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Aim of the project 

Digital replicas of a patient’s heart, termed cardiac digital twins, are playing an increasingly 

important role in cardiovascular medicine. The aim of this project is to use state-of-the-art 

cardiac imaging and analysis software to derive high fidelity structural and functional cardiac 

information from computed tomography (CT) data to generate personalised cardiac models. 

This novel imaging and analysis pipeline will shed new light on tissue structural and functional 

properties across different cardiomyopathies, augmenting the accuracy of the models 

created. Corresponding simulation of electrophysiological dynamics within these models will 

provide enhanced guidance for optimal targets for invasive catheter ablation therapy of 

ventricular tachycardia. 

 
Project description 
 
Catheter ablation of ventricular tachycardia (VT) represents a challenging clinical procedure, 

primarily due to the difficulty in accurately identifying the optimal sites to target for durable 

arrhythmia elimination. Procedure times are often long, with a relatively high risk profile and 

high rates of VT recurrence (up to 50% 1 year following the procedure). Novel pre-procedural 

image-based strategies which aim to more accurately characterise the region of myocardial 

tissue remodelling (fibrosis, scar) which represents the substrate for VT are gaining clinical 

interest. The increased use of highly detailed pre-procedural imaging has also facilitated the 

application of - computational simulation, using image-based patient-specific ‘digital twin’ 

replicas of a patient’s heart, which permit pre-procedural planning based on non-invasive 

prediction of critical arrhythmia sites to guide selection of ablation targets. 

Cardiac computed tomographic angiography (CTA)  represents an appealing pre-procedure 

imaging modality for VT ablation, due to its short acquisition times, the high spatial resolution 

and relative robustness in the presence of cardiac implantable electrical devices (CIED). 

However, CTA has previously been limited in its ability to accurately identify regions of tissue 

remodelling in the ventricle, in comparison with cardiovascular magnetic resonance (CMR) 

imaging, which represents the reference standard for cardiac tissue characterisation. 



However, recent advances in CCT have demonstrated its ability to effectively identify 

ventricular remodelling through the identification of changes in tissue thickness, tissue 

enhancement on late-phase imaging and the assessment of tissue extracellular volume, a 

quantitative measure of fibrotic remodelling. These techniques enable an extension from a 

binary categorisation of tissue as ‘scar’ or ‘healthy ‘to a multiparametric evaluation of the 

myocardial architecture. Furthermore, recent methodologies have been developed which 

allow automated analysis of specialised CCT sequences for the quantitative analysis of 

myocardial strain. This will characterise in detail the local functional properties of both 

diseased myocardium which retains some contractile function, as well as patterns of 

dyskinesia in areas of frank scar. Tissue characterisation with this level of detail will permit the 

incorporation of biologically realistic tissue structure and functional properties into image-

based personalised cardiac electromechanical models, providing an accurate representation 

of the complex substrate underlying the VT to be targeted. The generation of such models will 

be critical to understand the impact of identified structural and functional changes on the 

arrhythmogenicity of the tissue. 

In this project, we will perform both retrospective and prospective analysis of comprehensive 

CCT datasets using bespoke software to identify late iodine enhancement, myocardial ECV and 

myocardial strain. These data will be compared with existing analysis techniques to 

understand their detailed relationships with left ventricular wall thickness, as well as 

characteristics of endocardial electrograms recorded from corresponding tissue locations 

during VT ablation procedures. Following this analysis, patient-specific models will be 

constructed from the CT data, to reflect both the quantitative fibrotic remodelling and 

myocardial strain patterns identified on CCT. Simulations will be conducted of the detailed 

electrophysiological dynamics during VT to mechanistically understand to role of these image-

based characteristics, and the importance of them in successfully matching to the clinically 

measured VT dynamics. 

