Some Contributions to Convex Infinite-Dimensional Optimization Duality

Marco A. López
Alicante University

King’s College
London Strand Campus
June 2014
Introduction

Consider the convex infinite programming problem

\[(P) \quad \text{Min} \quad f(x) \]
\[\text{s.t.} \quad f_t(x) \leq 0, \ t \in T, \]
\[x \in C, \] \hspace{1cm} (1) \]

where:

- \(T \): index set (possibly infinite)
- \(C \): convex subset of a lcHtv X (\(C \neq \emptyset \))
- \(f; f_t, \ t \in T \): proper convex functions defined on X
- Feasible set of \((P)\): \(F \cap C \), where
 \[F := \{ x \in X : f_t(x) \leq 0, \ t \in T \} \]
- Optimal value: \(\inf(P) \in [\neg \infty, +\infty] \)
- Optimal set: \(S(P) = \{ x \in F \cap C : f(x) = \inf(P) \} \) (possibly, empty)
We consider two different associated duals:

- **Lagrangian dual of (P):**

 \[
 (D) \quad \text{Max}_{\lambda \in \mathbb{R}_+^{(T)}} \inf_{x \in \mathcal{C}} \{ f(x) + \sum_{t \in T} \lambda_t f_t(x) \}
 \]

 where

 \[
 \mathbb{R}_{+}^{(T)} := \left\{ \lambda \equiv (\lambda_t)_{t \in T} \in \mathbb{R}_+^T \mid \text{only finitely many } \lambda_t > 0 \right\},
 \]

 and

 \[
 \mathbb{R}^{(T)} \times \mathbb{R}^T \ni \langle \lambda, f \rangle := \sum_{t \in T} \lambda_t f_t(x) := \begin{cases}
 0, & \text{if } \lambda = 0_T, \\
 \sum_{t \in \text{supp } \lambda} \lambda_t f_t(x), & \text{if } \lambda \neq 0_T.
 \end{cases}
 \]
We consider two different associated duals:

- **Lagrangian dual of** (P):

 $$(D) \quad \max_{\lambda \in \mathbb{R}^T_+} \inf_{x \in C} \{ f(x) + \sum_{t \in T} \lambda_t f_t(x) \} \tag{2}$$

 where

 $$\mathbb{R}^T_+ := \{ \lambda \equiv (\lambda_t)_{t \in T} \in \mathbb{R}^T \mid \text{only finitely many } \lambda_t > 0 \} ,$$

 and

 $$\mathbb{R}^T \times \mathbb{R}^T \ni \langle \lambda, f \rangle := \sum_{t \in T} \lambda_t f_t(x) := \begin{cases} 0, & \text{if } \lambda = 0_T, \\ \sum_{t \in \text{supp } \lambda} \lambda_t f_t(x), & \text{if } \lambda \neq 0_T. \end{cases}$$

- **Modified dual of** (P):

 $$(\Delta) \quad \max_{\lambda \in \mathbb{R}^T_+ \setminus \{0_T\}} \inf_{x \in C} \{ f(x) + \sum_{t \in T} \lambda_t f_t(x) \} \tag{3}$$

- **Weak dual inequalities**:

 $$-\infty \leq \sup(\Delta) \leq \sup(D) \leq \inf(P) \leq +\infty. \tag{4}$$
MAIN GOAL: To establish conditions for the converse strong Lagrangian duality (minsup duality)

\[\min(P) = \sup(D), \]

and also for strong Lagrangian duality (infmax duality)

\[\inf(P) = \max(D). \]
MAIN GOAL: To establish conditions for the converse strong Lagrangian duality (minsup duality)

\[\min(P) = \sup(D), \]

and also for strong Lagrangian duality (infmax duality)

\[\inf(P) = \max(D). \]

Outline:

