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Aim of the project 

Wearable robots have not realised their potential impact yet due to unintuitive control 
interfaces. Extension to more sophisticated tasks will require inferring the user’s motor 
intent.  
  
Virtual environments provide a safe and accessible way to test and evaluate users’ responses, 
but current systems rely on inverse dynamics that can quickly become inaccurate with the 
occurrence of forces from an external virtual device. Forward simulations, yet unexplored in 
the domain of shared human-robot assistance for lower-limb assistance, can generate stable 
walking policies, modelling key aspects of the user’s motor control and its relationship with 
the wearable device.  
  
The proposed project's core aim is to implement and evaluate a deep reinforcement learning 
based motion controller. In the initial phase, we employ a marker-based opto-electronic 
motion capture system and surface electromyography. We then use the captured kinematics 
to develop a control policy that translates high-dimensional features into low-dimensional 
control. This advancement is pivotal for creating adaptable lower-limb wearable robots 
tailored for those with mobility impairments. 
 
Project description 
 
Wearable robots can transform the way we aid individuals with mobility impairments. 
However, they have not yet realised their potential impact. Commercially available wearable 
robots face challenges, such as user intent detection, as well as issues related to intuitive 
control interfaces and limited degrees of freedom (DoFs) control [1]. Current intention-based 
wearable robots rely on neuromuscular interfaces, but the muscle activation that can be 
decoded is often insufficient (e.g., noisy) for reliable triggering of non-steady-state 
locomotion (e.g., turning, changing walking speed, starting stair ascension). This limits them 
to a small number of tasks, and control is often perceived as rigid and unnatural by the user 
[2]. Strategies are needed to synchronize generated motion with user motor intent towards 
the extension to more sophisticated tasks and higher levels of assistance. For instance, for leg 
exoskeletons, the system needs to detect that the user plans to ascend stairs or traverse a 
slippery walkway, so joint torques can be adjusted to maximize assistance and stability. 
 
The development of new control strategies is hampered by limited access to hardware and 
participants [3]. Establishing physical environments that ensure validated, reproducible, and 



safe testing requires complex and specialized equipment. To expedite hardware and 
controller design iterations, emulation hardware can be used, but it may impose limitations 
on the range of test environments and locomotion tasks due to the mobility constraints of 
the emulation platform. In the realm of upper limb device design, virtual environments have 
proven effective in addressing these issues [4]. However, applying this approach to 
locomotion tasks introduces challenges. To provide the necessary kinematic and kinetic 
context for the operation of a simulated lower-limb device, the user's movements must also 
be simulated. Relying solely on inverse dynamics is insufficient because motion trajectories 
reconstructed from experiments quickly become inaccurate when virtual forces are 
introduced. In contrast, unexplored predictive forward simulations can generate stable 
walking strategies that model essential aspects of the simulated user's motor control. These 
simulations enable the device to respond to disturbances and leverage assistance in response 
to modelled gait abnormalities, in the case of individuals with impairments, and adapt with 
compensatory motions. 
 
Musculoskeletal modelling used to tailor specific interventions to movement disorders, 
generate reproducible outcomes, and enhance patient care by revealing relationships 
between baseline conditions and rehabilitation effectiveness [5]. Traditional models like 
OpenSim [6], based on inverse dynamics, are unable to handle contact-rich dynamics, 
necessary to simulate human-robot interaction [7]. Open-source RL-driven MuJoCo-based [8] 
techniques have facilitated interfaces that translate tensors into human movements with 
contact-rich interactions. The need is boosted by recent strides in human locomotion 
modelling, demonstrating increased generalizability when incorporating real-world 
kinematics [9], [10]. However, a biomechanics evaluation of the reliability of a contact-rich 
model is still lacking. These drawbacks may limit the successful transfer of control policies 
from simulation to reality. 
   
This project will increase understanding of shared autonomy between the user and the 
control policy of an active wearable robot, towards both short-term and long-term 
generalizable non-continuous locomotion tasks. 
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