Expected Background: This project would be best suited to a candidate with a physical science 
undergraduate (maths, physics, computer science, engineering) who has a strong interest in 
medicine, physiology, computer simulations, signal and image processing, along with 
experience in coding (Matlab, C++, Python). 
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Whitaker et al. CMR Assessment VT Substrate

FIGURE 5 | Tissue characteristics of diastolic locations. (A) Example of LGE CMR derived endocardial shell color coded according to scar transmurality and

demonstrating antero-septal infarction. Histogram shows combined scar/heterogeneous tissue (HT) transmurality pooled from all locations activated during diastole in

all pigs. (B) Example of LGE CMR derived endocardial shell color coded according to tissue thickness. Histogram shows tissue thickness pooled from all diastolic

locations (blue) in all pigs compared with tissue thickness at the location of normal EGMs pooled from all pigs (red). (C) Example of LGE CMR derived endocardial

shell color coded according to distance from HT. Histogram shows distance from HT pooled from all diastolic locations in six pigs.
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FIGURE 3 | Co-localization of diastolic locations from Electroanatomic Mapping System and in-vivo imaging and episcopic auto-fluorescence cryomicrotome

imaging. (A) Surface 12-lead ECG of induced VT. (B) In-vivo CMR derived shell color coded according to scar transmurality, with translucent mesh derived from scar

also shown. Location of 2 diastolic EGMs is shown (red spheres) and corresponding short axis (SAX) in-vivo LGE CMR slice. (C,D) SAX slices shown in (B), with

location of recorded EGM (red sphere). (E,F) Corresponding EACI data with segmented scar (red) superimposed.

imaging-supported VT ablation studies, TImyocardium drift during

acquisition routinely necessitated 30–80ms being added to the

TImyocardium prior to the start of a 3D acquisition, which

may be of up to 29min in duration (21–23). In the present

data, drift in TImyocardium across the course of an extended

acquisition duration was always < 10% and the mean was

5.2%, corresponding to an average change in TImyocardium of

approximately 12ms. In clinical practice, establishing CSS for

3D image acquisition even during scans of routine duration

would minimize thedrift in TImyocardium and may behelpful for

optimizing imagequality.

Thenon-standard approach to contrast delivery hasnot been

robustly validated in this study. However, it is noted that the
strategy of continuous contrast infusion, on which the protocol

for the current study was based, has been validated against
histological samples during extra-cellular volume mapping for
the assessment of fibrosis (24). There is no consensus regarding
theoptimal method for thresholdingLGE-CMRfor scar (25),and

theoptimal strategy may depend on thecontrast administration

protocol used during imaging. The Full Width-Half Maximum

techniquerepresentsastrategywith robust histological validation

(26), however, clinical studies have suggested that thresholding

for dense scar at 60% of the maximum SI best identifies

electrophysiologically relevant left ventricular substrate. This

consideration led to the current strategy being chosen for this

study (17). The current study does address the unresolved issue

of theoptimal thresholdingstrategy for LGE-CMR.

The 3D LGE-CMR imaging in this study was acquired

with a FA of 90◦ which likely resulted in reduced blood-scar

contrast due to the higher T2 weighting that resulted (see

SupplementaryFigure3). While in this study we did not

feel low contrast between blood pool and scar prohibited

confident identification of the blood-myocardial interface, the

differentiation of endocardial scar from the blood pool could

be improved in subsequent studies through using a lower flip

angle. We note that this issue is encountered to some degree

in all bright-blood LGE sequences and represents a motivation

to the development of dark blood sequences to overcome this

effect (27).

Transmurality of Scar
The calculated transmurality of scar in locations with diastolic

activation reported here is lower than has been reported

previously. In previous reports, mean scar transmurality at VT

isthmus sites assessed using 2D 1.4 x 1.4 x 8 mm3 LGE-CMR

with scar segmented according to aFull-width at half-maximum

(FWHM) threshold was 60 ± 38% (28) or using a similar 2D

LGE-CMR imaging 66 ± 22%, which rose to 76 ± 16% at sites

of concealed entrainment and to 70 ± 21% at termination sites

(29). The use of 2D imaging, bolus contrast administration and

different imageanalysisprotocolsused in previousexperimentsis

likely to contribute to observed differencesin scar transmurality.

In addition, there may be mechanistic differences between

the VT-HC described here and VTs studied previously, both

of which included at least some hemodynamically tolerated

VTs. Early reports of hemodynamically tolerated scar-mediated

VT often localized the isthmus to within a thin walled LV

aneurysm, which would likely be identified on CMR imaging

as transmural scar (30, 31). In contrast, the re-entrant VT-

HC observed in this study displayed a greater dependence on
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2.1.4. Cardiac bre representation

Anisotropic conduction due to the myo bre architecture within

ventricular myocardium is known to have important implications in the

response of the tissue to strong external electric elds. In contrast to

earlier whole-torso cardiac models [ 12,16,17] , we explicitly included

an anatomically-realistic representation of cardiac bre orientation

within the ventricular tissue using a previously validated approach, as

described in Ref. [ 2] , described brie y below.

