Adaptive clinical trial designs incorporating mid-trial sample size adjustment

Jack Bowden and Adrian Mander

MRC Biostatistics Unit, Cambridge

Kings College London, March 2013
I will sketch an adaptive trial design proposed as an alternative to a ‘traditional’ (fixed sample size) trial

An adaptive, unblinded two stage trial incorporating sample size adjustment
- Use all of the data collected at the interim period to decide how many additional patients needed
- Crucially use the treatment effect estimate (hence ‘unblinded’)

There has been a very low uptake of these methods in practice

Fears include: scientific validity, type I error inflation, use of non-sufficient statistics, statistical complexity etc...

We are trying to change this!
The traditional fixed sample size approach

- Assume observations in experimental treatment group ‘X’ and standard therapy group ‘Y’ are normally distributed with means μ_X and μ_Y and have a common variance of σ^2.

- **Parameter** of interest is $\delta = \frac{\mu_X - \mu_Y}{\sigma}$. $H_0 : \delta \leq 0$.

- **Fixed design**: n patients per arm

- Choose n via

 $$n = \frac{2}{\delta^2} (Z_\alpha + Z_\beta)^2, \quad Z_u = (1 - u)'th \text{ normal quantile}$$

- e.g. If $\delta = 0.35$, $\alpha = 0.025$ and $\beta = 0.2$: $n = 129$ patients per arm.

- Estimation and inference for δ at **end of trial** via:

 $$\hat{\delta} = \frac{\bar{x} - \bar{y}}{\sigma} \text{ and } z = \frac{\hat{\delta}}{\sqrt{2/n}}$$
Sample size required for 80% power as a function of δ.

- If $\delta \ll 0.35$ then substantially more than 129 people needed.
- If $\delta \gg 0.35$ then trial a waste of resources.
A general ‘adaptive’ two-stage design strategy

- Suppose instead \(n_1 (\ll n) \) subjects \textit{initially} recruited, giving:
 \[
 \hat{\delta}_1 = \frac{\bar{x} - \bar{y}}{\sigma}, \quad \& \quad \text{test statistic} \quad z_1
 \]
ad at the \textit{interim analysis}. Then, if:

\[
\begin{align*}
 & z_1 > k : \text{Stop the trial for \textbf{efficacy}} \\
 & z_1 < h : \text{Stop the trial for \textbf{futility}} \\
 & h \leq z_1 \leq k : \text{Recruit further} \ n_2 \ \text{patients using} \ z_1 \ \text{as a guide}
\end{align*}
\]

- Declare efficacy at stage 2 if final test statistic, \(z \) is \(\geq C \)

- Adaptive design must still control type I and II errors
- Dictates choice of design parameters and additional sample size rule \(n_2(z_1) ? \)
Standard approach (Proschan and Hunsberger, 1995)

- Find h, k, $n_2(z_1)$ and $C(z_1)$ such that:
 1. $Pr(\text{declare efficacy at stage 1 or stage 2}|\delta = 0) = \alpha$
 2. $Pr(\text{declare efficacy at stage 2}|\delta = \hat{\delta}_1) = 1 - \beta_1$

- Complicated optimisation problem
- Little freedom to choose stage 1 thresholds h and k
- Critical value $C(z_1)$ dependent on z_1
- Design can’t be pre-specified
- This includes interim sample size adjustment formula
Choosing h, k, C via the LSW method: Li et al. (2002, 2005)

- Choose h & k almost freely, (e.g. in terms of $\hat{\delta}_1$ or p-value of z_1)
- Choose overall type I error α and conditional power $1-\beta_1$
- Find C such that:

 1. $Pr(\text{declare efficacy at stage 1 or stage 2}|\delta = 0) = \alpha$
 2. $Pr(\text{declare efficacy at stage 2}|\delta = \hat{\delta}_1) \geq 1 - \beta_1$

Given that, if trial goes to stage 2:

$$n_1 + n_2(z_1) = \frac{2(C + Z_{\beta_1})^2}{\hat{\delta}_1^2}$$

- A very simple method! (one parameter optimisation)
- Critical value C independent of z_1.

