Informatics PhD projects at King's College
London, AY 24-25 — Foundations of computing

The PhD project proposals listed below will be considered for 2024/25

studentships available in the Department of Informatics to start 1 )
October 2024 or later during the 2024/25 academic year. Please note ING S
that this list is not inclusive and potential applicants can alternatively Callege
identify and contact appropriate supervisors outlining their

background and research interests or proposing their own project LOND ON
ideas.

The PhD projects are listed in two groups. In the first group are the
projects with allocated studentships: each project in this group has
one allocated studentship. The remaining studentships will be
considered for the projects listed in the second group. The number of
those remaining studentships is smaller than the number of the
projects in the second group. The allocation of studentships will be
based on the merits of individual applications. Applications for PhD
studies in the Department of Informatics, for all listed projects as well
as for other projects agreed with supervisors, are also welcome from
students applying for other funding (within other studentship
schemes) and from self-funded students. See also this list of funding
opportunities available at King's for post-graduate research in
Computer Science.

e Scholarship Allocated
e Scholarship Not Allocated



https://www.kcl.ac.uk/study-legacy/funding?subject=computer-science-16&level=postgraduate-research
https://www.kcl.ac.uk/study-legacy/funding?subject=computer-science-16&level=postgraduate-research
https://www.kcl.ac.uk/study-legacy/funding?subject=computer-science-16&level=postgraduate-research

Scholarship Allocated

(Back to Top)

» Reliability and verification of software for scientific and ML computing
* The complexity of database query evaluation




Reliability and verification of software for scientific and ML computing

Supervisor: Dr Karine Even-Mendoza, Dr Hana Chockler, Dr Hector Menendez Benito
(1st, 2nd and 3rd).

Areas: Machine Learning (ML), Artificial Intelligence (Al), Systems (SE, programming,
autonomous systems, robotics, ...), Foundations of computing, Computing Applications

(Back to Scholarship Allocated)

Project Description

Project Description. The long-standing challenge of ensuring the reliability of machine learning
implementations (ML) and programming language (PL) libraries, particularly in floating-point and
arithmetic computation, has been a focus of attention within programming languages, formal
methods, and Al research communities. Historically, researchers have often tended to confine the
scope of their research to small-scale problems rather than real-world computer systems. However,
modern applications increasingly rely on mathematical computations, such as Alexa voice
recognition (using discrete Fourier transform) and autonomous cars. This heightened dependence on
accurate computation amplifies concerns about the impact of inaccuracies on system reliability. This
project addresses low-level implementations heavily reliant on floating-point computations—a crucial
but insufficiently tested area. The precision of these computations significantly influences the
reliability of ML and PL libraries and compilers. The project aims to enhance the testing of software
systems, specifically focusing on the reliability of software using ML and PL libraries in their
algorithms. To achieve this, the student will: - Develop methods to assess the quality of test cases,
applying them when attempting to detect miscompilations (silent errors during translation into
machine code) and logical bugs in floating-point optimizations and library implementations. -
Investigate approaches for testing software libraries and their compilers meaningfully in the context
of mathematical and numerical procedures. - Explore fault localization approaches and other
techniques to pinpoint detected bugs, ensuring clarity in distinguishing actual bugs from potential
issues related to the testing mechanism. The student will employ static and dynamic code analysis,
code generation for testing, and testing strategies (like differential testing). After designing a system
for meaningful testing of ML and PL libraries, the student will extensively evaluate its bug detection
capabilities. The emphasis is on ensuring the identified issues are genuine bugs rather than
stemming from the testing methodology. The student will actively engage with the software
engineering community, reporting any bugs uncovered during the evaluation process. The above will
include investigations of novel ways to design tests and testing campaigns and deal better with
coverage of specific functionalities in the compilers and their PL and ML libraries. Context. Compilers
and their software libraries, widely used complex programs, are the bridge between software
(written in English-look-alike programming language) and machine code (consisting of Os and 1s).
They give us the means to write complex and sophisticated yet efficient algorithms in healthcare,
finance, transportation (and more) using mathematical, ML and AI components, empowering today's
engineers and relieving them of conceptual high-level tasks. Consequently, compiler bugs broadly
impact software, and library defects affect ML and Al trustworthiness. C standard libraries give us
the power to compute values of the sinuous function in just one line, and ML libraries allow us to run
reinforcement learning with several lines of code. However, ensuring correct translation is complex,
as it involves reasoning about the program code's connection to its machine code translation. One of
the most expensive yet neglected errors is associated with the floating-point data types: essential



