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Abstract

We explore the biases when estimating the relationship between two censored
endogenous variables. We show how such censoring affects linear IV estimates but also
identify conditions under which they are consistent. We propose an IV ordered probit
estimator as a flexible means of addressing censoring in the case of a discrete outcome.
We illustrate by estimating the relationship between fathers’and children’s education.
Our results suggest a substantial bias from ignoring censoring and a smaller bias from
assuming normality. Viewing a binary instrument as the dichotomisation of a latent
variable, we show how IV estimates are sensitive to the cut-point generating the
dummy. This provides a potential explanation for results varying according to choice
of instrument that is distinct from the usual attribution to impact heterogeneity.

Keywords: Instrumental variables; Censored regression; Ordered probit; Fa-
thers’and children’s education.
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1 Introduction

Under the usual OLS assumptions, a straightforward way of dealing with a censored re-

gressor is to base estimation on the subgroup of the sample for which that regressor is

uncensored. When the dependent variable is also censored, however, non-linear models

are required. Discarding observations with a censored regressor is no longer valid since

the underlying relationship among such observations may differ from that observed among

retained observations. Even under the assumption of homogeneity in the latent model,

estimates that ignore regressor censoring can be biased.

This paper explores the biases that can arise when estimating the relationship between

two censored endogenous variables. Rigobon & Stoker (2009) discuss the biases in ordinary

least squares (OLS) and linear instrumental variable (IV) regression when the explanatory

variable is censored.1 Frandsen (2015) considers censored outcomes with an endogenous

regressor. In this paper, we consider the case of a censored dependent variable and a

censored endogenous regressor. We examine the bias of linear IV estimates and also identify

conditions under which they will be unbiased. We show that if errors are normal and the

instrument is continuous, IV estimates will be biased by a factor that is a function of the

degrees of censoring of both variables and can therefore be straightforwardly corrected. If

the degree of censoring is the same on both sides of the regression, the IV estimate will

be unbiased without adjustment. Hence, there are conditions under which an IV estimate

can be more robust than its OLS counterpart. In the case of a binary instrument no

simple adjustment is available to correct IV estimates for bias, although we again derive

conditions under which such estimates will be unbiased. Lastly, since the assumption of

censored normality will not always be appropriate, we suggest an ordered probit IV model

as a more flexible alternative.

We illustrate these points through an empirical analysis of the relationship between

fathers’and children’s ages of completing education. Censoring in this case arises due to the

1This follows Austin & Hoch (2004) who looked at OLS regression.
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minimum school-leaving age. Among both fathers and children, a proportion were required

to remain in school longer than they would have freely chosen. An examination of the

relationship therefore involves censoring of both the dependent variable and the regressor.

To address endogeneity of the regressor, we use a dummy variable for the social class of the

child’s paternal grandfather as an instrument. Diagnostic tests based on a polychotomous

social class indicator suggest that the exclusion restriction is valid, allowing our estimates

to be interpreted as capturing a causal relationship.

We show how, under the assumption that the underlying variables are normally dis-

tributed, the linear IV estimate depends on the cut point of the dummy variable. With

our data, linear IV methods tend to overstate the influence of paternal age of completing

education. This appears likely to be due to a higher proportion of fathers than children

completing their education at the statutory minimum age. We find the estimated regres-

sion coeffi cients are very much in line with theoretical expectations, suggesting that the

sensitivity of the IV coeffi cient to the choice of instrument is indeed explained by the inter-

action of censoring and the cut point of the instrument. In the case of heterogeneous effects,

Imbens & Angrist (1994) show how IV estimates can be interpreted as capturing the local

average treatment effect (LATE); that is, the average effect of treatment for compliers.

Varying the instrument changes the complier set, possibly resulting in a different LATE

estimate. Our results show that, even in the case of homogeneous effects, estimates vary

with the cut point of the instrument. This provides a potential explanation for results being

instrument-specific that is distinct from the usual attribution to impact heterogeneity.

Our empirical analysis, while illustrative, draws attention to a very material issue; one

of the data sets widely used to explore the connection between fathers’ and children’s

education in the United Kingdom, the British Cohort Survey suggests that 59% of the

fathers and 45% of the children2 left school at the school-leaving age rather than obviously

at the time of their own choosing. An analytical framework which assumes that the age of

263% of fathers and 47% of children after reweighting for attrition. See section 4.
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completion of education of a child is a linear function of that of its parents plus a random

term will mislead if in fact for some this is actually the result of compulsion.

The remainder of the paper has the following structure. Section 2 describes the bias in

the linear IV case. Section 3 considers the case when the data are censored normal or are

generated by a latent normal model. Detailed derivations are provided in the Appendix.

The empirical analysis is presented in Section 4. Section 5 concludes.

2 Instrumental Variable Estimation and Censoring

We denote by Xi the explanatory variable for observation i and Yi the dependent variable.

Z∗i defines the instrument used in estimation. X∗
i and Y ∗

i denote the latent variables

underlying the observed data. These latent variables are all measured relative to their

means. In the example we discuss subsequently, Xi is the father’s age of leaving school, Yi

is the child’s age and the instrument is a variable representing grandparental social class.

If Yc is the censor point for Y ∗
i

Yi = Y ∗
i if Y

∗
i ≥ Yc

Yi = Yc if Y ∗
i < Yc

with a similar relationship holding for Xi and X∗
i . In our empirical example XC and YC

are compulsory minimum school leaving ages.

We assume that the underlying relationship we want to estimate is between the latent

variables

Y ∗
i = γX∗

i + εYi ; εYi are iid

Our interest is in the IV estimator; this tells us how far the influence of Z∗i on X∗
i is

transmitted to Y ∗
i .

