Skip to main content
KBS_Icon_questionmark link-ico

Lack of exercise and poor nutrition could increase the risk of diseases like dementia

Diet and exercise can influence the risk of cognitive decline (CD) and dementia by potentially influencing hippocampal neurogenesis (the process by which the brain produces new brain cells) long before their onset.


New research from the Institute of Psychiatry, Psychology & Neuroscience (IoPPN) at King’s College London has found that both diet and exercise can influence the risk of cognitive decline (CD) and dementia by potentially influencing hippocampal neurogenesis (the process by which the brain produces new brain cells) long before their onset.

The study, published in Alzheimer's & Dementia: The Journal of the Alzheimer's Association, suggests that altered neurogenesis in the brain could potentially represent an early biomarker for both CD and dementia.

The investigation studied how the blood of participants with and without CD and dementia could influence hippocampal neurogenesis in laboratory settings and whether diet and exercise were important factors. Specifically, blood samples of 418 French adults over the age of 65 were collected 12-years prior to CD and dementia diagnosis and tested on human hippocampal stems cells. Additionally, information on each participant’s sociodemographic, lifestyle, and clinical data were collected and incidence cognition status and dementia were measured every 2 to 3 years over a 12-year period.

Over the course of the study, the researchers established that 12 years prior to diagnosis, both CD and Alzheimer’s were associated with levels of neural stem cell death. The team also found that exercise, nutrition, vitamin D levels, carotenoid and lipid levels are all associated with the rate at which cells die off. Furthermore, physical activity and nutrition were key factors that then also determined CD status. Specifically, researchers found that reduced physical activity and increased malnutrition both increased cell death which in turn increased the risk for future CD.

While previous studies have established that diet and exercise have some protective effects against CD and dementia, these roles have been poorly understood at the neurobiological level. To date, studies on animals have shown how diet and exercise can directly influence hippocampal neurogenesis, potentially explaining how exercise and diet may biologically exert their effects, but this study sheds further light on this in the context of a human model.

"Our study has demonstrated not only that there are individual markers of hippocampal neurogenesis associated with CD and dementia 12 years later, but also that there is some degree of specificity with respect to diagnoses of dementia subtypes."– Dr Sandrine Thuret, King's IoPPN

Dr Sandrine Thuret, the study's lead investigator said, "If an individual displays an increase in their levels of cell death during differentiation (when neural stem cells are becoming neurons), we can look at this as a potential warning sign of CD. Conversely, a decrease in levels of cell death during proliferation (the process by which a single cell divides into a pair) and reduced hippocampal progenitor cell integrity could be viewed as a predictor for Alzheimer’s Disease and Vascular dementia, respectively.”

According to Alzheimer’s Research UK, there were a total of 525,315 people living with a dementia diagnosis in the UK in 2020. Rates of cognitive decline and dementia are expected to triple in prevalence by 2040.

Dr Andrea du Preez, the study’s first author from King’s IoPPN said, “While more work is undoubtedly needed to fully understand how diet and exercise might modulate hippocampal neurogenesis, our findings may represent an effective early preventative strategy against CD and dementia.”

This project was part of the EU consortium DCogPlast ‘Diet Cognition and Plasticity” led by Dr Thuret and funded by JPI-HDHL, the Medical Research Council UK, the French National Research Agency MINECO, CiberFES- Cofund by FEDER Program from EU, Academia Award from the Generalitat de Catalunya, and the BMWFW.


The serum metabolome mediates the concert of diet, exercise and neurogenesis, determining the risk for cognitive decline and dementia (DOI: 10.1002/alz.12428) (Andrea Du Preez, Sophie Lefèvre-Arbogast, Vikki Houghton, Chiara de Lucia, Dorrain Y Low, Catherine Helmer, Catherine Féart, Cécile Delcourt, Cécile Proust-Lima, Mercè Pallàs, Silvie R. Ruigrok, Barbara Altendorfer, Raúl González-Domínguez, Alex Sánchez-Pla, Mireia Urpi-Sardà, Cristina Andres-Lacueva, Ludwig Aigner, Paul J Lucassen, Aniko Korosi, Claudine Manach, Cécilia Samieri, Sandrine Thuret) was published in Alzheimer's & Dementia: The Journal of the Alzheimer's Association


For more information, please contact Patrick O’Brien (Senior Media Officer)

In this story

Sandrine Thuret

Sandrine Thuret

Professor of Neuroscience