types representing numerical data in software, particularly vital in ML and Al implementations;
these, in many cases, led to significant financial losses and jeopardised lives. Yet, testing support is
often insufficient, commonly limited to the detection of logical faults in lines of code written by the
user or crashes when executing machine code because of the testing mathematical code complexity.

References

[1] K. Even-Mendoza, A. Sharma, A. F. Donaldson, and C. Cadar. 2023. GrayC: Greybox Fuzzing of
Compilers and Analysers for C. ISSTA 2023: 1219—1231.
https://doi.org/10.1145/3597926.3598130

[2] K. Even-Mendoza, C. Cadar, and A. F. Donaldson, CSMITHEDGE: more effective compiler testing
by handling undefined behaviour less conservatively. Empir Software Eng 27, 129 (2022).
https://doi.org/10.1007/s10664-022-10146-1.

[3] MLighter is an ongoing project with a webpage: http://mlighter.freedevelop.org

[4] K. Even-Mendoza, A. E. J. Hyvarinen, H. Chockler and N. Sharygina: Lattice-based SMT for
Program Verification. MEMOCODE 2019 : 16:1-16:11.

[5] H. Chockler, K. Even, and E. Yahav. Finding rare numerical stability errors in concurrent
computations. ISSTA, 2013, pages 12—22. (alphabetic order)

[6] J. M. Zhang, M. Harman, L. Ma and Y. Liu, "Machine Learning Testing: Survey, Landscapes and
Horizons", in IEEE Transactions on Software Engineering, vol. 48, no. 1, pp. 1-36, 1 Jan. 2022, doi:
10.1109/TSE.2019.2962027.

[7] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang. 2020. A Survey of
Compiler Testing. ACM Comput. Surv. 53, 1, Article 4 (January 2021), 36 pages.
https://doi.org/10.1145/3363562

[8] X. Yang, Y. Chen, E. Eide, and J. Regehr. 2011. Finding and understanding bugs in C compilers.
SIGPLAN Not. 46, 6 (June 2011), 283—294. https://doi.org/10.1145/1993316.1993532

[9] A. F. Donaldson, H. Evrard, and P. Thomson. 2020. Putting randomized compiler testing into
production (experience report). In Proceedings of the 34th European Conference on Object-Oriented
Programming (ECOOP 2020). Schloss Dagstuhl-Leibniz-Zentrum fur Informatik.
https://drops.dagstuhl.de/opus/volltexte/2020/13179/

[10] V. Livinskii, D. Babokin, and J. Regehr. 2020. Random testing for C and C++ compilers with
YARPGen. Proc. ACM Program. Lang. 4, OOPSLA, Article 196 (November 2020), 25 pages.
https://doi.org/10.1145/3428264

[11] C. Murphy, K. Shen, and G. Kaiser. 2009. Automatic system testing of programs without test
oracles. In Proceedings of the eighteenth international symposium on Software Testing and Analysis
(ISSTA '09). Association for Computing Machinery, New York, NY, USA, 189—200.
https://doi.org/10.1145/1572272.1572295

[12] A Google self-driving car caused a crash for the first time. 2016.



https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report

[13] SGD: commonly used during the training process to update the weights of the neural network
based on the gradients of the loss function with respect to the weights.
https://keras.io/api/optimizers/sgd/



The complexity of database query evaluation
Supervisor: Hubie Chen

Areas: Foundations of computing

(Back to Scholarship Allocated)

Project Description

Evaluating queries on databases is a primary means of extracting information from databases. This
project aims to study facets of the complexity of and algorithms for database query evaluation. Our
study will draw on tools, techniques, and ideas from areas such as decomposition methods, graph
theory, logic, finite model theory, database theory, and parameterized complexity theory. For this
project, a strong interest in and background in mathematical aspects of computing is expected.

