Professor Andrew Reader Academics Supervisors Professor of Imaging Sciences Research subject areas Imaging sciences Contact details andrew.reader@kcl.ac.uk +44 (0) 20 7188 3055
Synthesised Image Reconstruction for Post-Reconstruction Resolution Recovery Vass, L. & Reader, A., 23 Feb 2023, In: Transactions on Radiation and Plasma Medical Sciences. Research output: Contribution to journal › Article › peer-review Self-Supervised and Supervised Deep Learning for PET Image Reconstruction Reader, A., Feb 2023, (Accepted/In press) AIP Conference Proceedings. AIP Conferences Proceedings Research output: Chapter in Book/Report/Conference proceeding › Conference paper › peer-review Pre-training via Transfer Learning and Pretext Learning a Convolutional Neural Network for Automated Assessments of Clinical PET Image Quality Hopson, J. B., Neji, R., Dunn, J. T., McGinnity, C. J., Flaus, A., Reader, A. & Hammers, A., 23 Dec 2022, (E-pub ahead of print) In: Transactions on Radiation and Plasma Medical Sciences. 10 p. Research output: Contribution to journal › Article › peer-review. DOIs: https://doi.org/10.1109/TRPMS.2022.3231702 Dense Syn-Net: Inter-Modal and Self-Guided Deep Learned PET-MR Reconstruction Corda-D'Incan, G., Schnabel, J. & Reader, A., 27 Sep 2022, Dense Syn-Net: Inter-Modal and Self-Guided Deep Learned PET-MR Reconstruction. Research output: Chapter in Book/Report/Conference proceeding › Conference paper Real-Time Deep-Learned Reconstruction for a Scanning Intraoperative Probe Moo, J., Marsden, P., Vyas, K. & Reader, A., 27 Sep 2022, In: Transactions on Radiation and Plasma Medical Sciences. p. 1 1 p. Research output: Contribution to journal › Article › peer-review. DOIs: https://doi.org/10.1109/TRPMS.2022.3209014 Self-Guided and MR-Guided Deep-Learned Post-Reconstruction PET Processing Corda-D'Incan, G., Schnabel, J. & Reader, A., 27 Sep 2022, Self-Guided and MR-Guided Deep Learned Post-Reconstruction PET Processing. Research output: Chapter in Book/Report/Conference proceeding › Conference paper Advanced quantitative evaluation of PET systems using the ACR phantom and NiftyPET software Markiewicz, P. J., da Costa-Luis, C., Dickson, J., Barnes, A., Krokos, G., MacKewn, J., Clark, T., Wimberley, C., MacNaught, G., Yaqub, M. M., Gispert, J. D., Hutton, B. F., Marsden, P., Hammers, A., Reader, A. J., Ourselin, S., Herholz, K., Matthews, J. C. & Barkhof, F., May 2022, In: Medical Physics. 49, 5, p. 3298-3313 16 p. Research output: Contribution to journal › Article › peer-review. DOIs: https://doi.org/10.1002/mp.15596 MRI-Guided Motion-Corrected PET Image Reconstruction for Cardiac PET/MRI Munoz, C., Ellis, S., Nekolla, S. G., Kunze, K. P., Vitadello, T., Neji, R., Botnar, R. M., Schnabel, J. A., Reader, A. J. & Prieto, C., 1 Dec 2021, In: Journal of Nuclear Medicine. 62, 12, p. 1768-1774 7 p. Research output: Contribution to journal › Article › peer-review. DOIs: https://doi.org/10.2967/jnumed.120.254235 Artificial intelligence for PET image reconstruction Reader, A., 1 Oct 2021, In: Journal of Nuclear Medicine. 62, 10, p. 1330-1333 4 p. Research output: Contribution to journal › Article › peer-review. DOIs: https://doi.org/10.2967/jnumed.121.262303 Reproducibility of findings in modern PET neuroimaging: insight from the NRM2018 grand challenge and the Grand Challenge Participants#, Oct 2021, In: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 41, 10, p. 2778-2796 19 p. Research output: Contribution to journal › Article › peer-review. DOIs: https://doi.org/10.1177/0271678X211015101 View all publications