) 2008 1012.86

Kyauk Pan Taung 1235 Myanmar 2013 130.6
(MYA)

Bosques Nublados de Udima 555544103 Peru (PER) 2011 1218.32

Mount Balatukan Range 555583087 Phillipines (PHI) 2007 84.23

3.2 GIS Processing

All processing and management of the spatial data was carried out in QGIS v3.4 (QGIS
Development Team, 2020), see Figure 4 for the full workflow.

In order to have distances in consistent standard units (metres), all spatial data was
reprojected to a suitable projected coordinate system (see Appendix C for details) (Longley et
al.,2015). Roads and GRUMP human settlement layers were both converted to raster format
and a proximity grid was generated, giving a distance to the nearest road and settlement in
metres for every pixel (30m resolution to match the GFC data). A binary forest classification
layer was generated by classifying all pixels =50% tree canopy cover as forest using the
raster calculator on the GFC tree canopy cover data (note that 50% is following the
classification of the GFC (Hansen et al., 2013) but greatly exceeds the FAO’s 10% canopy
cover definition (FAO, 2020a)). Creating a proximity grid on the binary forest layer
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(targeting non-forest) generated a distance to the forest edge layer. A binary deforestation
layer was also created using the GFC loss year data. Slope was calculated using QGIS’s slope

command on the SRTM elevation data.

A buffer of 10km from the PA boundaries (taken from the WDPA) was created; this is a
relatively arbitrary distance and results are dependent on the distance used (DeFries ef al.,

2005), however 10km appears to be the standard for other studies (Lui and Coomes, 2016;
Poor et al.,2019) (see Table 5).

WDPA ’ Roads

Settlements (GRUMP) ‘ !GFC Elevation (SRTM)

’ Loss year

’ Reproject ‘

Buffer 10km

Buffer zone

’ Tree canopy cover

i

’—‘—‘ Original data
Forest Slope

Process

’ 2 50% binary classification

’ Binary loss

’ Rasterise ‘

[ l

’ Proximity distance grid ‘

Data layer

Distance to road
Distance to settlement }_

Distance to forest edge }_

Sample ‘

‘ Output dataframe ‘

Figure 4. Flowchart of the GIS workflow used to produce the sample for buffer and PA matching.

Control sample points for the PA and buffer were randomly generated with the following
pixel requirements: Matching administrative region (avoiding confounding administrative
policy differences), matching ecoregion, outside of other PAs and buffer zones, and forested
(=50% tree canopy cover in year 2000). Treatment sample points were randomly generated
within forested pixels of the PA and then buffer. To prevent replication, a minimum distance
of 30m (1 pixel) was required. The buffer and PA were sampled separately with unique
control samples for each as recommended by Negret et al. (2020). Sample size was
determined through trials of analyses to maximise the size and statistical power within
computational limits as done by Rasolofoson ef al. (2015), with the aim of having 2-4 times

control samples to treatment samples as in Rasolofoson et al. (2015), Joppa and Pfaff (2011),



16 K19048192

and Andam et al. (2008); this resulted in 5,000-10,000 treatment samples and 30,000-60,000
samples, depending on the size of the region covered. Using the QGIS plugin ‘Point sampling
tool” (Jurgiel, 2020), data was extracted from the following layers at each sampling point:
Deforestation year, binary deforestation, tree canopy cover, elevation, slope, distance to road,
distance to settlement, distance to forest edge, and an additionally binary layer denoting

treatment (1) or control (0).

Table 5. Selection of PA impact evaluation studies and the distance from the

PA boundary considered within the buffer zone.

Paper Buffer zone (distance from PA)
Sanchez-Azofeifa et al. (2003) 1 & 10km
Curran et al. (2003) 10km
Oliveira et al. (2007) 20km
Andam et al. (2008) 0-8km (2km intervals)
Armenteras et al. (2009) 10km
Gaveau et al. (2009) 10km
Joppa and Pfaff (2011) 10km
Rodriguez et al. (2013) 2.5 & 5km
Spracklen et al. (2015) 15km (1km intervals)
Lui and Coombes (2016) 0-10km (1km intervals)
Fuller et al. (2019) 1,2,5,& 10km
Poor et al. (2019) 10km

3.3 Matching

Matching, post-matching analysis, data manipulation, and visualisation were performed using
R v3.6.3 (R Core Team, 2020) in the R studio environment v1.1.463 (R Studio Team, 2016).
As emphasised by Sekhon (2011) and Schleicher et al. (2020), matching methodology should
not be determined a priori but through iterative testing with the data. High quality matching
results in achieving ‘balance’ between the covariate distributions of the control against the
treatment samples, determined by the difference in standardised means (ideally <0.1, but
<0.25 is acceptable (Stuart, 2010)) and visual assessment of quantile-quantile (QQ) plots and
histograms (Stuart, 2010; Sekhon, 2011; Schleicher et al., 2020); QQ plots should show the
matched covariate distributions of treatment against control lying on a straight line of y = x

through the origin, histogram distributions should match in shape.
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Using the Matchlt package v3.0.2 (Ho et al., 2007; 2011) three common methods of
matching were tested on each PA: Genetic matching (Diamond and Sekhon, 2013) had very
high processing times and produced a small sample of matched data (n<1000); nearest
neighbour matching with the Mahalanobis distance (Rubin, 1980) achieved inferior balance
in comparison to nearest neighbour PSM (Rosenbaum and Rubin, 1983), as the example in
Table 6 and Figure 5 shows. For these reasons PSM was selected; further trials determined
that the optimal configuration for the PSM was without replacement (each treatment matched
to a single control) and with a caliper of 0.1SD (any control >0.1 standard deviations from

the treatment was excluded).