- Preliminaries
- Basic results for Infmax duality
- Minsup duality by assuming inf-compactness
- Minsup duality without inf-compactness
- Applications
Example 1 Let $X = C = \mathbb{R}^2, f(x) = \exp(x_2), T = \{1\},$ and $f_1(x) = x_1 + i_{\mathbb{R} \times \mathbb{R}^+}(x).$ We compute

$$\sup(\Delta) = -\infty < \max(D) = 0 \text{ (attained for } \lambda = 0) < 1 = \min(P)$$

Slater condition does not guarantee even $\inf(P) = \sup(D).$
Example 1 Let $X = C = \mathbb{R}^2, f (x) = \exp (x_2), T = \{1\},$ and $f_1 (x) = x_1 + i_{\mathbb{R} \times \mathbb{R}^+} (x)$. We compute

$$\sup (\Delta) = -\infty < \max (D) = 0 \text{ (attained for } \lambda = 0) < 1 = \min (P)$$

Slater condition does not guarantee even $\inf (P) = \sup (D)$.

Example 2 Let $X = C = \mathbb{R}, f (x) = \exp (x), T = \{1\},$ and $f_1 (x) = x$. Then

$$\max (\Delta) = -\infty < \max (D) = 0 = \inf (P).$$

In this case, Slater condition holds and, however, $\sup (\Delta) \neq \sup (D)$.

Marco A. López Alicante University London Optimization Workshop, June 9-10, 2014
Example 1 Let \(X = C = \mathbb{R}^2, f(x) = \exp(x_2), T = \{1\}, \) and \(f_1(x) = x_1 + i_{\mathbb{R} \times \mathbb{R}^+}(x) \). We compute

\[
\sup(\Delta) = -\infty < \max(D) = 0 \text{ (attained for } \lambda = 0) < 1 = \min(P)
\]

Slater condition does not guarantee even \(\inf(P) = \sup(D) \).

Example 2 Let \(X = C = \mathbb{R}, f(x) = \exp(x), T = \{1\}, \) and \(f_1(x) = x \). Then

\[
\max(\Delta) = -\infty < \max(D) = 0 = \inf(P).
\]

In this case, Slater condition holds and, however, \(\sup(\Delta) \neq \sup(D) \).

Example 3 Let \(X = \mathbb{R}, C = [-1, 1], f(x) = -x, T = \{1\}, \) and \(f_1(x) = x \) if \(x \geq 0, f_1(x) = 0 \) if \(x < 0 \). Now

\[
\max(\Delta) = \max(D) = \min(P) = 0.
\]

However, Slater condition is not satisfied.
Preliminaries

- Given $B \subset X$, we denote by $\text{co } B$, $\text{cone } B$, and $\text{aff } B$ the convex hull of B, the smallest convex cone containing $B \cup \{0_X\}$, and the smallest linear manifold containing B, respectively.

- The duality product of $x^* \in X^*$ (the topological dual of X) and $x \in X$ is represented by $\langle x^*, x \rangle$.

- The *positive and negative dual cones* of a non-empty set $C \subset X$ are
 \[C^+ = \{ x^* \in X^* : \langle x^*, x \rangle \geq 0 \ \forall x \in C \} , \]
 and
 \[C^- = \{ x^* \in X^* : \langle x^*, x \rangle \leq 0 \ \forall x \in C \} . \]

- The *recession cone* of a non-empty convex set $C \subset X$ is
 \[C_\infty = \{ v \in X : c + v \in C \ \forall c \in C \} . \]
Infmax duality

We are dealing with the problem

\[(P) \quad \text{Min} \quad \{f(x), \text{ s.t. } f_t(x) \leq 0, t \in T, x \in C\},\]

assuming that C is closed and $f,f_t \in \Gamma(X)$. The function $h : X^* \to \overline{\mathbb{R}}$

$$h := \inf_{\lambda \in \mathbb{R}^T_+ \setminus \{0_T\}} \left(f + i_C + \sum_{t \in T} \lambda_t f_t \right)^*,$$

is crucial in our approach; h enjoys the following properties:
Infmax duality

We are dealing with the problem

\[(P) \quad \text{Min} \quad \{ f(x), \text{ s.t. } f_t(x) \leq 0, \ t \in T, \ x \in C \} , \]

assuming that \(C \) is closed and \(f, f_t \in \Gamma (X) \). The function \(h : X^* \rightarrow \overline{\mathbb{R}} \)

\[
h := \inf_{\lambda \in \mathbb{R}^{(T)}_+ \setminus \{0_T\}} \left(f + i_C + \sum_{t \in T} \lambda_t f_t \right)^* ,
\]

is crucial in our approach; \(h \) enjoys the following properties:

