Show/hide main menu

Academic Staff

Dr Riccardo Sapienza


Telephone: +44 020 7848 2491


Office:  S7.17

Research Group: Experimental Biophysics & Nanotechnology

Office Hours:

Tuesday 11:00-12:00

Wednesday 11:00-12:00

Interests: Interested in nanophotonics of complex media, find out more about the Complex Nanophotonics Science Camp

August 2015


Thomas Young Centre

Riccardo Sapienza


Publications Repository

My research background - Selected Publications

Nano-optics and plasmonics

.” Aluminum for Nonlinear Plasmonics: Resonance-Driven Polarized Luminescence of Al, Ag, and Au Nanoantennas”, M. Castro-Lopez, D. Brinks, Riccardo Sapienza, and N. F. van Hulst, Nanoletters 10.1021/nl202255g (2011)

Light emission control by local density of states engineering

Deep-subwavelength imaging of the modal dispersion of light, Riccardo Sapienza, T. Coenen, J. Renger, M. Kuttge, N.F. van Hulst and A. Polman, Nature Materials 11, 781-787 (2012)

. “Long-tail statistics of Purcell factor in disordered media driven by near-field interactions”, Riccardo Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati, and N. F. van Hulst, Physical Review Letters 106, 163902 (2011)

. “Elastic Photonic Crystals: From Color Fingerprinting to Control Over Photoluminescence” A. C. Arsenault, T. J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J.Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, G. A. Ozin, Nature Materials 5, 179 (2006)

Unconventional lasing and random lasing

. “Optical gain in DNA-DCM for lasing in photonic materials”, M. Leonetti, Riccardo Sapienza, M. Ibisate, and C. Lopez Optics Letters 34, 3764-3766 (2009)

. “Resonance-driven random laser”, S. Gottardo, Riccardo Sapienza, P.D. Garcia, J. Bertolotti, A. Blanco, D. Wiersma, C. Lopez, Nature Photonics 7, 102 (2008)

Nano-photonic material science

. Self-Assembled Photonic Structures, J.F. Galisteo-Lopez, M. Ibisate, Riccardo Sapienza, L.S. Froufe, A. Blanco, C. Lopez, Advanced Materials 23, 30 (2011)

. Photonic Glasses: a step beyond white paint, P.D. Garcia, Riccardo Sapienza, C. Lopez, Advanced Materials 22, 12 (2010)

. “Photonic Glass: a Novel Random Material for Light”, P.D. Garcia, Riccardo Sapienza, C. Lopez, Advanced Materials 19, 2597 (2007)

Light transport in complex photonic media

. “Observation of Resonant Behavior in the Energy Velocity of Diffused Light”, Riccardo Sapienza, P.D. Garcia, D. Martin, J. Bertolotti, L. Vina, A. Blanco, C. Lopez, D. Wiersma, Physical Review Letters 99, 233902 (2007).

. “Anisotropic weak localization of light”, Riccardo Sapienza, S. Mujumdar, C.Cheung, A. Yodh, and D. Wiersma Physical Review Letters 92, 033903 (2004)

. “Optical Analogue of Electronic Bloch Oscillations”, Riccardo Sapienza, P. Costantino, D. Wiersma, and M. Ghulinyan, C. Oton, L. Pavesi Physical Review Letters 91, 263902 (2003)


Our main scientific interest is nanophotonics and in particular the coherent interaction of light with mesoscopic and nanoscale photonic systems, individually and collectively. It involves a combination of nano-optics, quantum optics and photonics of complex systems.

We explore quantum and nanoscale photonics to control the generation, confinement and flow of light. We look at coherent interactions of light emitted from a single quantum dot or a molecule with nanoscale engineered materials, such as nanometer-sized optical resonators and metallic antennas, at the individual level, which are also the building blocks for more complex optical networks.

We are interested in understanding how quantum information can travel long distances by coupling photons and emitters via tailored optical modes of complex optical networks. We expect fascinating collective phenomena to emerge from these complex architectures, and by inducing stimulated emission we will explore unconventional and random lasing.

Phd Vacancies

Applications are invited for research in the Experimental Biophysics & Nanotechnology group

To apply for the Physics MPhil/PhD  please fill in an application form  Further details and guidelines can be found here.

All relevant information regarding eligibility, including academic and English language requirements, is available from the online prospectus.

Funding your PhD

We have several funded opportunities available.  All eligible applications will be automatically considered for these award.   There are a number of funding schemes available associated with different application deadlines and eligibility requirements. Please visit our 'Funding your PhD' webpage for further details.

For further details contact Dr Riccardo Sapienza and or the Postgraduate Tutor Dr Gregory Wurtz.

PhD Projects

These are fully funded studentships. Specific conditions vary for each project. The applications should be made on-line via quoting the name of the prospective supervisor.

Complex Photonic Networks

Applications are invited from EU nationals for a fully funded PhD studentship in experimental nanophotonics at King’s College London. You will study the coherent interaction of light with nanoscale photonic systems; a combination of nano-optics, quantum optics and photonics of complex systems. The challenge is to achieve ultimate control of light emission from individual emitters to realize complex photonic networks exploiting quantum and coherent effects. The project builds on the latest advances in nanophotonics, plasmonics and photonic crystal science, which gives powerful tools to control light-matter interaction at the nanoscale. We are seeking an enthusiastic PhD student to undertake experimental research. The project involves design, nanofabrication and optical studies. The successful candidate should have a degree in physics, or material science. Independent thinking and multidisciplinary attitude is sought. The starting date is negotiable, preferably before April 2014. For further details contact Dr Riccardo Sapienza.

Unconventional and random lasing

You will study stimulated emission of light and lasing in nanoscale photonic systems such as complex networks and porous media. The challenge is to achieve novel forms of lasing, based on novel optical modes, driven by near-field interactions, multiple light scattering and collective interference in optical networks. The project builds on latest advances in nanophotonics and plasmonics, tools to control light-matter interaction at the nanoscale. For further details contact Dr Riccardo Sapienza.

Self-funded PhD students

A limited number of PhD projects is offered on the understanding that a successful applicant will secure funding to cover tuition fees and living costs from external sources by himself. Prospective applicants should contact the project supervisor listed below prior to making application.The applications should be made on-line via quoting the name of the prospective supervisor.


4CCP1350- Mathematics and Mechanics for Physics

7CCP4478  - Experimental Techniques in Condensed Matter Physics


Sitemap Site help Terms and conditions Accessibility Recruitment News Centre Contact us

© 2015 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454