Table 6. Results of Mahalanobis and PSM on Bosques Nublados de Udima (PER). Note the

standardised mean difference between the two methods, highlighted in bold.

After Mahalanobis
Covariate Before matching After PSM matching
matching
Means Means Std. Means Means Std. Means Means Std.
Treated Control Mean Treated Control Mean Treated Control Mean
Diff. Diff. Diff.
Distance to
244965 183628 0.57 2341.38 235524 -0.01 2449.65 193037 0.49

settlement

Distance to
q 1024.85 1055.80 -0.05 983.10 1004.25 -0.03 1024.85 981.35 0.06
roa

Slope 49.13 50.44 -0.05 47.54 47.24 0.01 49.13 49.65 -0.02

Elevation 2304.25 2760.81 -0.64 2681.65 270697 -0.04 230425 269640 -0.55

Distance to
q 389.39 66.42 1.04 136.56 126.07 0.03 389.39 85.92 0.98
edge

Tree
canopy 81.54 54.15 1.38 71.38 70.03 0.07 81.54 64.56 0.85

cover
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Figure 5. QQ plots of the tree canopy covariate of the Peruvian PA Bosques Nublados de Udima
before and after matching between control and treatment samples. Left is from PSM, right is
Mahalanobis matching.

PSM uses a logistic regression to generate a propensity score, where the dependent variable

acts as an indicator of treatment or control modelled against the covariates (Sekhon, 2011) —

the propensity score is a combined probability of the sample receiving treatment. For this

study, balance was not achieved using the raw covariates, so as Sekhon (2011) advises,

second order polynomials of each covariate were added to the model, significantly improving

Treated Units

balance by reducing non-linearity. The Matchlt package then uses a greedy nearest neighbour

algorithm to locate the control with the greatest similarity of propensity score to each

treatment sample (Ho et al., 2011).

3.4 Post-matching analysis

The pre- and post-designation deforestation rates (% yr') for the control and treatment groups

of the PA and the buffer were assessed visually and Mann-Whitney U tests were used to

determine significant differences between groups (e.g. treatment before vs treatment after,

buffer before vs buffer after, treatment before vs buffer before etc.). To determine

significance of change over time a DiD regression model was used to establish if the

deforestation rates between the treatment and the control diverge after PA designation. The

key assumption of DiD is of ‘parallel trends’: Without intervention of the PA, the treatment

and control groups would have the same trend of deforestation rate over time. The use of

matching in this study to produce an ‘apples to apples’ comparison attempted to fulfil this

assumption. Following Angrist and Pischke (2008) and Prem et al. (2020), Equation 1 is the

model used:

Where:

y = o+ BD" + B, D + B3 (D" x D) + ¢

ey
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y = Outcome of interest (deforestation

Bo = Intercept

B, D = Dummy variable of before and after treatment

B, D' = Treatment/control dummy variable

B5(D* x D) = Interaction variable of the two dummy variables

& = Residual error

If the S5 interaction variable is found to be significant, this suggests that the change in trend
observed after the treatment takes effect is independent of the control trend. For the buffer
zone, if this significant trend is elevated deforestation, this suggests that leakage has
occurred. Model validity was assessed using F-tests, 72, and residual plots: Fitted vs

residuals, normal QQ, scale-location, and residuals vs leverage.

Further spatial analysis of deforestation was performed on the PAs with potential leakage, as
in Spracklen et al. (2015) and Lui and Coomes (2016): Deforestation rates were calculated
within 1km concentric rings extending from the PA boundary both inward and outward,
allowing fine resolution analysis of the spatial trends within the PA and the buffer zone. The
inner rings extend as far into the PA as possible and the outer rings will extend beyond the
buffer (10km) to 15km from the PA boundary. These were generated using QGIS and the
deforestation rates within each ring extracted directly using the QGIS Semi-Automatic
Classification Plugin (Congedo, 2018) on the GFC loss layer. Data was imported into R,
plotted using a LOESS (Locally Estimated Scatterplot Smoothing) curve, and visually
interpreted. If leakage is occurring, it is expected that post-designation deforestation will
increase closer to the boundary within the PA and peak within the buffer, exceeding the rates

found in the control group (Spracklen et al., 2015; Lui and Coomes, 2016).

To reveal the drivers of deforestation in the buffer zones and how they change over time,
human presence and transport links were modelled against probability of deforestation, using
logistic regression for the pre- and post-designation time periods; this is appropriate due to
the binary outcome variable of deforestation (presence or absence) (Hosmer et al., 2013a).
Due to visual interpretation of the deforestation data overlaid onto satellite imagery, distance
to river was included as a potential driver; rivers were digitised in QGIS using high-

resolution satellite imagery (Google 2020a; 2020b). Distance to river, settlement, road, and
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PA boundary rasters were generated following the same methods as previous and randomly

sampled with the GFC loss data using 5000 points within the 10km buffer zone.

The sample was imported into R and logistic regression was performed; the coefficient
goodness of fit was assessed using an ANOVA of residual deviance, model predictive
accuracy was assessed by calculating the misclassification error, and overall model
evaluation was performed using the likelihood ratio test (Peng et al., 2002; Hosmer et al.,
2013b; Fox and Weisberg, 2019). The model can be represented as follows in Equation 2
(Peng et al., 2002):

logit(Y) = In (=) = a+ BiXy + foXs + PaXs + fuX, )

Where:
Y = Outcome of interest (deforestation)
7 = Probability of outcome event
a = Intercept
B = Regression coefficients

X, = Predictors (Distance to river, settlement, road, and PA boundary)
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4. Results

4.1 Matching
The mean number of successfully matched samples was 2851 for the PAs and 5098 for the
buffer zones. Overall, balance was achieved moderately well, with a few exceptions (a full
breakdown of the difference in standardised mean and covariate QQ plots and histograms is
available in Appendix D and E, respectively). Standardised mean difference of the covariates
between treatment and control samples post-matching was excellent, with 87% <0.1 and 97%
<0.25. The QQ plots of the covariate distributions before and after matching all show
improvement, but were not perfect post-matching — in particular distance to settlement and
roads did not balance optimally, often departing from the desired straight line through the

origin.