(i) \(h \) is proper and convex, and \(-h(0_{X^*}) = \sup(\Delta)\)
Infmax duality

We are dealing with the problem

\[(P) \quad \text{Min} \quad \{f(x), \text{ s.t. } f_t(x) \leq 0, \; t \in T, \; x \in C\},\]

assuming that \(C \) is closed and \(f, f_t \in \Gamma (X) \). The function \(h : X^* \to \mathbb{R} \)

\[h := \inf_{\lambda \in \mathbb{R}^{\leftarrow (T)}_{+} \setminus \{0\}} \left(f + i_{\mathbb{C}} + \sum_{t \in T} \lambda_t f_t \right)^*, \]

is crucial in our approach; \(h \) enjoys the following properties:

(i) \(h \) is proper and convex, and \(-h (0_{X^*}) = \sup (\Delta)\)

(ii) \(h^* = f + i_{\mathbb{C} \cap F} \)
Infmax duality

We are dealing with the problem

\[(P) \quad \text{Min} \quad \{ f(x), \text{ s.t. } f_t(x) \leq 0, \ t \in T, \ x \in C \} ,\]

assuming that \(C \) is closed and \(f, f_t \in \Gamma (X) \). The function \(h : X^* \to \overline{\mathbb{R}} \)

\[h := \inf_{\lambda \in \mathbb{R}^{+T} \setminus \{0_T\}} \left(f + i_C + \sum_{t \in T} \lambda_t f_t \right)^*, \]

is crucial in our approach; \(h \) enjoys the following properties:

(i) \(h \) is proper and convex, and \(-h(0_{X^*}) = \sup(\Delta)\)

(ii) \(h^* = f + i_{C \cap F} \)

(ii) \(-h^{**}(0_{X^*}) = \inf (P) \in \overline{\mathbb{R}} \)
Infmax duality

We are dealing with the problem

\[(P) \quad \text{Min} \quad \{f(x), \text{ s.t. } f_t(x) \leq 0, \ t \in T, \ x \in C\},\]

assuming that \(C \) is closed and \(f,f_t \in \Gamma(X) \). The function \(h : X^* \to \overline{\mathbb{R}} \)

\[h := \inf_{\lambda \in \mathbb{R}^T_+ \setminus \{0_T\}} \left(f + i_{\mathcal{C}} + \sum_{t \in T} \lambda_t f_t \right)^*,\]

is crucial in our approach; \(h \) enjoys the following properties:

(i) \(h \) is proper and convex, and \(-h(0_{X^*}) = \sup(\Delta)\)

(ii) \(h^* = f + i_{\mathcal{C} \cap F} \)

(ii) \(-h^{**}(0_{X^*}) = \inf(P) \in \overline{\mathbb{R}} \)

\(\Gamma(X^*): w^*\)-lsc proper convex functions.
Let us introduce the set

\[A := \bigcup_{\lambda \in \mathbb{R}_+^{(T)} \setminus \{0_T\}} \operatorname{epi} \left(f + i_C + \sum_{t \in T} \lambda_t f_t \right)^* \]
Let us introduce the set

\[\mathcal{A} := \bigcup_{\lambda \in \mathbb{R}_+^{(T)} \setminus \{0_T\}} \text{epi} \left(f + i_C + \sum_{t \in T} \lambda_t f_t \right)^* \]

It holds that

\[\text{epi}_s h \subset \mathcal{A} \subset \text{epi} h, \quad (5) \]
\[\text{epi} \overline{h} = \text{cl}^{\mu*} \mathcal{A}, \quad (6) \]

and

\[\overline{h} = (f + i_{C \cap M})^* = h^{**}. \quad (7) \]
Definition ([2])

Having two subsets A and B of a topological space (X, τ), A is said to be \textit{closed regarding to} B if $B \cap \text{cl} A = B \cap A$.