References

Refer to the articles listed at https://dblp.org/pid/83/3627.html -- particularly those appearing in
PODS, ICDT, and LICS.



Scholarship Not Allocated

(Back to Top)

e Software Verification and Nominal Dependent Type Theory
¢ Nominal Specification and Verification Environments
¢ Game-theoretic models in cryptoeconomics: incentives, mechanisms and blockchain dynamics

artificial intelligence
e Dealing with imperfect rationality in computational systems
* Understanding_Software Security: Unveiling_Vulnerabilities through Binary-based Testing_Strategies
e Dense subgraph detection and breaking
e String_Sanitization with Applications to Internet of Things Data
* Indexing_text data: practical and (near)-optimal schemes.




Software Verification and Nominal Dependent Type Theory
Supervisor: Maribel Fernandez

Areas: Foundations of computing

(Back to Scholarship Not Allocated)

Project Description

Dependent Type Theory is a mathematical tool to write formal specifications and prove the
correctness of software implementations. The proof assistants used to certify the correctness of
programs (such as Coq), are based on dependently typed higher-order abstract syntax. The goal of
this project is to explore alternative foundations for proof assistants using nominal techniques. The
nominal approach has roots in set theory and has been successfully used to specify programming
languages. This project will focus on the combination of dependent types and nominal syntax and
explore the connections between the nominal approach and the higher-order syntax approach used
in current proof assistants.

References

Typed Nominal Rewriting, Elliot Fairweather and Maribel Fernandez, ACM Transactions on
Computational Logic, vol.19, humber 1, 2018.



Nominal Specification and Verification Environments
Supervisor: Maribel Fernandez

Areas: Foundations of computing

(Back to Scholarship Not Allocated)

Project Description

Software verification techniques have been successfully used to prove correctness of low-level
programs, but verification of high-level programming languages is challenging: it requires reasoning
about name binding (e.g., visible/hidden channel names, scoping rules defining local and global
variable names, parameter passing and substitution of values for variables). A standard approach to
deal with name binding in verification tasks is to replace names with numerical codes (de Bruijn
indices). While this avoids some of the difficulties of reasoning about names in programs, conducting
a formalisation in de Bruijn style is labour-intensive and imposes a significant overhead to
comprehending and reusing proofs. Nominal techniques offer an alternative, user-friendly approach,
which does not require to replace names with codes. We aim to apply novel nominal techniques to
simplify the handling of names and binders in programming languages and verification tasks (e.g.,
verification of blockchain languages). For this, we aim to develop a core nominal calculus and use it
as a basis to enrich with nominal features two successful verification frameworks: Maude and K.



Game-theoretic models in cryptoeconomics: incentives, mechanisms
and blockchain dynamics

Supervisor: Stefanos Leonardos

Areas: Machine Learning (ML), Artificial Intelligence (Al), Foundations of computing

(Back to Scholarship Not Allocated)

Project Description

This project targets students interested in advancing cutting-edge research at the intersection of
game theory and cryptoeconomics. The project's aim is to model and analyze blockchain-enabled
economies through a game-theoretic lens. Special focus will be placed on transaction fee markets,
miner extractable value (MEV) incentives, proposer-builder separation in Ethereum block creation,
MEV-boost auctions, transaction censorship, attacks in decentralized exchanges, and related
phenomena. The study will explore cryptoeconomic mechanisms, dissecting participant incentives,
and designing mechanisms to optimize blockchain performance. Due to the dynamic nature of these
systems, the project will employ elements from algorithmic game theory and dynamical systems,
alongside standard tools from economics, computer science, and machine learning. Successful
candidates will develop game-theoretic models, conduct rigorous mathematical analyses, and run
simulations to validate theoretical predictions in real-world applications, bridging the gap between
academia and industry.