There were a number of additional issues: San Miguel de los Farallones (COL) PA achieved
very poor balance (across the standardised means and QQ plots) with a small matched sample
size (<1000); as a result the PA control sample was not included in the following analyses.
Congolon, Piedra Parada y Coyocutena (HON) PA also did not achieve good balance but
removing elevation improved the model significantly. Finally, removal of distance to
settlement from the model of the Mount Balatukan Range (PHI) PA and buffer was required

to achieve satisfactory balance, probably due to the low number of settlements on the island.

4.2 Deforestation rates
The observed deforestation rates (% yr'') range from 0.00-4.40, with the majority of the
means falling between 0.1-0.8 (see Appendix F for the means of each treatment). As can be
seen in Figures 6 and 7, deforestation rates generally increased between the pre-designation
and post-designation time periods, with few reductions and but varying degrees of
significance (Mann-Whitney U p<0.05) between different treatment groups (see Appendix G
for full significance testing between treatment groups). The most consistent significant
change was in the PA group with 55.6% experiencing significant increase, compared to
44 4% of the buffer group. The control groups were more varied in their change over time,
with less consensus in direction; however 55.6% of the PA control group’s pre-designation
rates are significantly elevated in comparison to the PA, this drops to 44.4% of cases in the

post-designation period.
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The buffer zones generally had higher deforestation than the PAs, however only 33.3% were
significantly so (for both time periods). The buffer control groups were also elevated in
comparison with the buffers, 44.4% significantly different in both time periods. Notable
individual cases include the considerable increase within the PA of Montafia de Botaderos

Carlos Escaleras Mejia (HON) and the buffer of Kyauk Pan Taung (MY A) post-designation.
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Figure 6. The change in mean deforestation rate between pre- and post-designation of PA in the
PA, PA control, buffer zone, and buffer zone control. Significant (Mann-Whitney U test p<0.05)
change denoted by *.

4.3 Difference-in-differences
Assessing the raw rates and change in mean deforestation can mask trends over time, making
comparisons between treatment and controls difficult; the DiD analysis attempts to account
for this. As can be seen in Table 7, the DiD linear models all had significant F-tests apart
from the buffer of Boumba Bek/Nki (CAM) and both models of Bosques Nublados de Udima
(PER), however the 72 values were very varied, most models failing to account for >50% of
the variation. Assessing the residual plots (see Appendix H) casts doubt on the validity of
most of the models, only the buffers of San Miguel de los Farallones (COL) and Papikonda

(IND) could be judged to not breach the linearity and homoscedasticity assumptions.
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Figure 7. Boxplots of the deforestation rates of the 9 PAs for all treatment types before and after
designation (2001-2019). Boxes represent the interquartile range (IQR) with the median value a
horizontal line, the minimum and maximum range is shown by the ‘whiskers’ and outliers (defined
as >1.51QR) marked by black dots.

The significance of the coefficient of interest S5 (Dt x D) for the buffers of Papikonda
(IND) and Kyauk Pan Taung (MY A) suggests that there is a treatment effect independent of
the trend of the control groups. As can be seen in Figure 8, this effect is elevated
deforestation following PA designation, suggesting that leakage has occurred. In Kyauk Pan
Taung (MYA) this is also seen to a lesser extent within the PA, deforestation increasing far

above the control group following designation.



K19048192

24

71°0- i 91°0- #xCC 0 970 wxxx[L°6 Tojng
(THd) 2Suey ueyniereq JUNOIA

80°0- 91°0 LT°0- *L1°0 8¢0 #%%88'9 vd

9T0- Y00 610 *81°0 €ro L1 Toyng
(¥ad) ewip() dp sope[qnN sonbsog

o €00 110 *¥C0 900 L0 vd

wkx [L7] *LS°0 91'0- LTO IL0 wkx [V LT Ieyjng
(VAIN) Suneg, ued yneky]

*%56°0 =€ 0 81°0- *1C0 09°0 #%xCL LT vd

*€1°0 00" 510" %100 60 x9SV Toyng
(aND epuoideq

10°0- 900 %0170 4%V 170 6v'0 #xx86°01 vd

0T0 =670 S00- *%%05°0 LTO *I1'Y Teyng
(NOH) ®IloJA SeIo[eosy SO[Ie)) S0IoprIog 9p BUBIUOIA

980 S0 LT0 %9670 070 #xxSV L vd

¥T0- v1°0 LOO- #xxEV0 cro 0S'1 Iejjng
(NOH) 2uaInooko) A epeied vIpald ‘uojosuo))

90°0- y1°0 *L€0" %080 €€0 %07’ S vd

¥0°0- 100 +%81°0" #%x£€°0 9¢'0 *%€€°9 Toyng
("TOD) sauo[[eie] SO[ 9p [ONIIA UBS

vd

Iro- %850 10°0- I7o 9¢'0 *xxST VI Ieyng
(AVD) Suaq Susg

000 %0 00~ LOO 6¢0 ##x9C L vd

00" 00 10°0- 00 LT°0 9¢'C Iejjug
(INVD) DIN/Rd equinog

S0'0- 700 000 100 00 *S8'C vd
méQX.ﬁ. atd g .:QHQ og i pee) d juou)eaL], BILY Pajodjord

(100°05)

w0 “(10°05) sx “(SO"05) 4 £Q PIOUSP ST OULOLTUSIS AN[BA-J "OUOZ I9JINQ PUL Y YLD 103 S|9pou (I 18UI| Y JO SYNSY *L IqeL



25 K19048192
(a) 4-
3 w
o
C @
1_ -
] | O [N [ [N N [ e =

0.

