VARIATIONAL INEQUALITY MODELING OF EQUILIBRIUM IN FINANCIAL MARKETS

Terry Rockafellar
University of Washington, Seattle
University of Florida, Gainesville

London Optimization Workshop
Kings College: 9–10 June 2014

Joint work with Alejandro Jofré and Roger Wets
Economic Equilibrium Theory — Overview

Modeling territory:
situations where competing tendencies must be balanced
such as games with multiple optimizers, but going beyond

Role in the theory of markets:
coordinating agents’ subproblems of utility maximization
making demands adjust to meet supplies
understanding how prices can decentralize decision-making

Mathematical issues:
• existence? under assumptions appropriate for the situation
• computation? passing from qualititave to quantitative
• stability? related also to “local uniqueness”!

Methodologies to employ:
fixed point theory, optimization theory, convex analysis
variational analysis, variational inequalities, . . .
agents $i = 1, \ldots, m$, goods vectors $x \in \mathbb{R}^n_+$, price vectors $p \in \mathbb{R}^n_+$

Optimization subproblems for the agents:
- agent i starts with a goods vector $x^0_i \in \mathbb{R}^n_+$
- trades it for a goods vector $x_i \in \mathbb{R}^n_+$ in a market with prices p
- must respect the budget constraint $p \cdot x_i \leq p \cdot x^0_i$
- seeks to maximize its associated utility $u_i(x_i)$

Equilibrium problem (parameterized by initial holdings x^0_i)

Determine \bar{x}_i for $i = 1, \ldots, m$ and a price vector \bar{p} such that

(a) \bar{x}_i maximizes $u_i(x_i)$ subject to the budget dictated by \bar{p},

(b) $\sum_{i=1}^m x^0_i - \sum_{i=1}^m \bar{x}_i \geq 0$, $\bar{p} \cdot \left[\sum_{i=1}^m x^0_i - \sum_{i=1}^m \bar{x}_i \right] = 0$

supply-demand conditions with complementary slackness
Issues in the Basic One-Stage Model

Modeling shortcomings:
- isolation in time with no future planning; doomsday effects
- no economic mechanism for the determination of prices

Existence shortcomings:
- reliance on nonconstructive fixed-point approaches
- inadequate structure for computational developments

Conclusion shortcomings:
- typically all components of initial x_i^0 must be > 0
- stability, entailing also local uniqueness, seems elusive
- widespread fallback on results that are merely generic

Recent progress:
- assumptions on initial holdings greatly weakened
- stability shown to prevail far more than anticipated
- achieved through variational inequality methodology
- utility functions concave, not just quasi-concave
Variational Inequality Framework — With Normal Cones

Variational inequality: $-f(z) \in N_C(z) \quad C = \text{closed convex set}$

Composite modeling: $-f_k(z_1, \ldots, z_r) \in N_{C_k}(z_k)$ for $k = 1, \ldots, r$

corresponds to $-f(z_1, \ldots, z_r) \in N_C(z_1, \ldots, z_r)$ when

$$C = C_1 \times \cdots \times C_r,$$

$$f(z_1, \ldots, z_r) = (f_1(z_1, \ldots, z_r), \ldots, f_r(z_1, \ldots, z_r))$$

Complementary slackness conditions as an example:

cases where $C_k = \text{some orthant } R^n_+$ or even just R_+

Applications to economic equilibrium when utility is concave

- utility maximization characterized by saddle point conditions
- saddle points have variational inequality representations
- truncation arguments facilitated by appeals to duality

Incompleteness of current utility theory?

it only gets quasi-concavity by neglecting “marginal utility”?
Variational Inequality Representation of the Basic Model

• assume that all the utility functions are C^1 and concave
• introduce multipliers λ_i for the agents’ budget constraints

Lagrangians for utility maximization:

$$L_i(x_i, \lambda_i) = u_i(x_i) - \lambda_i p \cdot [x_i - x_i^0] \text{ for } x_i \in \mathbb{R}^n_+, \lambda_i \in \mathbb{R}_+$$

Conditions for a variational inequality in $z = (p, \ldots, x_i, \lambda_i, \ldots)$

(a) $\nabla u_i(x_i) - \lambda_i p \in N_{\mathbb{R}^n_+}(x_i) \text{ for } i = 1, \ldots, m$
(b) $p \cdot [x_i - x_i^0] \in N_{\mathbb{R}_+^m}(\lambda_i) \text{ for } i = 1, \ldots, m$
(c) $\sum_{i=1}^m x_i - \sum_{i=1}^m x_i^0 \in N_{\mathbb{R}^n_+}(p)$

(1) this V.I. generally won’t be of monotone type
(2) this V.I. has form $-f(z) \in N_C(z)$ with C unbounded

Existence and stability: available under agreeable assumptions through the innovation of introducing money as a “good”
Economic role and motivation:
- saving for the future, borrowing from the future
- hedging against various possible scenarios, “insurance”

Multistage models: 1970’s, 1980’s, 1990’s
- discretization of time and uncertainty in future states
- real contracts to deliver/receive future “goods”
- nominal contracts to deliver/receive future “value” with “value” denominated in so-called “units of account”

Essential incompleteness of markets: beyond Arrow-Debreu
- available contract configurations are unable to hedge fully
- planning can’t be exact, even for the modeled future

→ GEI = general equilibrium theory with incomplete markets
Drawbacks of Current Versions of GEI

Troubles with establishing existence/uniqueness:

- equilibrium is problematical using real contracts
 game-changing counterexample of Hart 1976
 technical difficulties with keeping markets in check
- equilibrium is “indeterminate” using nominal contracts
 unscaled prices prevent comparisons between states

Counterintuitive features for a financial model:

- money is absent! — no exchange rates, inflation/deflation
- only “immediate consumption” of goods has “utility”
- doomsday effects of time horizon distort agent behavior
- no place for the “unmodeled uncertainty” of Keynes
- no coverage of “derivatives” or pre-existing “assets”
- agents are supposed to predict future prices correctly
A New and Different Approach

away from the limitations of just commodities and consumption

Goods from a much broader perspective

A “good” (generalized) may be anything that
- can freely be traded between agents
- is fixed in supply in any state, present or future

The “goods” possessed by an agent can, in any state,
- either be consumed or retained
- an agent’s utility balances consumption with retention
- retained goods pass (modified?) from present to future

Money as a special “good”:
agents always like to retain it and they can freely save it
justification from arguments of Keynes about uncertainty
⇒ money is able to serve in denominated all prices
More Detail on Goods, States and Utility

Goods: \(l = 0, 1, \ldots, L \), goods vectors \(\in \mathbb{R}_{1+L} \), money = good 0

States: \(s = 0 \) at time 0, \(s = 1, \ldots, S \) at time 1

Agents: \(i = 1, \ldots, I \) deal with goods vectors in all states \(s \),
getting \(e_i(s) \), retaining \(w_i(s) \), consuming \(c_i(s) \)

Utility: \(u_i(w_i(0), \ldots, w_i(S); c_i(0), \ldots, c_i(S)) \) for agent \(i \)

Survival: \((w_i(0), \ldots, w_i(S); c_i(0), \ldots, c_i(S)) = (w_i, c_i) \in U_i \)
\(u_i \) nondecreasing, \textbf{concave}, insatiable for retaining money

Passing to the future
\(w_i(0) \) in state \(s = 0 \) emerges as \(A_i(s)w_i(0) \) in states \(s > 0 \)

\[A_i(s) \in \mathbb{R}_{1+L}^{(1+L) \times (1+L)} \] for \(s = 1, \ldots, S \)
the free saving of money is incorporated into this
Two-Party Contracts as Financial Instruments

with money as a “good,” only “real” contracts are needed!

Contract types: \(k = 0, 1, \ldots, K \); contract 0 will be special
- the goods vector \(D_k(s) \) is delivered in each state \(s > 0 \),
- the goods vector \(D_k(0) \) is consumed in the state \(s = 0 \)
the latter will induce “transaction costs” endogenously

Contract markets:
- the contracts can be bought and sold by the agents
 the purchaser gets the future deliveries from the seller,
 the seller provides for the required initial consumption
- fractional amounts allowed, no limit on quantities

Lending and borrowing money: contract 0
this delivers a unit of good 0 in every state \(s > 0 \)
purchaser = money lender, seller = money borrower
Market Prices and Optimization

all prices are denominated in units of good 0, money

Prices of goods: \(p_l(s) \geq 0 \) for good \(l \) in states \(s = 0, 1, \ldots, S \)

Prices of contracts: \(q_k \geq 0 \) for contract \(k \) in state \(s = 0 \)

\[
p(s) = (1, p_1(s), \ldots, p_L(s)), \quad q = (q_0, q_1, \ldots, q_K)
\]

Contract activity of the agents

agent \(i \) buys \(z_i^+ = (z_{i1}, \ldots, z_{iK}) \) and sells \(z_i^- = (z_{i1}, \ldots, z_{iK}) \)

Budget constraints: in present and future states

\[
p(0)[w_i(0) + c_i(0) - e_i(0) + D(0)z_i^+] + q[z_i^+ - z_i^-] \leq 0,
\]

\[
p(s)[w_i(s) + c_i(s) - e_i(0) - D(s)[z_i^+ - z_i^-] - A_i(s)w_i(0)] \leq 0
\]

\(D(s) = \) the matrix with delivery columns \(D_k(s) \)

Agent’s utility optimization problem

choose \(w_i(s), c_i(s), z_i^+, z_i^- \) to maximize utility \(u_i(w_i, c_i) \)

subject to survival \((w_i, c_i) \in U_i \) and the budget constraints
Main Result for the Financial Model

Definition of equilibrium in prices and decisions

1. the agents’ choices solve their utility problems
2. excess demands for goods are \(\leq 0 \), but \(= 0 \) if price > 0
3. total contracts bought = total contracts sold

Ample survivability assumption: remarkably weak

- even without entering markets the agents can “survive” while
 - individually not exhausting all their money at time 0
 - collectively leaving a surplus of other goods \(l \) in all states \(s \)

Existence of equilibrium

Under the ample survivability assumption, the utility assumptions and some others (minor), an equilibrium is guaranteed to exist

Advanced V.I. framework: normal cones \(\rightarrow \) subdifferentials

\(\exists \) ongoing research on stability/“local uniqueness” of equilibrium
Some References

“Variational inequalities and economic equilibrium,”
Math. of Operations Research 32, 32–50

“General econ. equilibrium with financial markets and retainability”

“Parametric stability of solutions to problems of econ. equilibrium,”
Convex Analysis 19, 975–997

“The robust stability of every equilibrium in economic models of exchange even under relaxed standard conditions”

“Convex analysis and financial equilibrium,” *Math. Prog. B*

downloads: www.math.washington.edu/∼rtr/mypage.html