Based on the interface between the segmented components of the

heart, the base, epicardium and endocardium were de ned, and the

point apex speci ed manually. A smoothly varying eld was then de-

ned between the apex and the base by solving Laplace's equations with

Dirichlet boundary conditions at these surfaces, and similarly for the

epi- and endocardium; the gradient of these elds determines the api-

cobasal and transmural directions. These two directions were used to

de ne a local coordinate system for each point in the mesh. For each

point, a rotation angle α was calculated according to

= +d α d α d( ) (1 ) ,endo epi (1)

where d is the transmural depth (normalised from 0 to 1), endo is the

rotation angle on the endocardial surface, and epi is the rotation angle

on the epicardial surface. The literature gives = 60 deepi and

= °60endo as acceptable values [ 26] . The rotation angle varies

smoothly between the endo- and epicardium and de nes the bre di-

rection.

2.2. Model simulation

2.2.1. Tissue conductivities

Save for the heart, all other organs were assumed to be a homo-

geneous resistor with negligible capacitance [ 12] . Conductivity values

were as in Ref. [ 12] , with spinal cord conductivity from Ref. [ 10] and

spleen conductivity from Ref. [ 8] . The conductivity values used are

Table 1

Patient and torso details of the scans used for models. Torso depth and width are measured in a transverse plane at the level of the xiphoid process.

Classi cation Patient details Torso details

Gender Age Height Weight BMI Width Depth Height

years cm kg kg * m− 2 cm cm cm

Large Male 59 177 101 32.2 (Obese) 42.0 31.0 37.5

Medium Male 43 178 90 28.4 (Overweight) 36.9 27.5 30.5

Small Female 57 173 60 20.0 (Healthy) 28.7 20.0 27.5

TAVI 1 Female – – – – 38.3 27.1 42.1

TAVI 2 Male 85 180 85 26.2 (Overweight) 36.1 28.6 35.7

Fig. 1. Outline of the pipeline used to generate a complete segmentation from patient-speci c CT scans.

Table 2

Dimensions of the hearts used, measured in a transverse plane approximately

midway up the heart, through the LV.

LVEDD Ventricular Wall Thickness

mm cm

Healthy DCM Healthy HCM

Large 54.7 73.4 1.0 1.9

Medium 39.8 65.0 1.0 1.7

Small 40.0 55.6 0.9 1.7

Fig. 2. Illustrating images of 5 di erent meshes

constituting the initial cohort. (A) Cuts through

the torso, approximately along the centre line

through the heart, highlighting the internal or-

gans and tissues in each model. Images are ap-

proximately to scale, demonstrating the di er-

ences in physical geometry between patients. (B)

Image of an example whole torso mesh, shown

in a solid mesh format with outer skin, muscles

and fat removed to allow highlighting of the

lungs (blue), liver (dark green), kidneys (light

green), bones (yellow), ventricles (red) and

blood vessels (orange).
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Figure 8.2. CV  param etrisation  accord ing to ECVs: Patient 1. A sigm oid function  w as used  to relate ECVs to  corresponding 

CVs in  hea lthy, BZ and dead tissue.  

In-silico Pace-mapping 

To perform in-silico pace-mapping, we placed the 9 ECG leads according to the ECGi vest, after 

registering our torso model to the CardioInsight(28) reconstructed meshes. The corresponding ECG 

traces of the clinically-induced VT (obtained via non-invasive programmed stimulation from the CRT-

D) can be seen in Figure 7.10A. The RE-LF formulation in CARP(97), previously described, was used to 

simulate ~ 343 paced beats across the LV, and corresponding ECGs. Each location was stimulated 

twice (𝑏𝑐𝑙 =  600 𝑚𝑠), and the second beat of each pace was extracted and used to generate ECG-

based conventional and reference-less pace-maps, as in Chapter 5. Briefly, conventional ECG-based 

pace-maps are generated by aligning the QRS complex of each simulated paced beat to the reference 