Remark
Closedness of A regarding B is clearly stronger than the closedness of A in the topology induced by τ in B, as the last one only requires that $B \setminus A$ be the intersection of a closed set in (X, τ) with B (not specifically $\text{cl} A$).
Definition ([2])

Having two subsets A and B of a topological space (X, τ), A is said to be *closed regarding to* B if $B \cap \text{cl}A = B \cap A$.

Remark Closedness of A regarding B is clearly stronger than the closedness of A in the topology induced by τ in B, as the last one only requires that $B \cap A$ be the intersection of a closed set in (X, τ) with B (not specifically $\text{cl}A$).

We are now in a position to state the main result for infmax duality.
Definition ([2])

Having two subsets A and B of a topological space (X, τ), A is said to be *closed regarding to* B if $B \cap \text{cl } A = B \cap A$.

Remark Closedness of A regarding B is clearly stronger than the closedness of A in the topology induced by τ in B, as the last one only requires that $B \cap A$ be the intersection of a closed set in (X, τ) with B (not specifically $\text{cl } A$).

We are now in a position to state the main result for infmax duality.

Theorem

Assume that $\inf (P) < +\infty$. The following assertions are equivalent:

(i) A is w^*-closed regarding to the set $\{0_{X^*}\} \times \mathbb{R}$.

(ii) $\inf (P) = \max(\Delta)$, including the value $-\infty$.
Minsup duality under inf-compactness

Theorem

\[\bar{x} \in \partial h(0_{X^*}) \iff \bar{x} \in S(P) \text{ and } \min(P) = \sup(\Delta). \]
Minsup duality under inf-compactness

Theorem

\[
\bar{x} \in \partial h \left(0_{X^*} \right) \iff \bar{x} \in S(P) \text{ and } \min(P) = \sup(\Delta).
\]

- \(g : X \to \overline{\mathbb{R}} := \mathbb{R} \cup \{ \pm \infty \} \) is said to be *inf-compact* (inf-locally-compact) when \([g \leq r] := \{ x \in X : g(x) \leq r \}\) is a compact set (a locally compact set, respectively) for every \(r \in \mathbb{R} \).
Minsup duality under inf-compactness

Theorem

\[\bar{x} \in \partial h (0_{X^*}) \iff \bar{x} \in S (P) \text{ and } \min (P) = \sup (\Delta). \]

- \(g : X \to \bar{\mathbb{R}} := \mathbb{R} \cup \{ \pm \infty \} \) is said to be *inf-compact* (inf-locally-compact) when \([g \leq r] := \{ x \in X : g (x) \leq r \}\) is a compact set (a locally compact set, respectively) for every \(r \in \mathbb{R} \).

- Additionally

\[\partial h (0_{X^*}) \neq \emptyset \iff h \text{ is finite and } \tau (X^*, X) \text{-cont. at } 0_{X^*} \]

\[\iff \begin{array}{c} h \in \Gamma (X^*) \ \text{and} \ \hbar^* \text{ is w-inf-compact,} \\
\iff \end{array} \]

i.e., the sublevel sets of \(h^* \) are \(\sigma (X, X^*) \)-compact.
We are now in position to state our first result.

Theorem

Assume that one of the following conditions holds:

(a) \(\lambda R(T) + \) such that the function \(f + \sum t_2 T \lambda t f t \) is w-inf-compact.

(b) \(x_2 \text{cone}(t_2 T \text{dom} f t) \) such that \(f + x \) is w-inf-compact.

Then \(\min(P) = \sup(D) \) and \(S(P) \) is a non-empty weakly compact set.