References

1. Buterin, V, Reijsbergen, D, Leonardos, S, Piliouras, G. Incentives in Ethereum's hybrid Casper
protocol. Int J Network Mgmt. 2020; 30:e2098. https://doi.org/10.1002/nem.2098

2. Leonardos, S, Reijsbergen, D, Piliouras, G. Weighted voting on the blockchain: Improving
consensus in proof of stake protocols. Int J Network Mgmt. 2020; 30:e2093.
https://doi.org/10.1002/nem.2093

3. Leonardos, N., Leonardos, S., Piliouras, G. (2020). Oceanic Games: Centralization Risks and
Incentives in Blockchain Mining. In: Pardalos, P., Kotsireas, I., Guo, Y., Knottenbelt, W. (eds)
Mathematical Research for Blockchain Economy. Springer Proceedings in Business and
Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-37110-4_13

4. Leonardos, S., Monnot, B., Reijsbergen, D., Skoulakis, E., and Piliouras, G. (2021). Dynamical
analysis of the EIP-1559 Ethereum fee market. In Proceedings of the 3rd ACM Conference on
Advances in Financial Technologies (AFT '21). Association for Computing Machinery, New York,
NY, USA, 114—126. https://doi.org/10.1145/3479722.3480993

5. D. Reijsbergen, S. Sridhar, B. Monnot, S. Leonardos, S. Skoulakis and G. Piliouras, "Transaction
Fees on a Honeymoon: Ethereum's EIP-1559 One Month Later," 2021 IEEE International
Conference on Blockchain (Blockchain), Melbourne, Australia, 2021, pp. 196-204, doi:
10.1109/Blockchain53845.2021.00034.

6. Koki, C., Leonardos, S., and Piliouras, G. (2022). Exploring the predictability of
cryptocurrencies via Bayesian hidden Markov models, Research in International Business and
Finance, Volume 59, 101554, doi: 10.1016/j.ribaf.2021.101554.



7. Leonardos, S., Reijsbergen, D., Monnot, B., and Piliouras, G., "Optimality Despite Chaos in Fee
Markets", arXiv e-prints, 2022. doi:10.48550/arXiv.2212.07175.



Learning emergent behaviors in multi-agent systems: game theory and
chaos dynamics for artificial intelligence
Supervisor: Stefanos Leonardos

Areas: Artificial Intelligence (Al), Machine Learning (ML), Foundations of computing

(Back to Scholarship Not Allocated)

Project Description

This project targets students who are interested in cutting-edge research at the intersection of
multi-agent systems, game theory and learning dynamics, with applications in economics, machine
learning, and artificial intelligence. The project's objective is to explore the intricate patterns of
multi-agent systems through a game-theoretic lens, emphasizing on learning dynamics, chaos
theory, and their applications. Special focus will be placed on understanding the emergent behaviors
in algorithmic decision-making processes that continuously evolve over time. In this context, the
study will explore phase-transitions in strategic interactions, analyze or develop novel algorithms,
and quantify their implications on coordination and competition in real-world systems. The analysis
will use tools from game theory, mathematics and the theory of dynamical systems, to develop,
study and apply learning algorithms in complex multi-agent systems. Successful applicants will have
the chance to shape the future of learning systems, bridging theoretical advancements with practical
applications with the frameworks of machine learning and artificial intelligence.

References

1. Leonardos, S., and Piliouras, G. (2022). Exploration-exploitation in multi-agent learning:
Catastrophe theory meets game theory, Artificial Intelligence, Volume 304, 103653,
doi:10.1016/j.artint.2021.103653.