In the absence of censoring the IV estimate would be

γ∗IV =
Cov(Z∗Y ∗)

Cov(Z∗X∗)

4



while in the presence of censoring

γIV =
Cov(Z∗Y )

Cov(Z∗X)

Following Rigobon & Stoker (2009) we write

Y ∗
i = Yi + Y o

i

where Y o
i = 0 if Y ∗

i > Yc and Y ∗
i − Yc otherwise. Similarly

X∗
i = Xi +Xo

i

with Xo
i = 0 if X∗

i > Xc and X∗
i −Xc otherwise. Then

γ∗IV =
Cov(Z∗Y ) + Cov(Z∗Y o)

Cov(Z∗X) + Cov(Z∗Xo)

and

γIV = γ∗IV
Cov(Z∗Y )

Cov(Z∗X)

Cov(Z∗X) + Cov(Z∗Xo)

Cov(Z∗Y ) + Cov(Z∗Y o)

= γ∗IV
1 + Cov(Z∗Xo)

Cov(Z∗X)

1 + Cov(Z∗Y o)
Cov(Z∗Y )

Despite impacts being homogeneous, censoring generates a bias such that γIV , unlike γ
∗
IV , is

no longer a consistent estimate of γ. The degree of bias varies with the degree of censoring

and also, as we subsequently show, with the threshold converting a latent instrumental

variable into an (observed) dummy instrumental variable.

Whether censoring leads to attenuation or expansion of the coeffi cient depends then on

the relative magnitudes of Cov(Z∗Xo)
Cov(Z∗X) and

Cov(Z∗Y o)
Cov(Z∗Y ) . To explore this further we develop a

simple structural model.

X∗
i = δZ∗i + εXi (1)

Y ∗
i = γX∗

i + εYi (2)

Z∗i = εZi (3)

E

εXiεYi
εZi

 = 0, Cov

εXiεYi
εZi

 =

 σ2X σXY 0
σXY σ2Y 0

0 0 σ2Z

 (4)
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with the standard identifying assumption σY Z = 0 imposed. It is also assumed that δ

represents the whole of the interrelationship between X∗
i and Z

∗
i so that σXZ = 0

If we now consider the reduced form of the model, substituting out X∗
i we can write

X∗
i = δεZi + εXi (5)

Y ∗
i = γ

(
δεZi + εXi

)
+ εYi (6)

Z∗i = εZi (7)

so that

V =Cov

 X∗
i

Y ∗
i

Z∗i

 =

 σ2X + δ2σ2Z γ
(
σ2X + δ2σ2Z

)
+ σXY δσ2Z

γ
(
σ2X + δ2σ2Z

)
+ σXY σ2Y + γ2

(
σ2X + δ2σ2Z

)
+ 2γσXY γδσ2Z

δσ2Z γδσ2Z σ2Z


(8)

We now establish suffi cient conditions for the biases to cancel out. We normalise the

variables, setting sX =
√
σ2X + δ2σ2Z , sY =

√
σ2Y + γ2

(
σ2X + δ2σ2Z

)
+ 2γσXY and sZ = σz

so that x∗i =
X∗
i

sX
, y∗i =

Y ∗i
sY
and z∗i =

Z∗i
sZ .
. We also define, for subsequent use, ρxy =

γ(σ2X+δ2σ2Z)+σXY
sXsY

, ρxz = δ sZ
sX

and ρyz = γδsZ
sY

.

Suppose that x∗i and y
∗
i are drawn from the same probability distribution, f(). Thus

f(x∗i ) = f(y∗i ). (9)

Such a situation of course, arises if the vector [εXi , ε
Y
i , ε

Z
i ] is normally distributed, since then

all linear combinations of it with zero mean will also be normally distributed about zero. If

they have the same censor point after correcting for scale, so that xc = Xc/sX = yc = Yc/sY

then it follows immediately that Cov(Z∗Xo)
Cov(Z∗X) =

Cov(Z∗Y o)
Cov(Z∗Y ) so that the estimator is unbiased.

In our example such a situation might arise if the same proportions of fathers and children

stay at school until the minimum school-leaving age, provided of course that the underlying

distribution functions are also the same. More practically, with similar cut points and

similar distributions the bias is unlikely to be large. We now explore the bias arising when

the variables are normally distributed noting that non-parametric methods (Chernozhukov,

Fernandez-Val & Kowalski 2015) have not yet evolved to the point where they can address

6



the effects of censoring when both a dependent and an endogenous explanatory variable

are censored.

3 The Bias when Variables are Normally Distributed

We first assume that the specification is as above so the instrument is a continuous variable.

In appendix A we show that, if γIV is the IV estimator calculated from the censored data

and γ∗IV is the IV estimator calculated from the uncensored observations, then

γIV = γ∗IV
Φ(−yc)
Φ(−xc)

(10)

giving us a measure of the bias. Of course the term Φ(−yc)/Φ(−xc) is simply the ratio of

the proportions of Y and X which are uncensored observations. Hence, in the normal case

IV estimates can be adjusted to correct for censoring bias.

We now turn to the case where the instrument is a dummy variable, generated from an

unobserved latent variable. This is more relevant to our empirical example, because the

indicator of social class is a discrete, not a continuous variable. Suppose that

Zi = 0 if Z∗i ≤ Zc (11)

Zi = 1 if Z∗i > Zc (12)

The model then becomes

X∗
i = δZi + εXi (13)

Y ∗
i = γX∗

i + εYi (14)

Z∗i = εZi (15)

E

εXiεYi
εZi

 = 0, Cov

εXiεYi
εZi

 =

 σ2X σXY 0
σXY σ2Y 0

0 0 σ2Z

 (16)

We show in Appendix A that, when the underlying disturbances driving the latent vari-

ables are normal, with zc the normalised value of Zc, the correlation between the normalised
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values x∗i and z
∗
i in the reduced form is

Cov(xz) = φ(xc)Φ

(
ρxzxc − zc√

1− ρ2xz

)
+ ρxzφ(zc)Φ

(
ρxzzc − xc√

1− ρ2xz

)
(17)

+xcΦ(xc,−zc,−ρxz)− Φ(−zc) {Φ(xc)xc + φ(xc)}

Cov(yz) is again evaluated by substitution. The IV estimator is

γDIV =
Cov(yz)

Cov(xz)
. (18)

The analysis of section 2 remains valid, but the condition for the bias to cancel out has to

reflect the change of instrument and becomes Cov(ZXo)
Cov(ZX)

= Cov(ZY o)
Cov(ZY )

.