4- g
o ?
%9 g
S 1 =
ie) === e i S S
50 =
g 3-

82- / >

14 \/

O_ p—

4 o

1 >

g @)

o E

1 = -5

0- L] . Ll Ll 1) . '

N O OO X b 00 A © O O N UV WDOLY X b o A DO
O A" " O 7 " O O O N N AN N NN N N NN
PTEFTETTTETLTLTS S TS S S S S
Year
(b)0.4-
0.3- w
{ o

0.2- /\/\/ ('_B“

0.1- J\/\ L

0.0-

0.4- g
?0.3' Q
2
3;0.2- g
.9 01' g
E0.0- =
& 0.4-

G 0.3-

S 0.

[ 1 0
00,2 >

0.1- /\/\/\\/_/\

0.0- —_— ]

0.4- =

i >

0.3 =

0.2- S

0.1- 3

0.0- ; . : i i 1 ; i ;

N S > O O A DO O N O N> L oA DO
Q" QY O% Q7 0”0 O O c07 e NV AV N7 N N7 NP GNM R N
FTEPTTETTETTETFT ST S S S P

Figure 8. Deforestation across the study period for (a) Kyauk Pan Taun (MYA) and (b)
Papikonda (IND) for the PA, buffer, and respective controls. The black vertical line denotes the

year of PA designation.
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4.4 Local spatial patterns and drivers of leakage
As Figure 9 shows, Kyauk Pan Taung (MY A) experienced a large increase in deforestation
post-designation, within the PA, buffer zone, and beyond. The pattern of rates increasing
from within the PA and peaking close to the edge of the buffer before declining is seen both
before designation (Figure 9a), after designation (Figure 9b), and when comparing both to the
matched control mean rate (Figure 9¢). The major difference is that the post-designation

deforestation curve is much steeper in gradient and greatly exceeds the control rates.

(a) (b)

Mean control deforestation rate T

\
/

Maan controi doforestation rate

Mean deforestation 2001-2019 (% yr'
Mean deforestation 2001-2019 (% yr

4 56 7 8 9 10 11 12 13 14 15

7 8 9 10 11 12 13 14 15 4 321012 3 9 10
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Figure 9. Kyauk Pan Taung (MY A) rates of deforestation (2001-2019) within 1km concentric
rings from 4km within the PA to 15km outside of PA. Mean rate of deforestation before (a) and
after (b) PA designation are shown with the mean difference from the respective control for both
before and after (c). Lines were smoothed using a LOESS function, with the 95% confidence
interval shown in grey. Significant difference (Mann-Whitney U test) between before and after
for each distance is denoted using * (<0.05), ** (<0.01), and *** (<0.001).
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Figure 10. Papikonda (IND) rates of deforestation (2001-2019) within 1km concentric rings
from 5km within the PA to 15km outside of PA. Mean rate of deforestation before (a) and after
(b) PA designation are shown with the mean difference from the respective control for both
before and after (c). Lines were smoothed using a LOESS function, with the 95% confidence
interval shown in grey. Significant difference (Mann-Whitney U test) between before and after
for each distance is denoted using * (<0.05), ** (<0.01), and *** (<0.001).

In contrast, Papikonda (IND) (Figure 10) has a gradual, almost linear, increase from within
the PA to the edge of the buffer, remaining below the mean control deforestation rate both
before and after designation. Rates are still higher post-designation and beyond the 10km

buffer there is a sharp increase in deforestation.
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As can be seen in Figure 11, the two PAs are very different in terms of accessibility and
human settlement. Figure 11 also shows clearly how in Myanmar deforestation is associated
with rivers, which resulted in the inclusion of rivers in this portion of the analysis. The
logistic regression results in Table 8 show that before designation, deforestation in Kyauk
Pan Taung (MY A) buffer zone was primarily linked with slope; however, after designation
slope, elevation, and distance to river all had a significant negative relationship with
deforestation probability. In Papikonda (IND) before designation distance to settlement, river,
and slope were significantly negatively related to deforestation, post-designation was the
same with the surprising addition of a significant positive relationship with elevation. The
models generally performed well, all with significant likelihood ratio tests and low
misclassification error. Significant coefficients contributed to the fit of the overall model
(Residual deviance) with the exception of distance to settlement in Papikonda (IND) post-

designation.
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Figure 11. Maps showing the forest loss, transport infrastructure, and human settlements within
the concentric rings of PA buffer used in the spatial analysis for (a) Kyauk Pan Taun (MYA)

and (b) Papikonda (IND).
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5. Discussion

5.1 Matching
The use of matching to generate control samples was key to performing counterfactual
analysis, however the balance of the variables was not perfect, as shown by the QQ plots in
Appendix E; there are a number of potential reasons for this and clear opportunities for

refinement in further work.

First of all, the GRUMP dataset of human settlements may lack the appropriate level of
resolution for this analysis as discovered when investigation of the poor balance of the
settlement distance covariate for the Mount Balatukan Range (PHI) PA, where on an island
of 20 million inhabitants (Philippines Statistics Authority, 2015) there were only 32
settlements. Additionally, during the further spatial analysis of leakage in Kyauk Pan Taung
(MYA) the small settlements in proximity to the PA and buffer were also not included in the
GRUMP data. While these data may represent a good metric of access to major markets, for
these fine-scale deforestation processes, it may be of more value and improve matching

balance to include smaller settlements in the future.