 - Whole design & analysis can be specified in advance
Example

- If \(n_1 = 50 \), \(\alpha = 2.5\% \) and conditional power = 80%.
- \((h=1,k=2.74): = (0.16,0.003) \) p-value scale, \((0.20,0.55) \) \(\hat{\delta}_1 \) scale.
- \(C \) is found to be \(\approx 1.92 \) (less than \(Z_{\alpha} = 1.96 \))
A minor modification of Li et al’s approach

- Maximum sample size $\approx 3 \times$ Fixed sample size
- Too large to be attractive?

- Want the trial to continue if (say) $0.2 < \hat{\delta}_1 < 0.55$ but with realistic maximum sample size
- That is, require $n_2(z_1) \leq n_{\max}$, for some n_{\max}
- Want C still to be independent of trial data:

- Call this modified LSW approach
Example contd.: \(n_{\text{max}} = 90, \ C = 1.93, \ Z_{\beta} = 0.8. \)
Comparison of fixed and adaptive designs

- How do the fixed design and the two adaptive designs compare as a function of the true treatment effect δ?
 - Expected sample size?
 - Overall power to reject H_0?

Fixed design: $n = 129$, $\alpha = 2.5\%$ $1 - \beta = 80\%$, $\delta_{H_1} = 0.35$

Adaptive LSW designs: $n_1 = 50$, $\alpha = 2.5\%$ $1 - \beta_1 = 80\%$
 - $h = 1$, $k = 2.74$

- Additionally for modified LSW: $n_{max} = 90$.
Expected sample size

- **Modified LSW design** has the smallest expected sample size
Overall power to declare treatment effective

- **Fixed design**: 80% power at $\delta=0.35$
- **Standard LSW design**: 72% power at $\delta=0.35$
- **Modified LSW design**: 68% power at $\delta=0.35$
Criticisms of the LSW method

- Allows user to specify **conditional** power level desired at stage 2 and leaves choice of n_1, h and k open
- Can identify designs with small expected sample size compared to fixed design
- However, it generally has a lower **overall** power than fixed design
- **Non-standard** critical threshold C at stage 2 which is different to nominal α uncomfortable for trialists

 e.g. LSW design could suggest to reject null as $Z > 1.92$ but if $Z < 1.96$ standard α-level analysis would not

- To address these concerns, propose a ‘**reverse implementation**’
Reverse implementation of the standard LSW design

1. Identify a fixed sample size design with type I error α and power $1-\beta$ at $\delta = \delta_{H_1}$

2. Find all possible adaptive designs (h, k, n_1) where:
 1. Critical threshold $C = Z_{\alpha}$
 2. n_1 is the minimum stage 1 sample size that sets the unconditional power at $\delta = \delta_{H_1}$ equal to $1-\beta$

Special software written for this purpose
Possible design space: \(\alpha = 0.025 \) and \(1 - \beta = 0.8 \)

- **Black Line** = all designs satisfying criteria
- **Red point**: minimum conditional power \(1 - \beta_1 = \) overall power \(1 - \beta \)
 - Occurs at (approximately) \(h = 1.14, k = 2.24 \) and \(n_1 = 70 \)
- Use a slightly different algorithm/rationale for reverse implementation of the modified LSW design
- Don’t go into details, results fairly similar
- 4 designs to compare with fixed design
 - $\alpha = 0.025, 1 - \beta = 0.8, n = 129, \delta_H_1 = 0.35$