The results in Appendix A identify two cases where γDIV is an unbiased estimator of

γ∗IV . First, and not surprisingly, if the xi and yi are uncensored, so that xc = yc = −∞,

then,

Cov(xz) = ρxzφ(zc) and Cov(yz) = ρyzφ(zc)

and γDIV = γ∗IV . Second, if the censor/cut points are all zero, then

Cov(xz) = ρxzφ(0)/2 and Cov(yz) = ρyzφ(0)/2

so that γDIV = γ∗IV . Beyond this it is necessary to calculate γ
D
IV in order to establish how

large the biases are when the censor/cut points are different from zero. A particular case

of interest arises when the two censor points are the same while the cut point, Zc, varies.

These calculations set out a framework in which to explore the practical implications

of censoring. Before we explore that, however, we set out a means of relaxing the two

key assumptions we have made so far. First, it has been assumed that the relationship

between the explanatory and the dependent variable is linear and secondly it was assumed

that they are jointly normally distributed. While, as noted earlier, some progress has been

made with non-parametric methods requiring much weaker assumptions, these techniques

do not make it possible to estimate the model we have here, in which a censored variable

is related to another endogenous censored variable.
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3.1 Allowing for Non-normality using an Ordered Probit Model

An alternative means of estimating the latent variable model, with weaker distributional

assumptions, is to treat the data for the explanatory and dependent variables as the cut

points in a multivariate ordered probit model. With this model, the cut points are free

to vary and can represent an arbitrary distribution. This avoids imposing both of the

above assumptions, linearity and normality, and can accommodate both left- and right-

censoring should that be necessary. Normality of latent variables is of course required

but the flexibility of the cut points means that is not restrictive. In addition to these

modifications to the first two equations of our model, the third equation of the model,

describing the latent variable which underlies a discrete instrument, can also be set out in

ordered probit form.3

The model in terms of latent variables is that of equations (1)- (3) but the latent

variables themselves have changed.

X∗
i = δZ∗ + εXi (19)

Y ∗
i = ζX∗

i + εYi (20)

Z∗i = εZi (21)

with  εXi
εYi
εzi

 ∼ N

 0
0
0

 ,
 1 ρXY 0
ρXY 1 0

0 0 1

 (22)

so that the latent variables all have zero mean. The parameter relating the latent dependent

variable to the latent actual variable is referred to as ζ to distinguish it from the parameter

γ which related the variables in the linear model. As before, we impose the identifying

restrictions, ρXZ = 0 and ρY Z = 0.

We define, with k, m, and n the discrete number of possible values of Xi,Yi and Zi
3Note that the ordered probit specification does not distinguish between a model where X influences Y

and a model where X∗ influences Y .
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respectively, cut points XC
1 to X

C
k , Y

C
1 to Y C

m and ZC
1 to Z

C
n

X∗
i ≤ XC

1 if Xi = X1; X
C
j−1 < X∗

i ≤ XC
j if Xi = Xj, (1 < j < k);XC

k < X∗
i if Xi = Xk;

Y ∗
i ≤ Y C

1 if Yi = Y1; Y
C
j−1 < Y ∗

i ≤ Y C
j if Yi = Yj−1 , (1 < j < m);Y C

m < Y ∗
i if Yi = Ym;

Z∗i ≤ ZC
1 if Zi = Z1; Z

C
j−1 < Z∗i ≤ ZC

j if Zi = Zj−1 , (1 < j < n);ZC
n < Z∗i if Zi = Zn.

Standard multivariate techniques can then be used to estimate the parameters of the model

and, in large samples, these should not be sensitive to the cut points. With only the

latter affected by censoring, it is possible to estimate the underlying parameters. There is,

however, a question of the interpretation of ζ; we discuss this in the empirical section.

4 Illustration: the Influence of Compulsory Schooling
on Estimates of the Relationship between Fathers’
and Children’s Education

4.1 Background

We now turn to our example, looking at the relationship between fathers’and children’s ages

of completing education, and the way in which IV estimates of the coeffi cient relating them

are influenced by the proportion of the population affected by the compulsory minimum

school-leaving age.

A substantial survey of work on the connection between parents’and children’s edu-

cation is provided by Holmlund, Lindahl & Plug (2011) following an earlier account by

Haveman & Wolfe (1995). They discuss at length the issue of identification; how to sepa-

rate the effects of parents’education on that of their children from other familial influences.

They discuss in particular two means of doing this; first, as discussed by Dearden, Machin

& Reed (1997) and more fully by Plug (2004), it is possible to study the issue for adopted

children. Twou, Liu & Hammitt (2012) also follow this approach which is intended to

ensure that the influence of inherited genetic effects is removed. As Holmlund et al. (2011)

point out this does, however face the objection that adoption may itself be selective. A
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second route is to study the children of (ideally identical) twin sisters. In this case the fo-

cus is on whether differences in the educational attainment of the twins is connected with

differences in the educational attainment of their own children, with the aim of differencing

out genetic influences. Of course there remains the question whether the genetic material

of the children’s fathers is correlated with the educational attainment of their mothers.

Other work (Oreopoulos, Page & Stevens 2006) has looked at changes in the compulsory

education of parents on their children. This is obviously a topic of interest in its own right

given the importance of compulsory education in advanced economies. Their approach

delivers unbiased estimates of the average effect of extended parental education as a result

of changed compulsion on the education of their children. At the same time it brings to

the fore the question of how best to deal with the effects of compulsion.

4.2 Data

The data we use are taken from the British Cohort Study. They present father-child pairs

giving the age at which each completed their full-time education. They also show the

occupation of the child’s paternal grandfather at the time when the child’s father left school.

This occupational status is used to provide an indicator of grandparental social class, with

six categories being identified. Professional and managerial workers are classified to social

class I, while social class V covers elementary occupations. Social class III is split between

non-manual (III NM) and manual (III M) workers with the former regarded as having

higher social status than the latter.