For the linear SIP \((X = \mathbb{R}^n) \) problem \(\text{(P)} \) Min \(fh c, x i, s.t. h a t, x i b, t_2 T, x_2 C g, \) with \(c, a t_2 \mathbb{R}^n, b t_2 \mathbb{R}^n \), the theorem (under \((b) \)) asserts that, if there exists a \(\text{cone} f a t, t_2 T g \) such that \(C_\infty \{c + a] = f_0 \) \(\mathbb{R}^n g \), then \(\min(P) = \sup(D) \) holds and \(S(P) \) is compact.

If \(C = \mathbb{R}^n \) corollary does not apply since \(\{c + a] \) is either a halfspace or \(\mathbb{R}^n \). So, inf-compactness is useless in linear SIP.
We are now in position to state our first result.

Theorem

Assume that one of the following conditions holds:

(a) \(\exists \lambda \in \mathbb{R}_+^T \) such that the function \(f + i_C + \sum_{t \in T} \lambda_t f_t \) is w-inf-compact.

(b) \(\bar{x}^* \in \text{cone}(\bigcup_{t \in T} \text{dom} f_t^*) \) such that \(f + i_C + \bar{x}^* \) is w-inf-compact.
We are now in position to state our first result.

Theorem

Assume that one of the following conditions holds:

(a) $\exists \bar{\lambda} \in \mathbb{R}^T_+$ such that the function $f + i_C + \sum_{t\in T} \bar{\lambda}_t f_t$ is w-inf-compact.

(b) $\bar{x}^* \in \text{cone}(\bigcup_{t\in T} \text{dom} f_t^*)$ such that $f + i_C + \bar{x}^*$ is w-inf-compact.

Then $\min(P) = \sup(D)$ and $S(P)$ is a non-empty weakly compact set.
We are now in position to state our first result.

Theorem

Assume that one of the following conditions holds:

(a) \(\exists \bar{\lambda} \in \mathbb{R}^{(T)}_+ \) such that the function \(f + \mathbf{i}_C + \sum_{t \in T} \bar{\lambda}_t f_t \) is \(w \)-inf-compact.

(b) \(\bar{x}^* \in \text{cone}(\bigcup_{t \in T} \text{dom} f_t^*) \) such that \(f + \mathbf{i}_C + \bar{x}^* \) is \(w \)-inf-compact.

Then \(\min(P) = \sup(D) \) and \(S(P) \) is a non-empty weakly compact set.

For the linear SIP (\(X = X^* = \mathbb{R}^n \)) problem

\[
(P) \quad \text{Min} \quad \{ \langle c^*, x \rangle , \text{ s.t. } \langle a_t^*, x \rangle \leq b, \ t \in T, \ x \in C \},
\]

with \(c^*, a_t^* \in \mathbb{R}^n, b_t \in \mathbb{R} \), the theorem (under (b)) asserts that, if there exists \(a^* \in \text{cone} \{ a_t^*, t \in T \} \) such that \(C_\infty \cap [c^* + a^* \leq 0] = \{0_{\mathbb{R}^n}\} \), then \(\min(P) = \sup(D) \) holds and \(S(P) \) is compact.
We are now in position to state our first result.

Theorem

Assume that one of the following conditions holds:

(a) \(\exists \bar{\lambda} \in \mathbb{R}^{(T)}_+ \) such that the function \(f + i_C + \sum_{t \in T} \bar{\lambda}_t f_t \) is \(w \)-inf-compact.

(b) \(\bar{x}^* \in \text{cone}(\bigcup_{t \in T} \text{dom} f_t^*) \) such that \(f + i_C + \bar{x}^* \) is \(w \)-inf-compact.

Then \(\min(P) = \sup(D) \) and \(S(P) \) is a non-empty weakly compact set.