The failure of San Miguel de los Farallones PA to achieve balance may be due to its small
area (see Table 4). Joppa et al. (2008) specifically excluded PAs under 100km” as it had been
found in some cases that these smaller parks are less effective (this is in some contention
(Clark et al., 2008; Ribas et al., 2020) but there has been a number of supporting findings
(Armenteras et al., 2009; Geldmann et al., 2015)); however this seems prematurely
exclusionary and it could be argued that small PAs can be important ecological reservoirs in
non-remote places (Geldmann et al., 2015). That being said, it may be that matching becomes
unviable when the homogeneity of landscape within small PAs results in poor quality of
matches, which may have been the case in this study, considering the three smallest PAs all

had issues achieving satisfactory balance.

An assumption with matching that must be considered is that balance in observed covariates
is synonymous with balance in unobserved covariates (Schleicher et al., 2020); as a result,
the models should attempt to be as comprehensive as possible. However, the findings in
Kyauk Pan Taung (MYA) and Papikonda (IND) that distance to river impacts deforestation

and accessibility (Section 4.4) show that this was clearly not achieved in this analysis. The
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removal of covariates from Congoldn, Piedra Parada y Coyocutena (HON) and Mount

Balatukan Range (PHI) also jeopardise this requirement.

Additionally, the deforestation rates in the majority of control groups were greater than the
respective PA/buffer area prior to (and in many after) designation. This could mean that the
PAs represent remote regions with the least possible amount of human pressure in the study
areas, or that there are additional significant confounding variables not included in the
analysis; the distance to river finding suggests the latter may be more likely and it is
recommended that a more comprehensive set of covariates is tested in further work.
However, this study’s use of BACI does offer a unique assessment of matching in the context
of PA deforestation; the direct comparison of matched control samples to pre-treatment rates
acts as a secondary test of validity. This is not possible in the majority of other studies that
only cover post-designation time periods, leaving the assessment of matching quality to
comparison of standardised means and QQ plots. As could be the case in this study, these
measures may be insufficient, compromising the accuracy of the counterfactual and any
conclusions drawn, especially when many PAs are offering marginal benefits (e.g. Joppa and

Pfaff, 2011; Spracklen et al., 2015; Geldmann et al., 2019).

5.2 Deforestation Rates
In general, the rates found are comparable to the FAO’s (2020b) findings for the time periods
covered (see Table 9). However, a major trend in this study was an increase in annual
deforestation when comparing before and after designation; contrasting with the FAO’s
(2020b) findings that regionally and globally, overall deforestation rates have slowed over the
past two decades. Perhaps this indicates that the more inaccessible, intact forest ecosystems
that PAs disproportionately represent (Heino et al., 2015), are experiencing increased
pressure due the shrinking of the available forest stock and continued demand for agricultural
expansion driving up the value of the forest resource (Armenteras et al., 2017; Jayathilake et
al.,2020). Alternatively, this could demonstrates the risk in global or regional summaries
such as the FAQO’s, which can mask local or ecosystem-specific issues, especially when
deforestation is highly variable at the ecosystem, national, and subnational level (Hansen e?
al.,2013; Heino et al., 2015; Poor et al., 2019); for example, the increasing trends found in
this study are supported by other similar fine scale research in tropical forest ecosystems
(Austin et al., 2017; Geldmann et al., 2019). The extreme case of Montaiia de Botaderos

Carlos Escaleras Mejia (HON), where deforestation massively increased only in the PA after
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designation, is likely due to Honduras’ extractivism following a military coup in 2009 and the

granting of mining concessions within the PA (Serrano et al., 2016; Bebbington et al., 2018).

Table 9. Forest area change for the major global regions over the 3 decades since 1990, taken from

FAO (2020Db).

Region/subregion Forest area annual change
1990-2000 2000-2010 2010-2020
1000 ha/yr % 1000 ha/yr % 1000 ha/yr %

Eastern and Southern Africa -1345 -0.40 -1773 -0.55 -1907 -0.62
Northern Africa -182 -0.47 -127 -0.34 -168 -0.47
Western and Central Africa -1748 -0.50 -1503 -0.45 -1862 -0.59
Total Africa -3275 -0.45 -3403 -0.49 -3938 -0.60
East Asia 1917 0.88 2332 0.97 1901 0.73
South and Southeast Asia -1843 -0.58 -262 -0.09 941 -0.31
Western and Central Asia 129 0.26 285 0.55 213 0.39
Total Asia 202 0.03 2355 0.39 1173 0.19
Europe excl. Russian Federation 763 0.40 585 0.30 330 0.16
Total Europe 795 0.08 1171 0.12 348 0.03
Caribbean 85 1.34 69 0.97 39 0.51
Central America -218 -0.81 211 -0.85 -130 -0.56
North America -160 -0.02 327 0.05 -57 -0.01
Total North and Central America -293 -0.04 184 0.02 -148 -0.02
TotalOceania 165 0,09 231 013 423 0.23
Total South America -5102 -0.54 -5249 -0.58 -2597 -0.30
WORLD -7838 -0.19 -5173 -0.13 -4739 -0.12

5.3 Protected Area Effectiveness
The DiD models indicate that the treatment of legal PA designation had no significant effect
on deforestation rates within the PA area (other than in Kyauk Pan Taung (MYA) with
significant increase in deforestation, covered below). Therefore, the reduced rates of
deforestation when compared to the counterfactual matched control samples demonstrate that
these PAs have de facto protection due to innate characteristics of their location (even though
matching should control for these characteristics, see Section 5.1). This contrasts with other
matching-based impact evaluations that have found that in general PAs do convey benefits in
terms of avoided deforestation, although less than when determined through traditional or
‘naive’ methods (Andam et al., 2008; Gaveau et al., 2009; Joppa and Pfaff, 2011; Ribas et
al.,2020). This could be due to a lag in the effect of designation on deforestation, as Joppa
and Pfaff (2011) and Fuller et al. (2019) specify in their studies that recently designated PAs

should be avoided because of this inertia. Research with longer study periods are
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recommended to allow for differences in trends to be detected, suggested by Fuller et al.