Some of the fathers completed their education before the school-leaving age was in-

creased to fifteen.4 We exclude those father-child pairs whose fathers were born in 1932

or earlier in Great Britain or who were born in 1942 or from Northern Ireland, as well as

those whose fathers were born abroad. This exclusion results in 6,036 observations being

dropped out an initial 17,196 children. On top of this there is considerable attrition, giving

us a final sample of 3,868 father-child pairs. A description of how weights were generated

4This was in April 1947 in Great Britain but ten years later in Northern Ireland.
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Age at which Father Grandfather’s Class
completed Education I II III NM III M IV V All
15 13.9% 41.0% 38.9% 69.9% 74.2% 83.7% 63.4%
16 10.6% 18.1% 25.4% 15.2% 13.4% 9.8% 15.6%
17 14.5% 11.2% 11.1% 4.8% 5.4% 2.0% 6.4%
18 20.9% 9.3% 8.4% 3.7% 3.4% 2.3% 5.2%
19 1.6% 1.6% 1.4% 1.1% 0.2% 0.6% 1.0%
20 4.0% 1.1% 1.0% 0.4% 0.0% 0.3% 0.6%
21 9.5% 5.0% 4.6% 2.1% 0.9% 0.6% 2.6%
22 4.8% 4.4% 3.1% 1.0% 1.1% 0.7% 1.8%
23+ 20.2% 8.3% 6.0% 1.7% 1.4% 0.0% 3.4%
Number (unweighted) 117 661 328 1818 650 294 3868

Table 1: Father’s Age of Completing Education and Grandfather’s Social Class (column
percentages)

to control for the effects of attrition is provided in section 1 of the supplementary material.

These weights were used throughout.

Table 1 shows the cross tabulation of fathers’ age of completing education against

the grandfathers’social class. The table consolidates those fathers who completed their

education at the age of twenty-three or older into a single category. This is done purely for

convenience; the data we use are not top-coded. Table 2 shows the analogous data for the

children; since these data were observed when the children were aged twenty-six, there is an

element of right-censoring, but its impact is unlikely to be large; only 0.2% of the sample

were still receiving education at the age of twenty-six. These tables show that, for both

children and their fathers, higher grandparental social class is associated with spending

longer in education.

4.3 Linear IV Estimates

The first stage in assessing the importance of bias is to examine linear IV estimates. As

is clear from section 4.2, we can observe six categories of social class. This gives rise to

five independent dummy variables which can be used as instruments, while the simple

model set out above has only one dummy variable. At the same time, because the dummy

variables are ordered, it is possible to consolidate them in order to carry out five possible IV
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Age at which Child Grandfather’s Class
completed Education I II III NM III M IV V All
16 12.0% 30.3% 36.8% 51.5% 54.2% 60.9% 47.2%
17 10.0% 13.8% 12.9% 12.7% 12.9% 12.1% 12.8%
18 11.4% 15.8% 13.1% 13.3% 15.1% 15.6% 14.1%
19 9.7% 4.7% 3.9% 3.2% 3.2% 2.3% 3.6%
20 2.3% 2.7% 1.7% 1.8% 1.9% 0.0% 1.8%
21 13.5% 7.4% 6.6% 5.4% 3.6% 3.1% 5.5%
22 17.6% 11.9% 11.6% 4.6% 4.0% 1.8% 6.3%
23+ 23.5% 13.4% 13.4% 7.5% 5.1% 4.2% 8.6%
Number (unweighted) 117 661 328 1818 650 294 3868

Table 2: Child’s Age of Completing Education and Grandfather’s Social Class (column
percentages)

regressions, in each of which the instrument is a single dichotomous dummy. This allows us

to explore the effect of moving the cut point for the dummy, Zc, on the resulting estimate of

γDIV . Equation (17) suggests that that should influence the regression coeffi cient. A further

benefit of the presence of five independent dummies is that it is possible to carry out the

stnadard test for over-identification (Sargan 1958) and thus provide a degree of reassurance

that the restriction σY Z = 0 is acceptable and hence that the statistical analysis is valid.

In table 3 the results of these IV regressions are shown. The first column shows the

estimates when all five social class dummies are used as instruments. The subsequent five

columns show the estimates produced by dummies indicating social class of at least the

value indicated.5 The table also shows the proportion of respondents in each category, and

the cut point calculated on the assumption that the latent variable underlying social class

is normally distributed.

The results with five dummies suggest that the Sargan test is easily met (P=0.36),

while the Kleinbergen-Paap statistic does not point to any concerns that the instruments

are weak; in statistical terms the instruments seem valid. The IV estimates also show a

clear tendency for the coeffi cient to rise with the cut point. The question we now wish to

address is whether this is a natural feature of the interaction between the cut point of the

5Following convention, we refer to social class I being higher than social class II. It indicates higher
status even if a lower class number.
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Five Social Grandfather’s Social Class
Class Dummies I >II >IIINM >IIIM >IV

γIVD 0.844*** 0.786*** 0.807*** 0.858*** 1.000*** 1.034***
(0.058) (0.096) (0.067) (0.064) (0.106) (0.140)

Constant 4.323*** 5.255*** 4.918*** 4.086*** 1.811 1.261
(0.924) (1.551) (1.082) (1.031) (1.697) (2.254)

N 3868 3868 3868 3868 3868 3868
Kleinbergen-Paap 310 58.9 190 256.6 159.8 107.2
Sargan χ24=4.35
Percentage Dummy=1 2.6% 18% 26% 74.3% 91.7%

Table 3: IV Coeffi cient Estimates as Functions of the Cut Point for the Dummy Instru-
mental Variable

instrument and the censored nature of the data on age of completing education. In other

words, does this relationship between the IV coeffi cient and the definition of the instrument

reflect the bias arising from censoring?

4.4 Estimates Corrected for Censoring

The first step in examining this is to estimate the counterparts to the models of table 3 using

the structure of equations (1)-(4), but in a way which corrects for the effects of censoring.

