Show/hide main menu


News Highlights

Genes control how information is duplicated in the nervous system

Posted on 07/02/2017

Nerve cells in the roundworm

A new King’s College London study, published in eLife, reveals that genes control the duplication of information in the nervous system and identifies some of the first genes that perform this crucial function.

Prior studies suggest that information about the environment, such as vision, can be duplicated in multiple places in the nervous system, comparable to a computer backup. This feature is fundamental to how information is encoded and transmitted in the brain. However, little is known about how the choice to duplicate information is made in the nervous system. Insights into this question have implications for nearly all aspects of brain function in health and disease.

This multidisciplinary work involved biologists and a physicist from the Centre of Developmental Neurobiology at the Institute of Psychiatry, Psychology &Neuroscience (IoPPN), King’s College London, and engineers from the Georgia Institute of Technology (USA).

This research builds on previous efforts by the team to study the production of neuronal hormones, which change in response to food, to mediate the effects of food on lifespan. By studying the patterns of hormone production in different nerve cells in a roundworm known as C. elegans, the researchers found that the information about food exposure is duplicated in more than one nerve cell. However, in a mutant roundworm that lacked the gene for a growth factor called TGF-beta, the pattern of food responses in these nerve cells changed, such that the information about food was no longer duplicated.

Dr QueeLim Ch’ng from King’s College London, senior author of the study, said: ‘While the concept of information is abstract, we can easily relate it to how files are stored on computers. In the normal animals, it’s like having a computer where some files are duplicated on two hard drives. What is particularly cool is that information in the nervous system is located differently when specific genes are changed, even though the anatomy stays the same. This affects the way information is transmitted and ultimately integrated to produce an effect on the whole animal.’

Dr Ch’ng added: ‘Our findings also reveal, for the first time, how genes control one another to affect how information is routed in the brain. These insights may help us further understand the relationship between genes and cognitive abilities.’

This work was supported by grants from the BBSRC, Wellcome Trust, ERC, NIH, and NSF.

Notes to editors

Paper reference: Diana, G et al (2017) Genetic Control of Encoding Strategy in a Food-sensing Neural Circuit eLife

News Highlights:

News Highlights...RSS FeedAtom Feed

Faster biological ageing could increase risk for depression in childhood

Faster biological ageing could increase risk for depression in childhood

Genetic factors which predispose people to accelerated 'biological ageing' also increase their risk of developing depression in childhood, according to a new study from King's College London.
Deprivation in early childhood can affect mental health in adulthood

Deprivation in early childhood can affect mental health in adulthood

Despite living in strong and supportive families for over 20 years, many children exposed to severe early deprivation in Romanian institutions aged 0-3 experience a range of mental health problems in early adulthood, according to new King's College London research.
Maths and maps make you nervous? It could be in your genes

Maths and maps make you nervous? It could be in your genes

Our genes play a significant role in how anxious we feel when faced with spatial and mathematical tasks, such as reading a map or solving a geometry problem, according to a new study by researchers from King's College London.
Sitemap Site help Terms and conditions  Privacy policy  Accessibility  Modern slavery statement  Contact us

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454