<table>
<thead>
<tr>
<th>design</th>
<th>h</th>
<th>k</th>
<th>$1 - \beta_1$</th>
<th>C</th>
<th>α</th>
<th>n_1</th>
<th>n_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard implementation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. LSW</td>
<td>1</td>
<td>2.74</td>
<td>0.8</td>
<td>1.92</td>
<td>0.025</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>2. modified LSW</td>
<td>1</td>
<td>2.74</td>
<td>0.8</td>
<td>1.93</td>
<td>0.025</td>
<td>50</td>
<td>90</td>
</tr>
<tr>
<td>Reverse implementation (red dot designs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. LSW</td>
<td>1.14</td>
<td>2.24</td>
<td>0.8</td>
<td>1.96</td>
<td>0.025</td>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td>4. modified LSW</td>
<td>1.08</td>
<td>2.32</td>
<td>0.8</td>
<td>1.96</td>
<td>0.025</td>
<td>71</td>
<td>121</td>
</tr>
</tbody>
</table>
Expected sample size of four designs

- Reverse implementation designs have higher expected sample size...
Overall power of four designs

- LSW approach
- Modified LSW approach
- Fixed design
- Standard implementation
- Reverse implementation

...but comparable power to fixed design
Summary

- The LSW method to unblinded sample size adjustment:
 - Can be fully specified **before** any recruitment begins;
 - Can be implemented by an independent, *non expert*, data monitoring committee
 - *Is* motivated by clear **decision framework** linking interim effect size with future sample size via a **simple**, familiar **formula**

- Our modifications mean that:
 - The trial’s data to be consistently analysed at the end using **standard methods**
 - The resulting adaptive trial is a **more transparent alternative** to a specific fixed design under consideration.
P-values for tests using a repeated significance test design.

Mid-course sample size modification in clinical trials based on the observed treatment effect.

A sample size adjustment procedure for clinical trials based on conditional power.

Adaptive increase in sample size when interim results are promising: A practical guide with examples.

Designed extension of studies based on conditional power.

Estimation and confidence intervals for two-stage sample size flexible design with LSW likelihood approach.
Further details......
Probability of conducting a ‘large’ trial (Adaptive designs only)

\[P(\text{Efficacy stopping at stage 1}) \approx 20\% \text{ chance of stopping for } \textbf{futility}, \]
\[10\% \text{ chance of stopping for } \textbf{efficacy} \text{ at stage 1 at } \delta = \delta_{H_1} = 0.35 \]

\[\approx 25\% \text{ chance of requiring } \geq n_{max} \text{ for original LSW design.} \]
Conditional power function defined as:

\[P(z > C|z_1, n_1, \delta) = 1 - hi \left(\frac{C \sqrt{n_1 + n_2(z_1)} - z_1 \sqrt{n_1} - n_2(z_1)\delta/\sqrt{2}}{\sqrt{n_2(z_1)}} \right) \]

Li et al’s method: Solve

\[1 - hi(h) - \alpha = \int_{h}^{k} hi \left[\frac{C(C + Z_\beta) - u^2}{\sqrt{(C + Z_\beta)^2 - u^2}} \right] hi(u)du. \]

for \(C \) then find \(n_2(z_1) \) via

\[n_2(z_1) = \left(\frac{(C + Z_\beta)^2}{z_1^2} - 1 \right) n_1, \quad \text{for } z_1 \in (h, k) \]
Modified LSW design **loses** conditional power when $n_2(z_1) = n_{\text{max}}$
Algorithm for reverse implementation modified LSW design

1. Identify a fixed sample size design with type I error α and power $1-\beta$ at $\delta = \delta_{H_1}$. Additionally fix the maximum value of $(n_1 + n_2(z_1))$, $n_{T_{max}}$ say, and set C equal to Z_α.

2. Given $n_{max} = n_{T_{max}} - n_1$, find the joint values of $(h,k,Z_{\beta_1},n_1,n_{max})$ such that:

 1. $(h,k,Z_{\beta_1},n_1,n_{max})$ are consistent with α and $C = Z_\alpha$
 2. n_1 is minimised given the joint values of $(h,k,Z_{\beta_1},n_{max})$
 3. The unconditional power at $\delta = \delta_{H_1}$ equals $1-\beta$