Once again, it is possible to do it for five different definitions of the instrument. The

five single instrument models can be estimated using the cmp command in Stata despite

the fact that only the dummies are observed, given the assumption that the underlying

variables are normally distributed. We can also set up a model in which all five categories

of social class are used to delineate the latent variable assumed to underlie social class. The

five single instrument models provide a valuable comparison with table 3 while the model

which exploits the information on all categories of social class offers the most obvious set

of parameters with which to explore how closely the empirical findings of table 3 match

the theoretical implications conditional on normality.

The empirical analogue to the model set out by equations 1-4 is specified as follows:-
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X∗
i = µX + δZ∗i + εXi (23)

Y ∗
i = µY + γX∗

i + εYi (24)

Z∗i = εZi (25)

where the observed values, Xi and Yi are defined as in section 2.

The continuous variable underlying social class is not observed, but we define a sequence

of cut points

Z∗i ≤ ZC
1 if Zi = 1, ZC

n < Z∗i ≤ ZC
n+1 if Zi = n+ 1 and Z∗i > ZC

5 if Zi = 6

By analogy with the earlier models, we can estimate the system using an ordered probit

model for equation (25) or we can specify it with a dichotomous variable defined with

reference to a single cut point. The parameters are identified by setting the variance of εZi

to 1 and the covariances σXZ and σY Z to 0. The results of this are shown in table 4. It can

be seen that the parameter γ is much more stable across the different specifications than

in table 3; it is falling slightly, rather than rising in the cut point.

It should be noted that a closely related specification is provided by replacing equation

(24) by

Y ∗
i = µY + γXi + εYi (26)

Here it is the actual age at which the father completes his education, rather than his latent

age of completion, which influences the age of completion of the child. The two models have

the same number of parameters, so it is reasonable to discriminate between them on the

basis of the log likelihoods associated with them. The log-likelihoods of this second group

of models are shown in the final row of table 4. These log-likelihoods suggest strongly that

the latent variable model of equation (24) should be preferred to the actual variable model

of equation (26).

The estimation of equations (23) to (25) provides us with the parameters of the system

described by equations (1) to (4) of section 3; it is natural to choose the parameters found
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Grandfather’s Class
I II III NM III M IV V

Child’s Age of Completion
Constant 8.344*** 6.995*** 7.940*** 8.307*** 8.515*** 9.021***

(0.583) (0.950) (0.674) (0.604) (0.954) (1.233)
γ 0.604*** 0.706*** 0.635*** 0.608*** 0.592*** 0.554***

(0.041) (0.069) (0.048) (0.043) (0.070) (0.091)

Father’s Age of Completion
Constant 13.340*** 13.310*** 13.318*** 13.301*** 13.324*** 13.321***

(0.110) (0.112) (0.112) (0.112) (0.111) (0.111)
δ -1.835*** -2.289*** -2.052*** -2.195*** -1.437*** -1.528***

(0.093) (0.156) (0.117) (0.110) (0.121) (0.168)

Cut Points
Cut 1 -1.964*** -1.945***

(0.040) (0.040)
Cut 2 -0.916*** -0.914***

(0.023) (0.023)
Cut 3 -0.640*** -0.644***

(0.022) (0.021)
Cut 4 0.656*** 0.654***

(0.022) (0.023)
Cut 5 1.374*** 1.385***

(0.030) (0.031)

Variance-covariance
log σX 1.447*** 1.403*** 1.431*** 1.417*** 1.487*** 1.481***

(0.024) (0.029) (0.025) (0.025) (0.024) (0.026)
log σY 1.327*** 1.357*** 1.334*** 1.328*** 1.321*** 1.313***

(0.020) (0.031) (0.022) (0.021) (0.024) (0.024)
tanh−1σXY /(σXσY ) -0.228*** -0.383*** -0.272*** -0.244*** -0.200* -0.151

(0.049) (0.093) (0.060) (0.054) (0.088) (0.119)

N 3868 3868 3868 3868 3868 3868
Log-Lik. -14934 -10758.6 -11820.6 -12106.9 -12216.8 -11322.4
Log-Lik. Eqn (26) -14996 -10788 -11873 -12164.6 -12245.2 -11338.5

Table 4: Parameter Estimates allowing for Censoring when Child’s Age of Completion is
influenced by Father’s Latent Age of Completion
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with multiple cut points for the social class variable, since these are the estimators which

make most use of the available information. With the parameters of the first column of

table 4 and the underlying assumption of joint normality, we can calculate the values of

the IV estimator which the theoretical analysis of section 3 suggests should be found with

a dichotomous dummy instrument.

The model parameters imply the following values for the elements of the covariance

matrix of the uncensored data. V, defined by equation (8), and its normalised equivalent,

Σ

V =

 21.44 9.24 −1.84
9.24 17.55 −1.11
−1.84 −1.11 1

 ; Σ =

 1 0.48 −0.40
0.48 1 −0.26
−0.40 −0.26 1


Using standard notation to refer to the elements of Vand Σ,

γ∗IV =
V2,3

V1,3

=
Σ2,3

Σ1,3

√
V2,2

V1,1

= 0.60

In order to explore the biases arising from censoring we work from matrix Σ, so as to

exploit the analysis of section 3. We then multiply the results by
√

V2,2/V1,1 in order to

express them in terms of a relationship between ages of completion of education of fathers

and children.