For the linear SIP \((X = X^* = \mathbb{R}^n) \) problem

\[
(P) \quad \text{Min} \quad \{ \langle c^*, x \rangle, \text{ s.t. } \langle a^*_t, x \rangle \leq b, \ t \in T, \ x \in C \},
\]

with \(c^*, a^*_t \in \mathbb{R}^n, b_t \in \mathbb{R} \), the theorem (under (b)) asserts that, if there exists \(a^* \in \text{cone} \{ a^*_t, \ t \in T \} \) such that \(C_\infty \cap [c^* + a^* \leq 0] = \{0_{\mathbb{R}^n}\} \), then \(\min(P) = \sup(D) \) holds and \(S(P) \) is compact.

If \(C = \mathbb{R}^n \) corollary does not apply since \([c^* + a^* \leq 0] \) is either a halfspace or \(\mathbb{R}^n \). So, inf-compactness is useless in linear SIP.

Marco A. López Alicante University London Optimization Workshop, June 9-10, 2014
Minsup duality without inf-compactness

Definition The function $h \in \Gamma(Y)$, with Y being a l.c.H.t.v.s., is quasicontinuous (Def. 7.6.2 in Laurent’72) if:

a) aff dom h is closed and of finite codimension;

b) ri dom $h \neq \emptyset$ and the restriction of h to aff dom h is continuous on ri dom h.

Lemma

Let $h : Y \to \mathbb{R}$ be convex and quasicontinuous, and let $y_0 \in Y$ be such that $h(y_0) > \infty$ and cl cone (dom $h(y_0)$) is a linear subspace. Then $\partial h(y_0)$ is the sum of a non-empty w-compact convex set and a finite dimensional linear subspace.

If cl cone (dom $h(y_0)$) = Y, h is continuous at y_0, and $\partial h(y_0)$ is a non-empty w-compact convex set.
Minsup duality without inf-compactness

Definition The function $h \in \Gamma(Y)$, with Y being a l.c.H.t.v.s., is quasicontinuous (Def. 7.6.2 in Laurent’72) if:

- $a)$ aff dom h is closed and of finite codimension;
- $b)$ ri dom $h \neq \emptyset$ and the restriction of h to aff dom h is continuous on ri dom h.

Lemma

If $g \in \Gamma(X)$, then g is w-inf-locally-compact if and only if g^* is $\tau(X^*, X)$-quasicontinuous.
Minsup duality without inf-compactness

Definition The function \(h \in \Gamma(Y) \), with \(Y \) being a l.c.H.t.v.s., is **quasicontinuous** (Def. 7.6.2 in Laurent’72) if:

a) \(\text{aff dom } h \) is closed and of finite codimension;
b) \(\text{ri dom } h \neq \emptyset \) and the restriction of \(h \) to \(\text{aff dom } h \) is continuous on \(\text{ri dom } h \).

Lemma

If \(g \in \Gamma(X) \), then \(g \) is \(w \)-inf-locally-compact if and only if \(g^* \) is \(\tau(X^*,X) \)-quasicontinuous.

Lemma

Let \(h : Y \to \overline{\mathbb{R}} \) be convex and quasicontinuous, and let \(y_0 \in Y \) be such that \(h(y_0) > -\infty \) and \(\text{cl cone}(\text{dom } h - y_0) \) is a linear subspace. Then \(\partial h(y_0) \) is the sum of a non-empty \(w^* \)-compact convex set and a finite dimensional linear subspace.
Minsup duality without inf-compactness

Definition The function \(h \in \Gamma(Y) \), with \(Y \) being a l.c.H.t.v.s., is quasicontinuous (Def. 7.6.2 in Laurent’72) if:

a) \(\text{aff dom } h \) is closed and of finite codimension;

b) \(\text{ri dom } h \neq \emptyset \) and the restriction of \(h \) to \(\text{aff dom } h \) is continuous on \(\text{ri dom } h \).

Lemma

If \(g \in \Gamma(X) \), then \(g \) is w-inf-locally-compact if and only if \(g^* \) is \(\tau(X^*, X) \)-quasicontinuous.