VT QRS, computing correlation coefficients between each pair, and averaging the results across the 

highest 10/12 leads. The final 3D correlation map is then generated by linearly interpolating the 

correlation coefficients on each paced location to the myocardial mesh. On the other hand, reference-

less pace-maps are obtained by comparing QRS complexes (in a similar manner as before) of 

neighbouring paced beats (within a 𝑟𝑎𝑑𝑖𝑢𝑠  =  20 𝑚𝑚 ). Conventional pace-mapping can provide 

information on the exit and entrance sites of a re-entrant circuits, whereas reference-less pace-
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Monaci et al. Focal VT Automated Localization Through EGMs

FIGURE 2 | Patient-specific LV segment models. Generic AHA 17-segment model is shown in (F). The equivalent patient-specific model of the LV mesh is shown in

(A) with basal, mid, and apical segments illustrated in (B–E), respectively. An example of the novel 68-segment model is shown in (H) highlighting the equal division

in four parts of each of the 17 segments. (G) shows an example of how segment 1 in our mesh was divided into four equal segments.

the segments was subsequently divided into four, for a total of

68 (Figures2G,H). These models were used as guidance for the

collection of pacing locations, for the generation of training and

testing labels for the existing CNNs, and the visualization of the

localized VT sources.

To replicate focal ectopic VTsacrosstheLV segments, ⇠3767

randomly chosen paced beats—single stimuli, with a basic cycle

length (BCL) of 400ms—weresimulated usingacomputationally

efficient RE formulation (Neic et al., 2017) within the Cardiac

Arrhythmia Research Package (CARP) (Vigmond et al., 2003),

utilizing the 10 Tusscher ventricular cell model (ten Tusscher

et al., 2004). Intra- and extracellular tissue conductivities were

tuned to achieve physiological QRSs (Costa et al., 2013),

comparable to equivalent pseudo bidomain simulations on

a higher-resolution mesh (Monaci et al., 2020). Intra- and

extracellular conductivities were 0.1845 S/ m and 0.6628 S/ m

along the fiber direction, respectively, and 0.0493 S/ m and

0.1769 S/ m transverse to it. The corresponding RE conduction

velocities (CVs) were 0.5455 m/ s and 0.1802 m/ s, along and

transversethefiber direction, respectively.

To allow the computation of extracellular potential signals

from specific locationswithin thetorso (Figure3), thesimulated

cardiac potentialsof each paced beat werecombined with theLF

Method (Potse, 2018). Specifically, LF matrices were calculated

within CARP (Vigmond et al., 2003) on the standard ECG lead

locations and on theRV and LV lead sensing parts of a standard

Boston Scientific implanted device(Antoniadiset al., 2017). This

virtual device had a non-septal RV lead, with a superior vena

cava (SVC) coil in the right atrium (RA), and a straight LV lead

through the coronary sinus, with four sensing LV tips distanced

equally at 7.5mm.Configurationsof both 12-lead ECGand CIED

are shown in Figures4A–D. All sensing electrodes, including

the can of the implanted device (CAN), were approximated

to single points, to increase the speed of LF computations

and subsequent simulations. The computation of these matrices

was only performed once for each torso configuration and

took ⇠8 min (128 cores). Their combination with the RE

solutions produced high-fidelity 12-lead ECGs and EGM traces

(Figures4E,F) in⇠20s(256cores) for each paced location. Eight

EGM vectors were chosen as the main EGM signals (Monaci

et al., 2020), and included far-field CAN-SVC, CAN-RV, and

SVC-RV, and near-field RV tip-RV ring and each LV tip-RV tip.

However, importantly, additional vector combinations (four for

ECGsand eight for EGMs) wereadded to thestandard signals to

facilitateintegration into theCNN algorithms(seesection “CNNs

Training and Testing").

Finally, a standardized universal ventricular coordinate

(UVC) system was computed on the biventricular mesh (Bayer

et al., 2018) to facilitate the development of a novel CNN

specific to the ventricles, which should be advantageous as it

identifies and constrains the localization of the paced beats

inherently within themyocardium. Asshown in Figure5, UVCs

describe the biventricular mesh using three parameters: z—

normalized distance between apex (0) and base (1) along the

long axis, r —normalized distance between endocardial (0) and

epicardial (1) surfaces along the short axis, and 0 —rotational

distancefrom LV septum.

CNN Architectures
In this study, we developed two separate 2D CNN architectures,

which used the same ECG and EGM traces as inputs to identify

the location of a simulated paced beat (representing an ectopic

VT). The first architecture, based on Yang et al. (2018), locates

the origin of the paced beat in Cartesian coordinates, after
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