With the scaled and weighted data xc = 0.34 and yc = −0.07 corresponding to weighted

proportions of fathers and children completing their education at the statutory minimum

age of 63.4% and 47.2% respectively. Equation (10) implies that, if the latent instrument

were observed, it would deliver an estimate of the parameter, γlIV = 0.87 in contrast to the

true parameter of 0.60. In table 5 we show the cut points for the latent variable underlying

the five dichotomous instruments of table 3 together with the theoretical estimates of the

IV parameter, γDIV , which would be generated by using these dummies, with no correction

for the effects of censoring. These are calculated using equation (18) and compared with the

estimates from table 3. Finally we show in the table the estimates of the parameters which

would be generated if xc = yc = 0, i.e. if half of the fathers and children had completed

their education at the statutory minimum age. This sheds further light on the effects of

censoring and its interaction with the cut point of the instrument.
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Grandfather’s Social Class
I >II >IIINM >IIIM >IV

Instrument Cut Point (table 4) -1.964 -0.916 -0.640 0.657 1.374
Theoretical γDIV 0.731 0.800 0.823 0.949 1.033

(0.058) (0.059) (0.059) (0.058) (0.057)
Estimate (table 3) 0.786 0.807 0.858 1.000 1.034

(0.096) (0.067) (0.064) (0.106) (0.140)
γDIV if xc = yc = 0 0.558 0.577 0.584 0.629 0.662

(0.043) (0.041) (0.041) (0.038) (0.036)

Standard errors are shown in brackets. For γDIV these are calculated by making five thousand
draws of the theoretical parameters assuming that the latter are jointly normally distributed
around the values shown in table 3 with the estimated covariance matrix.

Table 5: Parameter Estimates generated by a Censored Normal Distribution

This table shows the connection between the choice of instrument (i.e. Zc) and the

estimated parameter value. The theoretical model shows this ranging from 0.75 to 1.08 and

the empirical estimates match the theoretical values closely. The theoretical results found

when the two censor points are set to zero suggests that the bias arises primarily from

the difference in the proportions of fathers and children completing their education at the

minimum age, rather than the interaction of this with the instrument. Further simulations

with other values of the censor point confirm this, at least given the assumption of normality.

The close match between the estimates of table 3 and the theoretical results might be

taken to suggest that, in this particular case, the assumption of normality is not too far

from the mark. It is, however, possible to investigate this further, and we do that in the

next section, using an ordered probit model.
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4.5 An Ordered Probit Model

We fit the ordered probit model of section 3.1. We define cut points XC
1 to X

C
16, Y

C
1 to Y C

10

and ZC
1 to Z

C
5

X∗
i ≤ XC

1 if Xi = 15, XC
n < X∗

i ≤ XC
n+1 if Xi = 15 + n with 1 ≤ n ≤ 13

XC
14 < X∗

i ≤ XC
15 if Xi = 29;XC

15 < X∗
i ≤ XC

16 if Xi = 32; X∗
i > XC

16 if Xi ≥ 33

Y ∗
i ≤ Y C

1 if Yi = 16, Y C
n < Y ∗

i ≤ Y C
n+1 if Yi = 16 + n and Y ∗

i > Y C
10 if Yi ≥ 26

Z∗i ≤ ZC
1 if Zi = 1, ZC

n < Z∗i ≤ ZC
n+1 if Zi = n+ 1 and Z∗i > ZC

5 if Zi = 6

The parameters of the model can then be estimated in Stata using the multivariate ordered

probit procedure available in routine cmp. It should be noted that there are no observations

with Xi = 30 or 31. The results are shown in table 6.

There are a number of issues raised by the table. First of all, the log-likelihood of

-14170 compares with that of -14934 for the censored linear model of table 4. There are

twenty-three more parameters in the ordered probit model, but even allowing for this, the

log-likelihood suggests that the ordered probit model should be strongly preferred to the

censored linear model.6 A counterpart of this is that the cut points shown in table 6 are

very unevenly placed.

This in turn raises issues over the interpretation of the coeffi cient ζ. That shows the

extent to which the latent variable determining father’s age of completing education influ-

ences the latent variable determining the age at which the child leaves education. Unlike

the situation with the earlier models, the latent variables do not directly represent ages

of completing education. With the ordered probit model, the expected marginal increase

in the child’s age of completion associated with a marginal increase in the father’s age of

completion depends on the latter. Furthermore we can evaluate this only for ages beyond

the father’s compulsory schooling because the specification does not allow us to draw any

6The AIC and BIC for the ordered probit model are 31,318.6 and 31,540.882 respectively. These are
both lower than for the model of table 4 (AIC and BIC of 33,212.2 and 33,288.411 respectively).
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Child’s age of completion Father’s age of completion Grandfather’s social class
ζ 0.654*** δ -0.438***

(0.040) (0.022)
Cut Points

16 0.368*** Class I -1.964***
(0.023) (0.040)

17 -0.082*** 17 0.877*** Class II -0.916***
(0.023) (0.024) (0.023)

18 0.279*** 18 1.154*** Class III NM -0.640***
(0.023) (0.027) (0.022)

19 0.727*** 19 1.449*** Class III M 0.657***
(0.026) (0.030) (0.022)

20 0.859*** 20 1.519*** Class IV 1.374***
(0.027) (0.031) (0.030)

21 0.932*** 21 1.563***
(0.028) (0.032)

22 1.177*** 22 1.798***
(0.031) (0.035)

23 1.535*** 23 2.021***
(0.038) (0.040)

24 1.901*** 24 2.250***
(0.046) (0.047)

25 2.299*** 25 2.457***
(0.059) (0.055)

26 3.085*** 26 2.774***
(0.126) (0.075)

27 3.030***
(0.099)

28 3.123***
(0.112)

29 3.194***
(0.122)

32 3.523***
(0.189)

33 3.691***
(0.244)

tanh−1ρXY -0.212***
(0.049)

N 3,868
Log-likelihood -14,169.9

Table 6: The Parameters of the Ordered Probit Model
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implications about the relationship between latent ages of completion below the limit set

by the statutory minimum school leaving age.

For each observation we can, however, work out the marginal relationships between the

latent variables and use these to translate ζ into a relationship between ages of completion

of the father and the child. The non-linearity means that that will be specific to each

individual. Averaging across the population, however, provides an estimate of the average

marginal impact of father’s education on that of his child.