(2019) as a gap in the current literature.

The distributions of the residuals and poor explanatory power (%) of the DiD models are
concerning. Perhaps this is due to the small length of the sample period or the non-linear,
almost stochastic trends observed in deforestation rates. The linear nature of DiD may be
unsuitable for studying deforestation trends, however, longer study periods could prove to be

more successful, if less feasible.

5.4 Leakage
From the DiD models, only two PAs had buffer zones that were significantly elevated in
comparison to the control and pre-treatment groups. This suggests that leakage is not a
widespread phenomenon within newly designated PAs, a similar conclusion to other studies
that assessed already established PAs (Andam et al., 2008; Spracklen et al., 2015; Lui and
Coomes, 2016; Robalino et al., 2017; Fuller et al., 2019). Many of these papers found that
blockage was a more common outcome than leakage but this was not found to be the case:
The buffer zones often lost less forest than the control groups, which is due to the disparity in
the pre-treatment groups as discussed above and not due to blockage, as would have been

revealed by the DiD analysis.

The further spatial analysis of deforestation within the PA, buffer, and beyond the buffer
revealed some key differences between Kyauk Pan Taung (MYA) and Papikonda (IND). The
expected pattern of deforestation rates increasing the most across the PA boundary
(Spracklen et al., 2015) was not seen, perhaps because there were also increases within both
PAs. The spatial distribution for Papikonda (IND) did not represent leakage, as deforestation
rates were higher beyond the buffer, but far beyond the matched control group mean. This
could represent an issue with the matching sampling strategy, where selecting samples from
the relevant administrative division (state in this case) is not representative of the human
pressure on the immediate landscape surrounding the PA; in the state of Andhra Pradesh
(IND) Reddy et al. (2016) found that the area of Papikonda and immediate surrounds
represent a deforestation hotspot, therefore comparing to the whole state, even using
matching, could produce a control sample with much lower deforestation rates than relevant
to the buffer zone, simulating a false leakage effect. This highlights the difficulty in broad-

scale analysis of deforestation when the dynamics and drivers of spillovers can be so locally
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specific (Pfaff and Robalino, 2017). Another possibility is that the spatial extent of leakage is
far beyond a 10km buffer, which is an arbitrary distance perpetuated in the literature to
maintain comparability between studies (Joppa and Pfaff, 2010; Lui and Coomes, 2016; Poor
et al.,2019); this is a major gap in the literature regarding conservation intervention
spillovers and further work should investigate buffer zones of different sizes, for example for

ecological viability, functional buffer zones depend on PA size (Alexandre et al., 2010).

In contrast to Papikonda (IND), the deforestation pattern observed in Kyauk Pan Taung
(MYA) is much more representative of the expected leakage distribution, with a clear peak of
deforestation within the buffer descending towards the mean control rate beyond. However,
the elevation of deforestation seen within the PA and its significance as determined by the
DiD analysis complicate the ‘diagnosis’ of leakage: If the PA also experiences an elevation
of deforestation within its boundaries then the observed or implied displacement of pressure
onto the buffer may just be an artefact of accessibility as the demarcation of the PA is failing
to act as a deterrent. This is shown through the logistic regression in Section 4.4, where the
post-designation deforestation rates have no relationship with the distance from the PA
boundary and a strong negative relationship with slope, elevation, and distance to river;
corresponding with the fact that the local rural communities are reliant on waterways for
transport and trade, and that the PA is located on an isolated massif (Naing et al., 2017). The
increase in deforestation rate post-designation could be attributed to the political and
socioeconomic upheaval occurring in Myanmar over the past decade: The relaxation of the
police state since 2010 has resulted in increased economic growth and liberalisation (Kraas et
al.,2020), a potential driver of deforestation in the extractive economy of Myanmar (Prescott
et al.,2017); especially in Chin State (where Kyauk Pan Taung is located) where the native
peoples have historically experienced heavy persecution, poor infrastructure, and the nation’s
highest poverty rates (Hoffstaedter, 2014; Central Statistics Organisation and The World
Bank, 2019; Nau, 2019).

The results of the logistic regression for Papikonda (IND) showed a similar lack of
relationship between deforestation and the PA boundary, however distance to settlement was
also a significant driver. This could be demonstrating that population density and
urbanisation are greater drivers in Andhra Pradesh state, where a far larger and relatively

wealthier population reside (see Table 10). These demographic and socioeconomic
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differences are important to highlight as they can affect deforestation and spillovers; for
example Pfaff and Robalino (2017) argue that tourism and workforce mobility (facilitated by
quality infrastructure) can be key in providing local people alternative modes of employment
from extractive industries and therefore preventing leakage. These factors could be affecting
the dynamics of the two PAs in question: Andhra Pradesh state has a thriving domestic
tourism industry (Goodwin and Chaudhury, 2017), low poverty, and relatively high urban
development and infrastructure with a mainly rural population; Chin state on the other hand
has very high poverty, little infrastructure, and a tourism industry in its infancy (Kraas et al.,
2020). The disparity in the magnitude of deforestation rate between the two PAs could be a
result of these characteristics. Additionally, prior remote sensing work has found that overall
deforestation is increasing in Chin state and slowing in Andhra Pradesh (Krishna et al., 2014;

Wang and Myint, 2016).