2. Leonardos, S., Piliouras, G., and Spendlove, K. (2021). Exploration-Exploitation in Multi-Agent
Competition: Convergence with Bounded Rationality, in Advances in Neural Information
Processing Systems, volume 34, pp. 26318--26331, Curran Associates, Inc.,
https://proceedings.neurips.cc/paper_files/paper/2021/file/dd1970fb03877a235d530476eb727dab-
Paper.pdf.

3. Leonardos, S., Overman, W., Panageas I., and Piliouras, G. (2022). Global Convergence of
Multi-Agent Policy Gradient in Markov Potential Games, in International Conference on Learning
Representations (ICLR 2022), https://openreview.net/forum?id=gfwON7rAm4.

4. Leonardos, S., Sakos, J., Courcoubetis, C. and Piliouras, G. (2023). Catastrophe by Design in
Population Games: A Mechanism to Destabilize Inefficient Locked-in Technologies. ACM Trans.
Econ. Comput. 11, 1—2, Article 1 (June 2023), 36 pages. do0i:10.1145/3583782

5. Cheung, Y.K., Leonardos, S., and Piliouras, G. (2021). Learning in Markets: Greed Leads to
Chaos but Following the Price is Right. Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence Main Track, pp. 111-117, do0i:10.24963/ijcai.2021/16.



Dealing with imperfect rationality in computational systems
Supervisor: Carmine Ventre

Areas: Foundations of computing, Artificial Intelligence (Al)

(Back to Scholarship Not Allocated)

Project Description

Computational/Al systems often collect their input from humans. For example, parents are asked to
input their preferences over primary schools before a centralised algorithm allocates children to
schools. Should the AI trust the input provided by parents who may try to game the system? Should
the parents trust that the Al system has optimised their interests? Would it be safe to run the
algorithm with a potentially misleading input? Algorithmic Game Theory (AGT) is a research field
that attempts to add safety and trustworthiness to Al systems vis-a-vis strategic reasoning. With its
set of symbolic tools, one aims to align the goals of the Al system (e.g., the allocation algorithm
above) with those of the agents (e.g., the parents above) involved. The Al will then be safe, in that
we can analytically predict end states of the system, and trustworthy, since no rational agent will
attempt to misguide the system and the system will work on truthful inputs. One assumption
underlying much of the work in AGT is, however, pretty limiting: agents need to be fully rational.
This is unrealistic in many real-life scenarios; we, in fact, have empirical evidence that people often
misunderstand the incentives and try to game the system even when it is against their own interest.
Moreover, modern software agents, often built on top of Al tools, are seldom able to perfectly
optimise their rewards. This project will look at novel approaches to deal with imperfect rationality,
including analysis of known Al systems and the design of novel ones. This will involve theoretical
work that builds on the recent advances on mechanism design for imperfectly rational agents
(namely obvious strategyproofness and not obvious manipulability) to include more complex
domains and the modelling of further behavioural biases in mechanism design. Prospective
applicants are encouraged to consult the publications of Prof Ventre at
https://kclpure.kcl.ac.uk/portal/en/persons/carmine.ventre/publications/.



Understanding Software Security: Unveiling Vulnerabilities through
Binary-based Testing Strategies
Supervisor: Dr Karine Even-Mendoza, Dr Hector Menendez Benito

Areas: Machine Learning (ML), Foundations of computing, Cybersecurity, Systems (SE,
programming, autonomous systems, robotics, ..., Computing Applications

(Back to Scholarship Not Allocated)