Lemma

Let \(h : Y \to \overline{\mathbb{R}} \) be convex and quasicontinuous, and let \(y_0 \in Y \) be such that \(h(y_0) > -\infty \) and \(\text{cl cone}(\text{dom } h - y_0) \) is a linear subspace. Then \(\partial h(y_0) \) is the sum of a non-empty \(w^* \)-compact convex set and a finite dimensional linear subspace.

If \(\text{cl cone}(\text{dom } h - y_0) = Y \), \(h \) is continuous at \(y_0 \), and \(\partial h(y_0) \) is a non-empty \(w^* \)-compact convex set.
This is a minsup duality theorem without inf-compactness:

Theorem

Assume that \(\sup(\Delta) < +\infty \) and that

\[
\exists \bar{\lambda} \in \mathbb{R}^T_+ \setminus \{0_T\} : f + i_C + \sum_{t \in T} \bar{\lambda}_t f_t \text{ is } w\text{-inf-locally-compact},
\]

holds and that

\[
[f_\infty \leq 0] \cap C_\infty \cap \left(\bigcap_{t \in T} [f_t)_\infty \leq 0] \right) \text{ is a linear subspace, } (8)
\]

where \([f_\infty \leq 0]\) and \([f_t)_\infty \leq 0]\) are the recession cones of \(f\) and \(f_t\).

Then

\[
\min(P) = \sup(D),
\]

and \(S(P)\) is the sum of a non-empty \(w\)-compact convex set and a finite dimensional linear subspace.
Consider now the *(primal)* ordinary convex program

\[(P) \quad \text{Min} \quad \{f(x), \text{ s.t. } f_i(x) \leq 0, \ i = 1, \ldots, m, \ x \in C \subset \mathbb{R}^n\},\]

and its *dual*

\[(D) \quad \text{Max}_{\lambda \in \mathbb{R}^m_+} \ \inf_{x \in C} \left(f(x) + \sum_{i=1}^{m} \lambda_i f_i(x) \right).\]
Consider now the (primal) ordinary convex program

\[
(P) \quad \text{Min} \quad \{ f(x), \text{ s.t. } f_i(x) \leq 0, \ i = 1, \ldots, m, \ x \in C \subset \mathbb{R}^n \},
\]

and its dual

\[
(D) \quad \text{Max}_{\lambda \in \mathbb{R}^m_+} \ \inf_{x \in C} \left(f(x) + \sum_{i=1}^{m} \lambda_i f_i(x) \right).
\]

Applying the last theorem we get a very general form of Clark-Duffin Theorem (Duffin'78):

\[
\text{Corollary (Generalized Clark-Duffin Theorem)}
\]

Let \(f, f_1, \ldots, f_m \) \(\in \Gamma(\mathbb{R}^n) \) and \(C \) convex closed in \(\mathbb{R}^n \) be such that \(f_\infty 0 \ \subset C \subset f_\infty 0 \) \(\Rightarrow \) is a linear subspace. Then \(\min (P) = \sup (D) \) and \(S(P) \) is the sum of a non-empty compact convex set and a linear subspace.
Consider now the (primal) ordinary convex program

\[(P) \quad \text{Min} \quad \{f(x) , \text{s.t. } f_i(x) \leq 0, \ i = 1,...,m, \ x \in C \subset \mathbb{R}^n \}\]

and its dual

\[(D) \quad \text{Max}_{\lambda \in \mathbb{R}^m_+} \inf_{x \in C} \left(f(x) + \sum_{i=1}^{m} \lambda_i f_i(x) \right).\]

Applying the last theorem we get a very general form of Clark-Duffin Theorem (Duffin’78):