Table 10. Demographic data for Chin State (MY A) and Andhra Pradesh State (IND), sourced from

Myanmar Information Management Unit (2020) and Directorate of Economics & Statistics (2019).

Population Population Rural Population in
density population poverty (%)
(persons’km?) (%)

Chin state (MYA) 478,801 13 79.2 73.3
Andhra Pradesh State (IND) 49,577,103 306 70.6 9.2
5.5 Further Work

As previously mentioned, refinement of the matching process offers great potential for
increasing the conclusiveness and validity of the results, by increasing the confounding
variables and the quality of data sources. Buffer zone size is another major gap in the
understanding of leakage, although most other authors are content to perpetuate an arbitrary
distance for the sake of comparability. As the datasets providing high resolution deforestation
data grow in duration it will be crucial to continue to monitor PAs over longer periods of time
to justify claims of effectiveness and reveal how dynamics change over time, particularly
from designation onwards. The lack of definitive conclusions regarding leakage found in this
study have revealed that broad-scale analysis may not be fit for purpose when investigating
neighbourhood spillover dynamics; when individual cases are assessed in more detail, it

becomes clear that these are complex issues with a range of possible drivers and additional
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confounding factors. As Adams et al. (2019) argues, the lack of consideration of additional
geophysical, ecological, socioeconomic, and political factors, quantitatively or qualitatively,
undermines the results of such studies. One specific aspect that has not been covered in this
study is management efficacy and resources (Bruner et al., 2001), a factor almost certainly
relevant when comparing the two PAs above. Therefore, site-specific study design using fine

resolution, local-scale data is recommended.

On a more general note, deforestation and tropical PAs dominate the impact evaluation
literature — this bias should be addressed and non-forest ecosystems must be considered.
Additionally even with forest ecosystems, the use of forest conversion is relatively crude and
can result in missing biodiversity losses, potentially leading to a ‘half-empty forest’ scenario,
especially in PAs with ‘sustainable’ use (Redford and Feinsinger, 2001). This could be
particularly relevant in more developed countries where land conversion is less likely but

threats to ecosystem function still exist (Leverington et al., 2010).
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6. Conclusions

This study has found that newly designated tropical forest PAs do not convey immediate
significant benefits in the form of avoided deforestation and that deforestation rates have
increased across the study period. Spillovers were not common and although leakage may be
occurring in a small minority, complex local dynamics make identification uncertain,
questioning the relevance of the coarse, broad analyses that have been previously used. The
validity of the statistical analyses undermine the major conclusions drawn from the results,
but have revealed some key areas for refinement in further work. PA impact evaluation is a
complex field that combines ecology, economics, and politics, requiring better understanding

and innovation in order to keep pace with the massive expansion of the global PA network.
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Appendices

Appendix A

Table 1. Selection of papers assessing deforestation in PAs demonstrating the typical study time to

generate deforestation rates.

Paper Duration

Curran et al (2004) 1988-2002
Sanchez-Azofeifa et al. (2003) 1960-1979, 1979-1986 and 1986-1997
Oliveira et al. (2007) 1999-2005

Andam et al. (2008) 1955-1960 and 1986-1997
Gaveau et al. (2009) 1990-2000

Joppa and Pfaff (2011) 2000-2005

Nelson et al. (2011) 1990-2000

Rodriguez et al. (2013) 1985-2005

Heino et al. (2015) 2000-2012

Rasolofoson et al. (2015) =5 years

Spracklen et al (2015) 2000-2012

Lui and Coombes (2016) 2000-2012

Alix-Garcia and Gibbs (2017) 2007-2015

Herrera et al. (2019) 2000-2004 & 2004-2008
Oldekop et al. (2019) 2000-2012

Poor et al. (2019) 2002-2016

Yang et al. (2019) 2000-2012
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Table 1. All data layers, source, type, and date.

Data Source Type/ Year

Resolution

Colombian National Administrative Department of Statistics (National Vector 2018

administrative ~ Administrative Department of Statistics, 2018): Accessed

areas, roads, June 2020 from https://geoportal.dane.gov.co/

Peruvian Derived from Humanitarian OpenStreetMap Team* (HOT): Vector 2020

administrative ~ Accessed July 2020 from https://data.humdata.org

areas, roads

Honduran Derived from Humanitarian OpenStreetMap Team* (HOT): Vector 2019

administrative ~ Accessed July 2020 from https://data.humdata.org

area, roads

Cameroonian  Institut National de Cartographie (INC): Accessed July 2020  Vector 2019

administrative  from https://data.humdata.org/dataset/cameroon-

areas administrative-boundaries

Cameroonian  Derived from Humanitarian OpenStreetMap Team* (HOT): Vector 2020

roads Accessed July 2020 from https://data.humdata.org/

Indian Derived from Humanitarian OpenStreetMap Team* (HOT): Vector 2020

administrative ~ Accessed July 2020 from https://data.humdata.org/

areas, roads

Philippines Derived from Humanitarian OpenStreetMap Team* (HOT): Vector 2020

administrative ~ Accessed July 2020 from https://data.humdata.org

area, roads

Protected area  World Database on Protected Areas (UNEP-WCMC and Vector 2020

boundaries IUCN, 2020): Accessed June 2020 from

and metadata
Forest cover
(2000) &
Deforestation
(2001-2019)
Elevation

Slope

Ecoregion

Urban
settlements

https://www .protectedplanet.net/

Global Forest Change v1.7 (Hansen et al., 2013): Accessed
June 2020 from
https://earthenginepartners.appspot.com/science-2013-global-
forest/download_v1.7.html