Project Description

Software ecosystems rely on the way operating systems distribute resources. By creating the
address space, the process space, the threads and the security tokens of the running program, the
system provides an execution context that changes depending on the kernel version or even the
compiler used to execute the programs. The integration of a program into a systematic environment
that evolves depending on kernel and compilation version might not imply security vulnerabilities,
but in the presence of crashes, the exploitability of the system will directly depend on how it deals
with resources, as obfuscations proved [2]. Under these conditions, there are a few strategies that
can provide some light on ways to identify these vulnerabilities. The first one is to employ semantic
equivalent transformations to the software and study the behavioural changes in the system. The
second is to study the decompilation of the final PE or EFL file and investigate how it changes under
different compilation options. The third is to employ various testing strategies, such as differential
testing, to analyse how the environment is changing the execution, often tracked through profiling
strategies. These three strategies will define the three parts of the thesis. Part 1: Process Resources.
The student will work by extending the previous work on the security of obfuscations [2]. The
extension will focus on the way the heap and the stack are affected in terms of the address space
and the managed resources. With this information, the student will better understand the
exploitability of specific parts of the system and work on potential mitigations that can support the
system's security. Part 2: Compiler's configurations. Compilers optimise code by adding
transformations that reduce the way the process collects and manipulates resources. It is also
affected by the scheduler. The student will catalogue the effect of optimisations in software,
especially bugs, and how they change their nature and exploitability when the system is more
vulnerable. Based on these principles, the student will extrapolate the previous knowledge on
exploitability to the compilers' context. Part 3: Testing improvements. Based on the previous
discoveries about how the system interacts with processes and how compilers and contexts change
this, this last part of the thesis focuses on changing the ways testing is applied in the context of
vulnerabilities with the aim of making it more focused to unmask the risk that the context and the
compiler can associate with the execution of the files.

References

[1] A. Dakhama, K. Even-Mendoza, W.B. Langdon, H. Menendez, and J. Petke (2023). SearchGEM5:
Towards Reliable gem5 with Search Based Software Testing and Large Language Models. Symposium
on Search Based Software Engineering (SSBSE). https://tinyurl.com/2u2aeb4r

[2] H. D. Menendez and G. Suarez-Tangil. 2022. ObfSec: Measuring the security of obfuscations
from a testing perspective. Expert Syst. Appl. 210, C (Dec 2022).



https://doi.org/10.1016/j.eswa.2022.118298

[3] K. Even-Mendoza, C. Cadar, and A. F. Donaldson. 2022. Csmithedge: more effective compiler
testing by handling undefined behaviour less conservatively. Empirical Softw. Engg., 27, 6, (Nov.
2022), 35 pages. doi: 10.1007/s10664-022-10146-1.

[4] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo, J. Grundy, H. Wang. Large
language models for software engineering: A systematic literature review. arXiv preprint
arXiv:2308.10620. 2023 Aug 21

[5] V. Le, M. Afshari, and Z. Su. 2014. Compiler validation via equivalence modulo inputs. In PLDI
'14. ACM, New York, NY, USA, 216—226. https://doi.org/10.1145/2594291.2594334

[6] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz and S. Yoo, "The Oracle Problem in Software
Testing: A Survey," in IEEE Transactions on Software Engineering, vol. 41, no. 5, pp. 507-525, 1 May
2015, doi: 10.1109/TSE.2014.2372785.

[7]1 X. Yang, Y. Chen, E. Eide, and J. Regehr. 2011. Finding and understanding bugs in c compilers.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI '11). Association for Computing Machinery, San Jose, California, USA, 283—
294. isbn: 9781450306638. doi: 10.1145/199349 8.1993532.

[8] J. Regehr. Finding Bugs in C and C++ Compilers using YARPGen. SIGPLAN. PL Perspectives.
https://blog.sigplan.org/2021/01/14/finding-bugs-in-c-and-c-compilers-using-yarpgen/

[9] AFL Michal zalewski, "Technical "whitepaper" for afl-fuzz,"
https://lcamtuf.coredump.cx/afl/technical_details.txt



Dense subgraph detection and breaking
Supervisor: Grigorios Loukides

Areas: Data science, Foundations of computing

(Back to Scholarship Not Allocated)