Corollary

(Generalized Clark-Duffin Theorem) Let \(f,f_1,...,f_m \in \Gamma (\mathbb{R}^n)\) and \(C \) convex closed in \(\mathbb{R}^n\) be such that

\[
[f_\infty \leq 0] \cap C_\infty \cap \left(\bigcap_{i=1,...,m} [(f_i)_\infty \leq 0] \right)
\]

is a linear subspace. Then \(\min(P) = \sup(D) \in \mathbb{R}\) and \(S(P)\) is the sum of a non-empty compact convex set and a linear subspace.
If we deal with the linear SIP problem

\[(P) \quad \text{Min} \quad \{ \langle c^* , x \rangle , \text{s.t.} \; \langle a_t^* , x \rangle \leq b , \; t \in T \} , \]

with \(X = C = \mathbb{R}^n = X^* , \)

\[[c^* \leq 0] \cap \left(\bigcap_{t \in T} [a_t^* \leq 0] \right) \]

is a linear subspace

if and only if

\[-c^* \in \text{ri cone}\{a_t^* , \; t \in T \} . \]
If we deal with the linear SIP problem

\[(P) \quad \text{Min} \quad \{ \langle c^*, x \rangle, \text{ s.t.} \; \langle a^*_t, x \rangle \leq b, \; t \in T \}, \]

with \(X = C = \mathbb{R}^n = X^* \),

\[[c^* \leq 0] \cap \left(\bigcap_{t \in T} [a^*_t \leq 0] \right) \text{ is a linear subspace if and only if} \]

\[-c^* \in \text{ri cone}\{a^*_t, \; t \in T\}.\]

This condition guarantees \(\min(P) = \sup(D) \), and that \(S(P) \) is the sum of a non-empty compact convex set and a linear subspace.
If we deal with the linear SIP problem

\[(P) \quad \operatorname{Min} \{ \langle c^*, x \rangle, \text{ s.t. } \langle a_t^*, x \rangle \leq b, \ t \in T \}, \]

with \(X = C = \mathbb{R}^n = X^* \),

\[[c^* \leq 0] \cap \left(\bigcap_{t \in T} [a_t^* \leq 0] \right) \] is a linear subspace

if and only if

\[-c^* \in \text{ri cone} \{ a_t^*, \ t \in T \}. \]

This condition guarantees \(\min(P) = \sup(D) \), and that \(S(P) \) is the sum of a non-empty compact convex set and a linear subspace.

If, additionally, \(\text{cone} \{ a_t^*, \ t \in T \} \) is full-dimensional, \(S(P) \) is a non-empty compact convex set.
Definition

A family \((C_t)_{t \in T}\) of sets of a topological space is said to have the **finite intersection property** if every **finite subfamily** has non-empty intersection.

Proposition

Let \((C_t)_{t \in T}\) be a family of closed convex subsets of a lcHtvs having the finite intersection property. Moreover, assume the existence of \(t_1, \ldots, t_m \in T\) such that \(\bigcap_{i=1}^m C_{t_i}\) is \(w\)-locally-compact and \(\bigcap_{t \in T} (C_t)_\infty\) is a linear space. Then \(\bigcap_{t \in T} C_t\) is the sum of a non-empty \(w\)-compact convex set and a finite dimensional linear space.
Definition
A family \((C_t)_{t \in T}\) of sets of a topological space is said to have the finite intersection property if every finite subfamily has non-empty intersection.

Proposition
Let \((C_t)_{t \in T}\) be a family of closed convex subsets of a lcHtvs having the finite intersection property. Moreover, assume the existence of \(t_1, \ldots, t_m \in T\) such that \(\bigcap_{i=1}^m C_{t_i}\) is \(w\)-locally-compact and \(\bigcap_{t \in T} (C_t)_\infty\) is a linear space. Then \(\bigcap_{t \in T} C_t\) is the sum of a non-empty \(w\)-compact convex set and a finite dimensional linear space.

Proof: If we apply Theorem 7 with \(C = X, f \equiv 0,\) and \(f_t = \text{i}_{C_t},\) \(t \in T,\) we observe the following:

- \(S(P) = \bigcap_{t \in T} C_t,\)
- \(\text{rec}(P) = \bigcap_{t \in T} (C_t)_\infty,\) and
- \(\text{sup}(\Delta) < +\infty\) amounts to say that the family \((C_t)_{t \in T}\) has the finite intersection property.
REFERENCES