We denote by TXi the expected age of completion of the father conditional on the latent

variable for social class of Z∗i , and T
Y
i the expected age of completion of the child conditional

on Z∗i . Write λ
X
i = dTXi /dX

∗
i and λ

Y
i = dT Yi /dY

∗
i . Since dY

∗
i /dX

∗
i = ζ we can then write

γi =
dT Yi
dTXi

= ζ
λYi
λXi

We show in section 2 of the supplementary material that, with τXk being the age of

completion of education associated with fathers whose latent variables lie between cut

point k−1 and cut point k, and τYk the equivalent for their children, conditional on a given

value of the social class latent variable, Z∗i

λXi (Z∗i ) =
dTXi
dX∗

i

=

−
∑N−1

k=2 (φ(Xk − δZ∗i )− φ(Xk−1 − δZ∗i ))τXk − φ(X1 − δZ∗i )τx2 − φ(XN−1 − δZ∗i )τxN−1
{Φ(XN−1 − δZ∗i )− Φ(X1 − δZ∗i )}

In applying this formula we set the upper cut point to that for age 29 (so that τX2 = 16

and τXN−1 = 28) because the next cut point is at age 32. This has negligible effect because

the proportion of fathers reporting completing their education after age 29 is minimal.

For children this complication is not present; with τY2 = 17 and τYN−1 = 25 we have,

with σY =
√

1 + ζ2 + 2ρXY ζ being the standard deviation of Y
∗
i conditional on Z

∗
i ,

λYi (Z∗i ) =
dT Yi
dY ∗

i

= −
∑N−1

k=2 (φ(
Yk−δζZ∗i

σY
)− φ(

Yk−1−δζZ∗i
σY

))τYk − φ(
Y1−δζZ∗i

σY
)τY2 − φ(

YN−1−δζZ∗i
σY

)τYN−1{
Φ(

YN−1−δζZ∗i
σY

)− Φ(
Y1−δζZ∗i

σY
)
}

Both λXi and λ
Y
i and thus ζ i are functions of Z

∗
i which is of course unobserved. We may,

however, calculate their expected values conditional on social class nZi being observed. We
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Whole Restricted Grandfather’s Class
Sample Sample I II III NM III M IV V

γOP 0.54 0.56 0.68 0.59 0.55 0.53 0.49 0.50
(0.03) (0.03) (0.02) (0.03) (0.03) (0.03) (0.04) (0.04)

Standard errors are shown in brackets. These are calculated by making five thousand draws of
the theoretical parameters assuming that the latter are jointly normally distributed around the
values shown in table 6 with the estimated covariance matrix.

Table 7: Estimates of the Average Marginal Impact of an Extension of Father’s Education
on that of Children

evaluate

γnZi = ζ

∫ ZnZ
i

Z
nZ
i
−1

{
λYi (Z∗i ) /λXi (Z∗i )

}
φ (Z∗i ) dZ∗i

Φ
(
ZnZi

)
− Φ(ZnZi −1)

as the expected marginal impact conditional on a grandfather from social class nZi . The

average marginal effect is then given as

γOP =
∑
i

wiγnZi /
∑
i

wi (27)

where nZi is the grandpaternal social class of observation i.

We can evaluate γOP either for the whole sample or, perhaps more appropriately, only

for the restricted sample of 1,166 observations for which both the father and the child have

completed their education when older than the minimum school-leaving age. We show

in table 7 estimates of γOP for these two populations and also for father/child pairs as a

function of the social class of the grandfather.

The nonlinearities imply that the marginal transmission of educational advantage is

greater for those with grandfathers from the high social classes than from the low social

classes. The average marginal value for the restricted sample of 0.56 can be compared with

the value of 0.60 found using the censored normal model (table 4) and 0.84 estimated by

linear IV (table 3).
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5 Conclusions

We have shown here, in a very practical example, the sort of distortions which can arise

when parameter estimates are produced by instrumental variables using data that are

censored. In our application —an investigation of the relationship between fathers’and

children’s ages of completing their education —the fact that more than half of the fathers

and nearly half of the children left school at the compulsory school leaving age generates

a substantial upward bias. Making the assumptions that the underlying variables are

normally distributed and that the structural relationship is between the unobserved latent

ages of completion of education we are able quantify the bias.

We find strong evidence to support the belief that the relationship is indeed between

the latent variables, rather than influenced by the actual experience of the fathers. The

instrument available to us, grandparental social class, is hexachotomous, allowing us to

identify five different dichotomous dummy variables. We find a close match between the

linear IV estimates using these dummy variables and the values predicted by our theoretical

analysis under the assumption of normality. All of these values show an upward bias

compared to the underlying parameter estimate. The estimate produced using all five

dummy variables as instruments suggests that a child’s age of completing education rises

by 0.84 years for each extra year that their father underwent full-time education, while

methods which correct for the effects of censoring point to a coeffi cient of only 0.60. Use of a

multivariate ordered probit model allows us to relax the assumption of normally distributed

education and points to an average marginal impact of father’s age of completion on that of

his child of only 0.56 years. This suggests that the bias arising from the use of IV estimates

with censored data is much greater than any bias arising from the assumption of normality.

Our results highlight the need to pay adequate regard to the issue of censoring. Further-

more, where IV results are sensitive to the choice of instrument, they offer an alternative to

the explanation of impact heterogeneity across instrument-specific complier populations.

In the common case of dummy instruments, such variation can, when data are censored,
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equally be due to the choice of threshold at which latent instrumental variables are di-

chotomised; which can itself be seen as an extreme form of censoring.
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A Appendix: A Statistical Analysis of Censoring with
Bivariate Normality

Write the three variables of interest as

X∗
i = δεZi + εXi (28)

Y ∗
i = γ

(
δεZi + εXi

)
+ εYi (29)

Z∗i = εZi (30)

where  εXi
εYi
εZi

 ∼ N

 0
0
0

 ,
 σ2X σXY 0
σXY σ2Y 0

0 0 σ2Z


so that

V =Cov

 X∗
i

Y ∗
i

Z∗i

 =

 σ2X + δ2σ2Z γ
(
σ2X + δ2σ2Z

)
+ σXY δσ2Z

γ
(
σ2X + δ2σ2Z

)
+ σXY σ2Y + γ2

(
σ2X + δ2σ2Z

)
+ 2γσXY γδσ2Z

δσ2Z γδσ2Z σ2Z


(31)

Two of the variables, X∗
i and Y

∗
i are assumed to be censored, so that the observed values

Xi and Yi are defined as

Xi = X∗
i if X

∗
i ≥ XC while Xi = XC if X∗

i < XC and

Yi = Y ∗
i if Y

∗
i ≥ YC while Yi = YC if Y ∗

i < YC

The identifying conditions of section 2 are assumed to be met.