Project Description

Graphs naturally model relationships between entities in domains ranging from social networks to
communication networks and the web. In all these domains, a fundamental analysis task is dense
subgraph discovery. This task aims at identifying parts of the graph that are cohesive. A clique, for
example, is such a cohesive subgraph, while there are several other notions that relax the notion of
clique, allowing for more efficient discovery. Dense subgraph discovery is important in a multitude of
applications, such as detecting communities in social networks and preventing money laundering.
Beyond discovery, studying how dense subgraphs may be broken with minimal graph distortion is
also relevant. It is practically useful in maintaining communities in social networks, assessing
resilience to attacks or errors in communication networks, and enabling social network users to
prevent discrimination. The main goal of this project is to develop algorithms for detecting and for
breaking dense subgraphs. There is also possibility to propose new notions of dense subgraphs, or
to develop algorithms employing existing notions for complex types of graphs. Candidates with
strong background in algorithm design and optimization and with excellent programming skills
(preferably in C++) are welcome.

References

Huiping Chen, Alessio Conte, Roberto Grossi, Grigorios Loukides, Solon P. Pissis, and Michelle
Sweering. 2021. On Breaking Truss-Based Communities. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining (KDD '21). Association for
Computing Machinery, New York, NY, USA, 117—126
https://dl.acm.org/doi/pdf/10.1145/3447548.3467365



String Sanitization with Applications to Internet of Things Data
Supervisor: Dr Grigorios Loukides, Professor Luca Vigano

Areas: Cybersecurity, Data science, Foundations of computing, Computing
Applications

(Back to Scholarship Not Allocated)

Project Description

The overall aim of the project is to develop and evaluate a robust and efficient approach that allows
organisations and businesses to protect the privacy of data represented as strings. The project will
consider the protection of aggregated data (event sequences), as well as string databases, and it
will also address the interrelated issues of usefulness, security, and scalability. It aims to develop a
methodology (model, algorithms, protocols) for sanitising (i.e., transforming) data that is: (I)
privacy- preserving, by designing and applying a privacy model along with algorithms for sanitising
string data. (II) Utility-preserving, by designing measures and tools for quantifying the level of
usefulness of data that must be traded-off for achieving privacy. (III) Secure and scalable, by
designing efficient protocols that allow multiple parties to protect their data securely and jointly. The
methodology will be evaluated on data from the Internet of Things (IoT) domain.

References

Bernardini et al. Hide and Mine in Strings: Hardness, Algorithms, and Experiments. IEEE TKDE 2023.
https://ieeexplore.ieee.org/document/9732522



Indexing text data: practical and (near)-optimal schemes.
Supervisor: Grigorios Loukides

Areas: Foundations of computing, Data science, Computing Applications, Natural
Language Processing (NLP), Machine Learning (ML)

(Back to Scholarship Not Allocated)

Project Description

In many real-world database systems, a large fraction of the data is represented by strings:
sequences of letters over some alphabet. This is because strings can easily encode data arising from
different sources. It is often crucial to represent such string datasets in a compact form but also to
simultaneously enable fast pattern matching queries. This is the classic text indexing problem.
Unfortunately, however, most (if not all) widely-used indexes (e.g., suffix tree, suffix array, or their
compressed counterparts) are not optimized for all four measures (index space, construction space,
query time, construction time) simultaneously, as it is difficult to have the best of all four worlds.
The topic seeks to take an important step towards designing new indexes that offer good
performance in all four measures. One promising direction to do this is to explore specific
application-driven special cases of the problem, such as when we have at hand a lower bound { on
the length of the queried patterns or when we have extra knowledge about them or the text (e.g.,
given by a machine learning model or text properties such as the fact that it is repetitive). The
candidates should have strong knowledge in algorithms and programming (C++).

References

Ayad et al. Text Indexing for Long Patterns: Anchors are All you Need. Proceedings of the VLDB
Endowment (PVLDB) 2023. https://www.vldb.org/pvidb/vol16/p2117-loukides.pdf

Loukides et al. Bidirectional String Anchors for Improved Text Indexing and Top-K Similarity Search.
IEEE TKDE 2023. https://ieeexplore.ieee.org/document/10018284