Shuttle Radar Topography Mission (SRTM) (USGS, 2014):
Accessed June 2020 using QGIS plugin SRTM Downloader
v3.14

Generated using QGIS slope command from the SRTM
digital elevation model

WWEF Terrestrial ecoregions of the world (Olson et al.,
2001): Accessed June 2020 from
https://www.worldwildlife.org/publications/terrestrial-
ecoregions-of-the-world

GRUMP (Center for International Earth Science Information
Network et al., 2017)

Accessed June 2020 from
https://sedac.ciesin.columbia.edu/data/set/grump-v1-
settlement-points-rev01/data-download

Raster / 30m

Raster / 30m

Raster / 30m

Vector

Vector

2000
2019

2000

2000

2001

2000

*All OpenStreetMap data copyright OpenStreetMap contributors and available from

https://www.openstreetmap.org
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Appendix E All Matched
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Figure 2. QQ plots of the covariate distributions for Boumba Bek/Nki (Cam)
buffer before and after matching. Matched samples N=4301.
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Figure 4. QQ plots of the covariate distributions for Deng Deng (Cam) before and

after matching. Matched samples N=3874.
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Figure 5. QQ plots of the covariate distributions for Deng Deng (Cam) buffer
before and after matching. Matched samples N=5784.
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Figure 12. Histogram distributions of Congolén, Piedra Parada y Coyocutena (Hon)
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Figure 16. QQ plots of the covariate distributions for Papikonda (Ind) before and

after matching. Matched samples N=2571
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Figure 17. QQ plots of the covariate distributions for Papikonda (Ind) buffer
before and after matching. Matched samples N=3628
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Figure 19. QQ plots of the covariate distributions for Kyauk Pan Taung (Mya)
before and after matching. Matched samples N=1860
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Figure 20. QQ plots of the covariate distributions for Kyauk Pan Taung (Mya)
buffer before and after matching. Matched samples N=4583
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Figure 22. QQ plots of the covariate distributions for Bosques Nublados de Udima
(Per) before and after matching. Matched samples N=2834.
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Figure 26. QQ plots of the covariate distributions for Mount Balatukan Range
(Phi) buffer before and after matching. Note that due to the low number of
settlements on the island distance to settlement was not included. Matched samples

N=7033.



K19048192

Raw Treated Matched Treated
N
v -
8 ° S 32
Qe
= = T T T T 1 o T T T T T 1
00 02 04 06 08 10 00 02 04 06 08 10
Propensity Score Propensity Score
Raw Control Matched Control
Ire) N
2 o 2
o o a %
e
2= T T T T 1 o T T T T 1
00 02 04 06 08 1.0 00 02 04 06 08 1.0
Propensity Score Propensity Score
- Raw Treated ___ Matched Treated
i o _
. o~ ]
0
i ]
o
= |— O
T T T ] T $ T h T I 1
Raw Control Matched Control
0t 0.2 04 0.6 0.8 10 00 02 0.4 0.6 0.8 1.0
o ® 7]
=1 o
~N
e
I il
S
I T T T T Y I T T T T 1

0.0 0.2 04 0.6 0.8 10 00 0.2 0.4 0.6 0.8 1.0

Figure 27. Histogram distributions of Mount Balatukan Range (Phi) before and after
matching for PA (top) and Buffer (bottom).



86

Appendix F

K19048192

Table 1. Mean deforestation rates before and after PA designation, derived from the matched samples.

Mean deforestation rate (% yr™)

PA PA control Buffer Buffer control
Protected Area Before After Before After Before After Before After
Boumba Bek/Nki (CAM) 0.014 0.000 0.014 0.050 0.012 0.042 0.023 0.076
Deng Deng (CAM) 0.033 0350 0.073 0389 0.095 0558 0.105 0.682
San Miguel de los Farallones 0.111 0.084 N/A N/A  0.179 0.115 0373 0.303
(COL)
Congolén, Piedra Parada y 0.134 0.216 0.503 0.644 0359 0253 0427 0.563
Coyocutena (HON)
Montafia de Botaderos Carlos 0.725 2.103 0.555 1.073 0.531 1.221 0.586 1.080
Escaleras Mejia (HON)
Papikonda (IND) 0.017 0.068 0.139 0.201 0.051 0.163 0205 0.184
Kyauk Pan Taung (MYA) 0.022 0.906 0.206 0545 0.109 2385 0.269 0.839
Bosques Nublados de Udima 0342 0.157 0.236 0271 0365 0.149 0.180 0.222
(PER)
Mount Balatukan Range (PHI) 0.000 0.079 0.171 0330 0.052 0.157 0216 0459
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Figure 1. Plots of residuals from the Difference-in-differences linear model for Boumba

B

ek/Nki (CAM).
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Figure 2. Plots of residuals from the Difference-in-differences linear model for Deng Deng
(CAM)
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Figure 3. Plots of residuals from the Difference-in-differences linear model for San Miguel
de los Farallones (COL).
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Figure 4. Plots of residuals from the Difference-in-differences linear model for Congolén,
Piedra Parada y Coyocutena (HON).
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Figure 5. Plots of residuals from the Difference-in-differences linear model for Montafia de
Botaderos Carlos Escaleras Mejia (HON).
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Figure 6. Plots of residuals from the Difference-in-differences linear model for Papikonda

(IND).
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Figure 7. Plots of residuals from the Difference-in-differences linear model for Kyauk Pan

Taung (MYA).
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Figure 8. Plots of residuals from the Difference-in-differences linear model for Bosques
Nublados de Udima (PER).
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Figure 9. Plots of residuals from the Difference-in-differences linear model for Mount

Balatukan Range (PHI).