We set

sX =
√
σ2X + δ2σ2Z ; sY =

√
σ2Y + γ2

(
σ2X + δ2σ2Z

)
+ 2γσXY ; sZ = σZ

ρxy =
γ
(
σ2X + δ2σ2Z

)
+ σXY

sXsY
; ρxz =

δsZ
sX

; ρyz =
γδsZ
sY

so that  X∗
i

Y ∗
i

Z∗i

 ∼ N

 µX
µY
µZ

 ,
 sX ρxysXsY ρxzsXsZ
ρxysXsY sY ρyzsY sZ
ρxzsXsZ ρyzsY sZ sZ

 .

We examine two cases. In the first Z∗i is observed, while in the second case Z
∗
i is not

observed. Instead we observe a dummy variable, Zi with Zi = 0 if Z∗i < Zc + µZ and
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Zi = 1 if Z∗i ≥ Zc + µZ ; similarly, we write zi = 1 if z∗i ≥ zc. Since the instrumental

variable estimator of the regression coeffi cient is the ratio of two covariances, we evaluate

the effect of censoring on the estimate of the correlation, rxz, calculated from observations

on normalised censored data. The first step is to normalise the variables. We set

x∗i =
X∗
i − µX
sX

; xi =
Xi − µX
sX

and xc =
Xc − µX
sX

.

y∗i =
Y ∗
i − µY
sY

; yi =
Yi − µY
sY

and yc =
Yc − µY
sY

z∗i =
Z∗i
sZ

; zc =
ZC
sZ

;

We use φ() and Φ() to represent the density function and cumulative distribution of

the standard normal distribution respectively. One argument indicates that the function

relates to the univariate normal distribution, while three arguments (the two ordinates and

the correlation) are used to indicate the bivariate normal distribution. The subsequent

analysis draws heavily on the results quoted by Rosenbaum (1961) and Muthen (1990) for

the moments of truncated and censored bivariate normal distributions.

A.1 The bias from censoring when the instrument is fully-observed

We set out here the bias arising when Cov(xz∗) is used in place of the covariance of

the uncensored data, Cov(x∗z∗). The bias associated with Cov(yz∗) can then be evaluated

simply by substituting y for x in the resulting formulae, and the impact on the IV estimator

can then be calculated.

We consider separately the cases where x∗i > xc and x∗i ≤ xc.

1. xi > xc with P (xi > xc) = Φ(−xc)

2. xi=xc with P (xi > xc) = Φ(xc)

The product moment needs to be evaluated in two components, one for each of the two

cases above
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1. xi > xc (Rosenbaum 1961)7

m1
xz = (ρxzΦ(−xc) + ρxzxcφ(xc))/Φ(−xc)

2. xi = xc

m2
xz = −xcρxzφ(xc)/Φ(xc)

Since the first moment of z∗i = 0, rxz =Cov(xz∗) estimated from the censored data is

rxz = Φ(−xc)m1
xz + Φ(xc)m

2
xz = ρxzΦ(−xc)

Similarly, simply by substituting y for x we have

ryz = ρyzΦ(−yc)

and the IV estimator from the censored data is therefore

γIV =
ρyzΦ(−yc)σY
ρxzΦ(−xc)σX

in contrast to the estimator from the uncensored data

γ∗IV =
ρyzσY

ρxzσX

so that

γIV = γ∗IV
Φ(−yc)
Φ(−xc)

A.2 The bias from censoring when the instrument is a dichoto-
mous latent variable

Once again, it is adequate to focus on the Cov(xz) with Cov(yz) evaluated by substitution.

When we observe zi rather than z∗i the covariance is the expected value of xi conditional on

zi = 1. The expected value of the second moment around zero is given as Muthen (1990)

φ(xc)Φ

(
ρxzxc − zc√

1− ρ2xz

)
+ ρxzφ(zc)Φ

(
ρxzzc − xc√

1− ρ2xz

)
+ xcΦ(xc,−zc,−ρxz)

7Rosenbaum (1961) uses the function Q(x) to refer to the probability mass of the normal distribution
in the range [x, ∞] rather than the range [-∞ ,x].
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and the product of the two means is given as

Φ(−zc) {Φ(xc)xc + φ(xc)}

so the estimate of the covariance of the normalised variables is

ŝxz = φ(xc)Φ

(
ρxzxc − zc√

1− ρ2xz

)
+ ρxzφ(zc)Φ

(
ρxzzc − xc√

1− ρ2xz

)
+xcΦ(xc,−zc,−ρxz)− Φ(−zc) {Φ(xc)xc + φ(xc)}

Similarly

ŝyz = φ(yc)Φ

(
ρyzyc − zc√

1− ρ2yz

)
+ ρyzφ(zc)Φ

(
ρyzzc − yc√

1− ρ2yz

)
+ycΦ(yc,−zc,−ρyz)− Φ(−zc) {Φ(yc)yc + φ(yc)}

so the parameter estimated from the censored data using a dummy variable as instrument

is

γDIV =
ŝyz
ŝxz

sY
sX

showing a clear bias, if one which is less straightforwardly represented than with the con-

tinuous instrument.

It should be noted that, in the absence of censoring (xc = −∞), then

σ̂xz = ρxzφ(zc)

while if xc = zc = 0

σ̂xz =
(1 + ρxz)φ(0)− φ(0)

2
= ρxz

φ(0)

2

It follows that if xc = yc = zc = 0 then γDIV is unbiased.
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